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Abstract: In this paper, a data aggregation gateway framework (DA-GW) for constrained application
protocol (CoAP) group communications is proposed. The DA-GW framework is designed to improve
the throughput performance and energy efficiency of group communication to monitor and control
multiple sensor devices collectively with a single user terminal. The DA-GW consists of four function
blocks—the message analyzer, group manager, message scheduler and data handler—and three
informative databases—the client database, resource database and information database. The DA-GW
performs group management and group communication through each functional block and stores
resources in the informative databases. The DA-GW employs international standard-based data
structures and provides the interoperability of heterogeneous devices used in various applications.
The DA-GW is implemented using a Java-based open source framework called jCoAP to evaluate
the functions and performance of the DA-GW. The experiment results showed that the DA-GW
framework revealed better performance than existing group communication methods in terms of
throughput and energy consumption.

Keywords: CoAP group communication; data aggregation; gateway framework; Internet of Things;
jCoAP; oneM2M

1. Introduction

Recently, Internet of Things (IoT) technology has undergone rapid advancement and enabled
a large number of services, such as smart manufacturing, smart agriculture, healthcare and connected
cars [1–3]. In such IoT services, devices obtain data from physical sensors and conduct the operations
requested by the user through the actuators, then report the obtained data and the operating results to
the user. These devices are generally resource-constrained in central processing unit (CPU), memory
and power consumption, and the use of a light-weight web protocol is thus strongly recommended to
make their data resources accessible to the Internet [4].

The constrained application protocol (CoAP) is a typical light-weight web transfer protocol for
providing reliable communication in a resource-constrained environment. It is specified in Request for
Comments (RFC) 7252 published by the Internet Engineering Task Force (IETF) Constrained RESTful
Environments (CoRE) Working Group and has been standardized [5]. Since the CoAP runs over the
User Datagram Protocol (UDP), it has a smaller control overhead than the Hypertext Transfer Protocol
(HTTP), which is a Transmission Control Protocol (TCP)-based web transfer protocol. It can also reduce
network overhead because of the small size of the message header (i.e., four bytes) [6]. Furthermore,
since it follows the RESTful structure, it can be easily converted and interoperated with the existing
HTTP web protocol, thereby providing high interoperability [7].

Symmetry 2016, 8, 138; doi:10.3390/sym8120138 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry


Symmetry 2016, 8, 138 2 of 18

In most IoT services, the function of group communication is highly important for enabling a single
user terminal (i.e., client) to monitor and control multiple sensor devices (i.e., servers) collectively.
To achieve this, the IETF CoRE Working Group published RFC 7390 to standardize multicast-based
CoAP group communication [8]. In the standard, the client manages the data resources of servers in
the designated group as it transfers non-reliable multicast messages to the designated group. However,
the CoAP group communication defined in RFC 7390 cannot guarantee reliable transmission and has the
drawback of difficulties in implementing multicast transfer over the resource-constrained environment.

A number of studies has been conducted to improve CoAP group communication.
Konieczek et al. [9] and Law et al. [10] proposed a unicast-based solution. In the solution, the client
sends a request directly to each server that belongs to the group and receives a response individually
from each server. In addition, once the client receives a response from all servers in the group,
it determines that communication with the group has been completed. In this way, the client can
request re-transmission if errors are detected, as it can determine immediately whether it has received
all responses from each server, thereby ensuring reliable communication. However, the client needs
to transfer a large number of request messages and receives responses from each server individually,
which can cause network congestion, as well as high energy consumption in the client. Moreover,
a long delay due to repetitive request-response operations cannot be avoided, which cannot guarantee
the timeliness of IoT services. To solve this problem, Ishaq et al. [11] proposed a gateway-centric
unicast solution. In this solution, additional gateways (GWs) are placed between the client and
servers. The client sends a request message that contains the information of the servers to the GW only
once. The GW sends a request directly to each server listed in the request message via unicast and
forwards the response to the client as soon as it receives a response. In this way, the number of request
transmissions sent by the client can be reduced, thereby mitigating network congestion between the
client and GW and increasing the energy efficiency of the client. However, it cannot reduce the number
of request transmissions between the GW and servers, and the number of responses received by client
and GW is not taken into consideration. As a result, the above method cannot solve the network
congestion problem completely, and energy consumption is not reduced due to response-receiving.
Jung et al. [12] and Ishaq et al. [13] commonly proposed a gateway-centric multicast solution. In the
former solution [12], the GW sends a client request to all servers included in the group via multicast
transfer once. It uses the “non-confirmable message” of CoAP as a client request, which does not
require an acknowledgement from the servers. Thus, the client should send the additional “confirmable
message” to servers to retrieve their resource, which can act as the network overhead. The latter [13]
introduced a multicast solution for the device discovery procedure, for which the GW sends the
“confirmable message” as a discovery request to the servers via a multicast transfer, and then, each
server responds to the GW with an acknowledgement using the unicast. This solution cannot solve
the network congestion problem between the client and GW, since it focuses on only the message
exchange between the GW and servers for the device discovery procedure.

