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Abstract: Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used
population-level index of developmental instability, developmental noise, and robustness. It reflects
a population’s state of adaptation and genomic coadaptation. Here, we review the literature on
fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal,
dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait
has its advantages and disadvantages, but results are most robust when multiple traits are combined
into a composite index of fluctuating asymmetry (CFA). Both environmental (diet, climate, toxins)
and genetic (aneuploidy, heterozygosity, inbreeding) stressors have been linked to population-level
variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry.
Nevertheless, there have been many conflicting results, in part because (1) fluctuating asymmetry
is a weak signal in a sea of noise; and (2) studies of human fluctuating asymmetry have not always
followed best practices. The most serious concerns are insensitive asymmetry indices (correlation
coefficient and coefficient of indetermination), inappropriate size scaling, unrecognized mixture
distributions, inappropriate corrections for directional asymmetry, failure to use composite indices,
and inattention to measurement error. Consequently, it is often difficult (or impossible) to compare
results across traits, and across studies.

Keywords: anthropology; dermatoglyphics; developmental defects; developmental noise;
evolutionary psychology; facial attractiveness; fluctuating asymmetry; handedness; medicine;
sexual selection

1. Introduction

Research on the developmental instability of human populations, as estimated by fluctuating
asymmetry, has blossomed only in the past 35 years. The first papers explicitly mentioning human
fluctuating asymmetry were Adams and Niswander’s [1] study of fluctuating asymmetry in
individuals born with cleft palate and Bailit et al.’s [2] study of four human populations experiencing
different levels of environmental and genetic stress. Both of these studies followed Mather’s [3] and
Van Valen’s [4] classic papers, which grew out of foundational work by Astauroff [5], Ludwig [6],
and Waddington [7]. Since 1980, the number of papers focusing on human fluctuating asymmetry
has grown exponentially with each decade. Originally the domain of population geneticists
and evolutionary biologists studying Drosophila, Mus, and other species of plants and animals,
nearly 60 percent of the more than 900 papers published in 2015 that mentioned fluctuating asymmetry
in their titles, their text, or as a keyword, also mentioned humans. This spate of papers is mostly in
the fields of anthropology, medicine, and evolutionary psychology. Human fluctuating asymmetry
is an exciting, and often controversial, area of research. Exciting, because it involves our species,
and controversial, because it sometimes makes surprising claims about our species.
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Fluctuating asymmetry is a population-level measure of developmental instability, developmental
noise, and robustness [3,6–12]. It is influenced principally by environmental and genetic
stressors [12–14], but also arises spontaneously from random and nonlinear developmental
processes [15–18], and the failures of distributed robustness [19–21].

There are three kinds of population asymmetries [4]: fluctuating asymmetry, directional
asymmetry, and antisymmetry. Fluctuating asymmetry is the random developmental variation of
a trait (or character) that is perfectly symmetrical, on average. It is estimated as the variance of the
difference between right and left sides, Var(di), where di = Ri − Li and Ri is the value of a trait on the
right side and Li is the value of the same trait on the left side of individual i. Fluctuating asymmetry
has a symmetrical distribution of values around a mean of zero (µd = 0). Directional asymmetry,
on the other hand, has a mean not equal to zero (µd 6= 0). Handedness in humans is a classic example;
most humans are right handed and show greater development of the long bones of their right arms
(µd > 0). Finally, antisymmetry is a kind of asymmetry in which the mean of d is zero, or close to
it, but the distribution around the mean is either platykurtic or bimodal. The claws of lobsters and
crayfish are antisymmetric; 50% of the population have enlarged right claws and 50% have enlarged
left claws. Few individuals have claws of the same size.

2. Measuring Fluctuating Asymmetry

Although fluctuating asymmetry is most easily, and conceptually, understood as
Var(di) = Var(Ri − Li), it makes more sense in practice to use the mean absolute deviation of d as
the index of fluctuating asymmetry [8,12,22,23]. The mean absolute deviation is the expectation of
the absolute value of d, or E|di| = E|Ri − Li|. It is equivalent to Levene’s test for the differences
between two variances. Means are more robustly compared than variances, since they are amenable
to analysis of variance, regression, and other linear models [8]. They are also amenable to a variety
of transformations, such as log transforms, E|log R − log L| = E|log(R/L)|, and power transforms,
E [(Rλ − 1)/λ] − [(Lλ − 1)/λ].