In the present study, the data aggregation gateway (DA-GW) framework for CoAP group
communications is proposed to solve the aforementioned CoAP group communication issue.
The DA-GW framework consists of essential functional blocks and an informative database (DB)
for the client to manage multiple groups and various server devices efficiently that are included in
each group through multicast. The DA-GW includes the following four functional blocks: (1) message
analyzer; (2) group manager; (3) message scheduler and (4) data handler. The message analyzer
analyzes request/response messages and determines what actions are taken by the DA-GW, and the
group manager manages device discovery and the join/leave operations of servers (i.e., group or
non-group members). The message scheduler determines the transmission time of request/response
messages, and the data handler performs computation for data aggregation and data processing.
In addition, the DA-GW includes the following three informative DBs: (1) client DB; (2) resource DB
and (3) information DB. The client DB stores the information of user profiles, and the resource DB
stores a list of all servers and their resources. Finally, the information DB stores processed data, such as
minimum, maximum and mean values.
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The DA-GW employs the oneM2M standard-based data structure to provide interoperability for
heterogeneous devices that use a variety of applications. The DA-GW stores all of the generated data
in the format of resources and distinguishes each resource by the uniform resource identifier (URI).
DA-GW performs group management using the <groupManagement> resource and stores data by
group for CoAP group communication. Furthermore, the DA-GW performs user authentication of
the client through the <userAuthentification> resource and modifies the status of servers through
application resources, such as <light>, <door> or <temperature>, or receives status values.

To verify the performance of the DA-GW framework, a prototype was implemented using jCoAP,
a Java-based open source, and performances were measured in terms of throughput and energy
consumption and compared with existing solutions. The experiment results showed that the DA-GW
revealed better throughput performance than that of the unicast solution by 73.71% and that of the
multicast solution by 19.47% when the timeout was set to 60 ms, the number of groups was two and
the number of members in each group was set to nine. Under the same experimental conditions,
the energy consumption was decreased by 13.37% compared with that of the unicast solution and by
2.98% compared with that of the existing multicast solution.

The present paper is organized as follows. In Section 2, the system architecture and the design of
the DA-GW are explained in detail. In Section 3, the implementation environment of the DA-GW is
presented with functions and performance evaluation results. We conclude this paper in Section 4.

2. Data Aggregation Gateway Framework

2.1. System Architecture

Figure 1 illustrates the high-level system architecture of the CoAP group communication described
in our work, which consists of three components: the client, the DA-GW and the servers. In the figure,
the servers (i.e., the sensor and actuator devices) are connected to the client (i.e., the user terminal)
through a DA-GW.
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Figure 1. High-level system architecture.

One or more servers with a similar task within a local network can compose a group. When the
DA-GW receives the request message from a client, it forwards it to the servers within the designated
group using multicast transmission, and then, each server responds with the response message that
includes the requested sensing data using unicast transmission. In this paper, the DA-GW plays the
role of an aggregation point. In other words, the DA-GW checks and collects data from each server
within the group. Furthermore, it checks the group address contained in the header of each response
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message and aggregates response messages that contain the same group address to a single message
(i.e., aggregation message). The DA-GW performs aggregation after waiting for a response message
within the pre-set timeout period. Through this process, network traffic can be reduced.

2.2. Design of DA-GW

Figure 2 shows the system structure of the DA-GW. The DA-GW consists of four functional blocks
and three informative DBs.
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• Message analyzer: The message analyzer checks the type of received request/response message
and determines the operation undertaken by the DA-GW. The message analyzer classifies a request
message into three types: (1) resource discovery request; (2) join/leave group request and
(3) group communication request. When the DA-GW receives a response message from the
servers, the message analyzer determines whether the received response message has an error
and whether aggregation is performed by checking the group URI.

• Group manager: The group manager performs device discovery and join/leave group operations.
Once a change in a group is determined through the message analyzer, the DA-GW gives a request
for an operation to a corresponding server. For example, once the client requests the addition of
a new member to an existing group, the DA-GW forwards the join group request received from
the client to a corresponding server. Once a member is joined to the group normally, the DA-GW
gives the response of the changed status of a group to the client.

• Message scheduler: The message scheduler determines the transfer time of the request/response
message between the client and server. The DA-GW considers network traffic to adjust the transfer
time of the request/response message between the client and server when its buffer overflow is
imminent. To this end, the DA-GW configures the threshold of its own buffer queue, which is
a reference value for determining whether a buffer overflow event is imminent. Note that, in our
work, we use 90% of the buffer size as a queue threshold. When the queue status of the DA-GW
reaches the pre-defined queue threshold, it immediately sends the aggregated response message
to the client without waiting for further responses, even if the timeout period is not expired yet.

• Data handler: The data handler performs computation for the aggregation or processing of the
response messages received from the servers. The data handler aggregates the response messages
that contain the same group address within the pre-set timeout and sends a response to the client.
If the payload size of the aggregated response messages is larger than the maximum payload
size, it separately transmits a response having a maximum payload and an additional response
that contains the rest of the payload. Furthermore, it processes the received data into special
information, such as minimum, maximum or mean values.

• Client DB: The client DB stores the information of user profiles. Once user authentication is
received from the client, the DA-GW compares the user profile information with that in the client
DB to verify the user. Through this process, the DA-GW supports multi-clients.



Symmetry 2016, 8, 138 5 of 18

• Resource DB: The resource DB stores a list of group members and non-group members, as well
as the resources of each member. The DA-GW provides the resource information stored in the
resource DB to the client for group management. The DA-GW updates the resource DB whenever
changes in resources occur.

• Information DB: The information DB is an optional DB that stores processed data, such as
minimum, maximum and mean values. Once the client requests processed data, the DA-GW gives
a response regarding the processed data stored in the information DB immediately. The DA-GW
creates processed data via requests from the client and sets the update frequency.

2.3. Data Structure

The data structure in the DA-GW follows the resource structure defined in oneM2M TS-0001 [14].
Through the data structure, the information used in the DA-GW and servers can be explained.
Information about user authentication is expressed via the string type. Information about the group
server and non-group server is expressed via the string type. Furthermore, group management
information for group join/leave functions and group communication is also expressed via the string
type. The sensor value is the real type, and the actuator status is the string type. The period of
observation is expressed via the integer type, and the observation status is expressed as integer
Type 0 or 1.

Figure 3 shows the resource structure of user authentication used in the DA-GW.
The accessedClientIDList attribute shows a list of client IDs connected to the DA-GW.
The registeredClientIDList attribute shows the client IDs registered to the DA-GW.
The userAuthenticationState attribute represents a value showing whether log-in has been
successful. It checks whether the client is connected to the DA-GW using the accessedClientIDList
value and registeredClientIDList value and modifies the value for log-in success after checking
whether the ID is registered to the DA-GW. The <subscriptions> sub-resource of a specific resource
creates the <subscription> resource and gives a response when it receives the subscription request
of the client. Once an attribute value of the client subscription is changed, the corresponding
client is notified of the change. All <subscriptions> sub-resources are operated similarly. Once the
accessedClientIDList, registeredClientIDList and userAuthenticationState values are updated,
the client that wants a subscription is notified of the update.
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Figure 4 shows the data structure for group management. The nonGroupDevicesList attribute
shows information about devices that do not belong to a specific group. The groupDevicesList
attribute shows information about devices that belong to a specific group. The <groupAction>
resource is a sub-resource of the <groupManagement> resource. The groupActionState attribute
shows whether join or leave has been successful. It generates an event after receiving a request of
join or leave to/from a specific group and modifies the groupActionState attribute to show whether
that event has been successful. The <groupCommunication> resource, which is a sub-resource of the
<groupManagement> resource, contains the multiple attributes that represent the values obtained
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through group communication with sensor and actuator groups. In the figure, temperatureGroupState,
lightGroupState and doorGroupState show the attributes for temperature sensor group, light actuator
group and door actuator group as the references for guidance, respectively. Note that this configuration
of the data structure is not restricted to the specific sensors or actuators.

Symmetry 2016, 8, 138  6 of 18 

 

<groupManagement> resource, contains  the multiple attributes  that represent  the values obtained 

through  group  communication  with  sensor  and  actuator  groups.  In  the  figure, 

temperatureGroupState, lightGroupState and doorGroupState show the attributes for temperature 

sensor  group,  light  actuator  group  and  door  actuator  group  as  the  references  for  guidance, 

respectively. Note that this configuration of the data structure is not restricted to the specific sensors 

or actuators. 

 

Figure 4. Data structure for group management. 

Figure 5 shows the data structure for the server included in the light group. The lightActionState 

attribute shows the current state of the light. The <lightAction> resource is a sub‐resource of the <light> 

resource. The client changes the state of the light to on or off and checks whether the light state has 

been changed successfully through the changeState attribute. 

 

Figure 5. Data structure of the light application. 

Figure 6 shows the data structure for the server included in the door group. The doorActionState 

attribute shows the current open/close state of the door. The <doorAction> resource is a sub‐resource 

of  the  <door>  resource.  It performs  a  request  that  changes  a door  state  from  the  client  and  can 

determine whether the operation has been successfully performed through changes in the value of 

the changeState attribute. 
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Figure 5 shows the data structure for the server included in the light group. The lightActionState
attribute shows the current state of the light. The <lightAction> resource is a sub-resource of the
<light> resource. The client changes the state of the light to on or off and checks whether the light state
has been changed successfully through the changeState attribute.
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Figure 5. Data structure of the light application.

Figure 6 shows the data structure for the server included in the door group. The doorActionState
attribute shows the current open/close state of the door. The <doorAction> resource is a sub-resource
of the <door> resource. It performs a request that changes a door state from the client and can
determine whether the operation has been successfully performed through changes in the value of the
changeState attribute.
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Figure 6. Data structure of the door application.

Figure 7 shows the data structure for the server included in the temperature group.
The temperatureState attribute shows the temperature value. The notificationPeriod attribute shows
the minimum time between notifications. The temperatureActionState attribute shows the state of
the notification. The <temperatureAction> resource is a sub-resource of the <temperature> resource.
The notificationEnable attribute shows that a periodic notification is being used. The notificationDisable
attribute shows that a periodic notification is not being used.
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3. Implementation and Performance Evaluation

In this section, the functions and performances of the DA-GW are evaluated through
implementation with extensive experiments. To evaluate the DA-GW, the implementation was
conducted using jCoAP [15,16], which is a Java-based open source software, and the experimental
results were compared with existing solutions to verify the performance of the proposed DA-GW.
Next, the implementation is explained in detail, and the functions and performance evaluation results
of the DA-GW are presented in the subsection.

3.1. Implementation

The CoAP group communication system was implemented, as shown in Figure 8. The DA-GW
was placed between the client and server, and communication between them can be achieved through
the DA-GW. Each device communicated using the CoAP over the Institute of Electrical and Electronics
Engineers (IEEE) 802.11n wireless network interface [17,18]. The client transfers a request message of
the JavaScript Object Notation (JSON) type that has a 52-byte payload to the DA-GW [19]. Once the
DA-GW receives a request message from the client, the URI, URI query and payload are verified,
and request messages are transferred to the servers using multicast. Each server that receives the
request creates a response message of the JSON type that has a 20-byte payload and transfers the
message to the DA-GW using unicast. The DA-GW aggregates response messages received from each
server and transfers a single aggregated response message to the client.
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The DA-GW plays an important role in the CoAP group communication system. To implement the
DA-GW, the Raspberry pi2 hardware platform (Raspberry Pi Foundation, Caldecote, Cambridgeshire,
UK), which was run with a Linux-based Raspbian operating system (Raspberry Pi Foundation,
Caldecote, Cambridgeshire, UK), was used. Raspberry pi2 supports a 900-MHz quad-core ARM
Cortex-A7 CPU and 1 GB RAM [20]. To provide wireless connectivity, a wireless adapter that supported
IEEE 802.11n was employed. The functional blocks that were responsible for the critical functions of the
DA-GW, such as message analysis, transmission scheduling, group management and data aggregation,
were implemented using the jCoAP library. To access the informative DB in the DA-GW, Java Database
Connectivity 4.2 (JDBC 4.2) (Oracle Corporation, Santa Clara, CA, USA), which is an application
programming interface (API) used to support DB access in Java, was used. To verify the functions of
the DA-GW, the user interface (UI) was developed using the Swing toolkit provided by Java.

The server was also implemented using Raspberry pi2 and the jCoAP library. However, a sensor or
actuator was attached to each server in contrast with the DA-GW, and the applications were developed
differently according to the types of sensor and actuator applied to the server. More specifically, each
server uses only one of the applications from the light application for LED actuator control, door
application for servo motor control and temperature application for temperature sensor monitoring.

To implement the client, an Android Version 5.1.1 (i.e., Lollipop)-based tablet PC (i.e., Nexus 7)
was used, and the client application was developed via the jCoAP library. The client employs
the QUALCOMM (San Diego, CA, USA) WCN3660 wireless local area network (WLAN) interface,
which supports Modulation and Coding Scheme 7 (MCS 7) in IEEE 802.11n.

3.2. Functional Evaluation

In this section, the main functions and operations of the DA-GW are evaluated. In particular,
the functions of user authentication for multi-clients, group management and group communication
in the DA-GW are checked through the UI.

Figure 9a shows the performance results of user authentication used in the DA-GW. The client
requests authentication via the POST method with a JSON-type message containing the payload of the
user ID by means of the “/userAuthentication” URI of the DA-GW. Then, the DA-GW compares the
information in the payload in the request with that in the client DB. Upon successful authentication,
“success” is contained in the payload of the JSON-type message, as shown in A, to give a response to
the client. Otherwise, “fail” is contained in the payload, as shown in B, in response to the client. Upon
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successful authentication, the client displays the UI, as shown in Figure 9b. Note that, in our work,
we have mainly focused on the operation of data aggregation for CoAP group communications and
its system prototyping considering the oneM2M standard and the jCoAP open source project for the
purpose of proof of concept (PoC). Thus, regarding the user authentication, the DA-GW requires only
the user ID for user authentication without any password or data encryption. However, in the real
deployment of the DA-GW, this simple authentication is very vulnerable to malicious attacks, thus
security and privacy should be essentially considered from the user service aspects.
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Figure 9. User authentication for multi-clients. (a) The result of user authentication in DA-GW
(A: Success, B: Fail); (b) the client UI when the user is authenticated successfully.

The group management function includes device discovery and join/leave group functions.
Figure 10a shows the performance results of device discovery used in the DA-GW. The DA-GW
performs device discovery periodically to search a newly-added server in the service region.
The DA-GW transfers a discovery request message via the “well-known/core” URI for device discovery.
If servers that are not subscribed to the group receive the message, the discovery response message is
transferred to the DA-GW. Once the DA-GW receives the response message, the corresponding server
is stored in the resource DB as a non-group member. Once device discovery is performed successfully,
the resource type of the non-group member can be seen in the client, as shown in Figure 10b.
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Figure 10. Device discovery. (a) The result of non-group member discovery in DA-GW; (b) the resource
type of the non-group member.

Figure 11 shows the performance result of the join group. As shown in Figure 11b, once a user
selects the resource type depicted in the client, a list of discovered non-group members is displayed.
Once one of the non-group members in the list is selected by a user, the list of groups to which the
selected non-group member can be registered is displayed. Then, a specific group in the group list is
selected, and the join button is selected. The client transfers the URI of the non-group member selected
via the “/groupManagement/groupAction” URI of the DA-GW and a join request message including
the group URI through the POST method. Once the DA-GW receives the request, the group IP and
group URI are transferred to the corresponding non-group member URI. After the corresponding
non-group member is joined to the group selected by user, the non-group member gives a response
about the group join state to the DA-GW. Then, the DA-GW that receives the response stores the group
join information in the resource DB. The leave process is similar to the aforementioned join process.
The client sends a leave request from the group to the “client/GM” URI of the DA-GW with group
member information that needs to leave from the group using the POST method. Once the DA-GW
receives the message, it gives a leave request to corresponding group members, and a group member
that receives the message updates its state to non-group member and transfers the information to the
DA-GW. The DA-GW that receives the response deletes the group members that have left from the
resource DB.
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Figure 11. Join group. (a) The result of the group join process in DA-GW; (b) the group management
of the client.

Figure 12 shows the performance result of group communication. As shown in Figure 12b,
when the client changes the state of a group member, it sends a request message to the DA-GW using
the POST method. Once the DA-GW receives the request message, the request received from the client
is transmitted to group members via multicast. Once the group members receive the request message,
they perform the requested operation, and a response on the performance result is sent to the DA-GW
via unicast individually. The DA-GW that receives responses from the group members performs data
aggregation until either the response messages are received from all group members or timeout occurs.
Then, the DA-GW transfers the aggregated response message to the client only once.
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communication in the client.

3.3. Performance Evaluation

In this section, we evaluate the performance of the DA-GW by conducting the experiments for
three approaches; “gateway-centric unicast”, “gateway-centric multicast” and “DA-GW”. As earlier
mentioned in Section 1, in the gateway-centric unicast, the GW is placed between the client and
servers. The client sends a request message to the GW only once, then the GW sends a request directly
to each server via unicast and forwards the response to the client as soon as it receives a response.
In the gateway-centric multicast approach, the GW sends a request from the client to all servers
included in the group via multicast transfer once, but it separately forwards the response via unicast
whenever receiving a response from each server. Lastly, in the DA-GW approach, the GW performs
the aggregation for multiple response messages from the servers during the pre-set timeout period
and then forwards an aggregated message to the client.

Figure 13 shows the delay time to receive all responses from all group members after the client
sends the request and the energy consumption in the client due to the delay. The payload sizes of the
request and response message are 52 and 20 bytes, respectively. The request message contains the
information for the server (e.g., URI path, group communication IP, operation command), while the
response message includes the measured value of the sensor or actuator. Note that the Tx energy
consumption in the client (i.e., Nexus 7) is 138.125 mW, and the Rx energy consumption is 76.778 mW.
Considering the effect of the group size, the number of group members started from two up to
20 incrementing by two, and the number of groups was set to one. Each experiment was conducted for
5 min and iterated 10 times.
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As shown in Figure 13a, as the number of group members was increased, the delay time increased.
However, group communication using the DA-GW had a shorter delay time than existing methods.
The reason for this was that the number of request message transmissions was reduced by using
multicast, and the number of receipts of response messages was also reduced by aggregation in the
case of the DA-GW. For gateway-centric unicast, on the other hand, as the number of group members
was increased, the number of request message transmissions and the number of receipts of response
messages were proportional to the number of group members. Additionally, for gateway-centric
multicast, the number of receipts of response messages increased by the same amount as the number of
group members. As shown in Figure 13b, energy consumption in the client showed a similar trend to
that of the changes in delay time according to the increase in the number of group members. This was
because increases in transmissions and receipts meant more energy consumption proportionally. Group
communication using the DA-GW had a shorter delay time than those of gateway-centric unicast and
gateway-centric multicast by 84.53% and 46.86%, as well as less energy consumption by 84.54% and
46.85%, respectively.

Figure 14 shows the throughput performance of group communication using the DA-GW.
Figure 14a shows throughput according to increases in the number of group members. In this
experiment, the timeouts were set to 20 and 40 ms. The client was set to transfer a request message
with the frequency of timeout. Group communication using the DA-GW increased the number of
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received response messages as the number of group members was increased, increasing throughput.
On the other hand, the existing method showed that throughput increased until the number of group
members exceeded a certain number. After this, a certain throughput was revealed. This was because
all response messages could not be received within the timeout. The throughput in the method using
the DA-GW was better than that of gateway-centric unicast by 83.30% and that of gateway-centric
multicast by 56.36% when the timeout was set to 20 ms.
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Figure 14b shows the throughput performance according to increases in timeout. In the
experiment, the numbers of group members were set to 10 and 20, respectively. The experiment result
showed that as the timeout increased, the throughput of the DA-GW decreased. This was because the
number of response messages received by the client was reduced during the experiment. The proposed
method showed higher throughput performance than existing methods when the timeout was short.
This was because the method using the DA-GW received more response messages within the limited
timeout. On the other hand, when the timeout was long, all three methods showed similar throughput
performance because all three methods can receive all response messages. The throughput in the
method using the DA-GW was better than that of gateway-centric unicast by 71.94% and that of
gateway-centric multicast by 28.37% when the number of group members was 20.
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Figure 15a shows the energy amount consumed by the client for 5 min according to changes
in the number of group members. The experiment was conducted in the same environment to that
shown in Figure 14a. When the DA-GW was used, the energy consumption increased as the number
of group members was increased. This is because the energy consumed during the reception of
messages increased as the number of received response messages increased. When the DA-GW was
used, the client performed the least number of message transmissions and receptions, which was
why the lowest energy was consumed compared with existing methods. On the other hand, when
gateway-centric unicast was used, the energy consumption showed no significant change because the
client showed little change in the number of transmissions and receptions regardless of the number of
group members. For gateway-centric unicast, the energy consumption in the client was the largest
because it had to send as many request messages as the number of group members. Figure 15b
shows the energy consumption of the client according to an increase in timeout. The experiment
was conducted in the same environment to that shown in Figure 14a. When the DA-GW was used,
the energy consumption in the client continued to decrease as the timeout became longer, but it
became nearly constant after the timeout passed 60 ms. The reason for this was because all response
messages could be received if a timeout was set to 60 ms or longer, so there was no change in the
number of receptions of response messages. For group communication using the DA-GW, the energy
consumption in the client was approximately 18.03% less than that of gateway-centric unicast and
2.15% less than that of gateway-centric multicast.
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Figure 16 shows the measurement results of (a) throughput and (b) energy consumption for 5 min
of the client while increasing the number of groups from one to three. In this experiment, we considered
the variation of the number of groups to investigate the effect of the number of groups. The number of
overall servers was set to 18, and the timeout was set to 60 ms. The numbers of members in a group
were set to 18, 9 and 6, when the number of groups was one, two and three, respectively. Each group
sent request messages sequentially to transmit request messages to multiple groups. That is, as the
number of groups was increased, the number of request messages to be transmitted by the client also
increased. As shown in Figure 16a, even if the number of groups was increased in the case of the
DA-GW, the mean throughput was constant. This was because responses can be received from all
group members within timeout (i.e., 60 ms) despite increasing the number of groups. In contrast,
there were cases where all responses were not received from all group members within the timeout in
existing methods as the number of groups was increased, thereby decreasing throughput. When the
number of groups was three, a higher throughput was obtained when using the DA-GW than that of
gateway-centric unicast by 73.72% and that of gateway-centric multicast by 24.93% approximately.
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Figure 16b shows the energy amount consumed by the client over 5 min according to increases in
the number of groups. When the DA-GW was used, the energy consumption increased as the number
of groups was increased. This was due to more request messages being transmitted than when the
number of groups was fewer. When the DA-GW was used, the number of received response messages
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was the least, indicating the lowest energy consumption. On the other hand, when gateway-centric
unicast was used, constant energy consumption was revealed as the number of groups was increased.
This was due to no changes in the transmission of request messages even if the number of groups
was increased.

4. Conclusions

In this paper, a data aggregation gateway framework for CoAP group communications was
proposed. The DA-GW consists of four functional blocks and three informative DBs. The functional
blocks define the functions of the DA-GW, which consists of a message analyzer, group manager,
message scheduler and data handler. The informative DBs store the resources for group communication,
which consist of a client DB, resource DB and information DB. The DA-GW employs the oneM2M
TS-0001-based data structure to provide interoperability for heterogeneous devices that use a variety of
applications. The DA-GW was implemented using jCoAP to evaluate the functions and performance
of the DA-GW. The measurement results on the performance of the DA-GW showed it had better
performance than gateway-centric unicast by 73.71% and gateway-centric multicast by 19.47% in
terms of throughput and had lower energy consumption than gateway-centric unicast by 13.37% and
gateway-centric multicast by 2.98%, under the experimental conditions that the timeout period is
60 ms, the number of groups is two and the number of members in each group is 9.
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