Individual asymmetry (d) of a trait (or character) is usually estimated from measurements of
linear dimensions, or counts, on right and left sides of the body. Shape asymmetry, involving either
matching symmetry or object symmetry [24–26] can be estimated from landmarks or semi-landmarks
in either two or three dimensions [25–32], as well as continuous symmetry measures [12,33–35].
Despite the apparent simplicity of fluctuating asymmetry, careless researchers can easily reach
erroneous conclusions [8,12,22,23,36].

Not all indices of fluctuating asymmetry are equivalent. Indices based upon the correlation
coefficient [37], for example, and the related coefficient of indetermination [4,38], are the least
powerful [8,39]. The correlation coefficient is strongly influenced by the range of observations.
A population can appear to be more asymmetric, on average, than another simply because the
range of variation is smaller. Remarkably, these two indices were still in use as recently as
2011 [40], mostly in studies of human dermatoglyphic asymmetry. We recommend indices based
on (1) the variance of d, such as the mean absolute deviation [8,12]; (2) the Procrustes distance of
geometric mophometrics [25,26,28,41]; (3) dense surface modeling [42]; and (4) continuous symmetry
measures [33,35].

More importantly, positive size scaling is rarely handled properly in studies of human fluctuating
asymmetry. Failure to understand the behavior of additive and multiplicative errors can easily lead to
erroneous conclusions. Multiplicative error is generated by actively growing tissue, in which old tissue
gives rise to new tissue [12,43,44]. The probability distribution of a trait exhibiting multiplicative error
is generally lognormal. Positive size scaling of fluctuating asymmetry, in which asymmetry increases
with size (compare mouse and elephant ears), is generally a consequence of such active growth.
Moreover, leptokurtic asymmetry distributions may also arise from multiplicative errors, because the
probability distribution of the difference between two lognormal distributions is leptokurtic [43].
(This is why we define fluctuating asymmetry as symmetrically distributed, not normally distributed,
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variation around a mean of zero.) In contrast to the active growth model, inert structures, such as
nails, feathers, dermatoglyphic ridge counts, and probably teeth, usually exhibit additive errors.
Correction for size scaling is inappropriate for such traits, because there should not be any size scaling
to correct (Figure 1). Finally, measurement error is also additive.
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Figure 1. Relative indices of individual asymmetry can generate negative size scaling when the trait,
dermatoglyphic ridge counts in this case, exhibits an additive, not multiplicative, error. Data is from
Holt’s [45]—50 male and 50 female parents—Table 1 (left and right-hand ridge counts of 50 families).
(a) Absolute asymmetry of finger ridge count regressed on total ridge count (F1, 98 = 0.571, p > 0.45);
(b) Relative absolute asymmetry of finger ridge count regressed on total ridge count (F1, 98 = 41.023,
p < 0.00001). Filled circles represent individual parents.

For traits composed of actively growing tissue, asymmetry variation is always a mixture
of additive and multiplicative errors, with most of the additive part being measurement error.
If measurement error is large, then correcting for positive size scaling by dividing |R − L| by
(R + L) or using |log R − log L|, can easily generate even greater negative size scaling (Figure 1).
This is especially problematic with teeth and dermatoglyphic ridge counts, which develop as inert
structures. In any case, correction for size scaling always needs to be justified. In some subfields of
human fluctuating asymmetry, researchers rarely justify the size scaling they employ. To date, no one
has conducted a thorough survey of the growth models applicable to commonly used human traits.

3. Human Symmetries and Asymmetries

The external human body is bilaterally symmetrical for the most part, at least at birth.
Directional asymmetries may develop later, a consequence of nervous system laterality and bone
remodeling. Most of the internal organs (heart, lungs, kidneys, stomach, etc.) and brain are
directionally asymmetric.

3.1. Skeletal Asymmetry

Skeletal asymmetry has a long history in studies of fluctuating asymmetry, especially in
paleoanthropological studies. Bones are relatively easy to measure, and even in living subjects they
can be measured non-invasively with x-rays [46]. Moreover, upper limb mass can be estimated
from joystick movements [47]. Nevertheless, despite their widespread use, there are two problems
associated with bone: directional asymmetry and bone remodeling.

There is considerable directional asymmetry in the human skeleton. Directional asymmetry can
inflate estimates of fluctuating asymmetry, even when some indices that purport to remove it are
used [48]. Long bones of the upper limbs, for example, have a right bias in most populations [49–51].
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Furthermore, parts of the cranial skeleton can also be directionally asymmetric [32,52,53]. One can
either remove the directional component [48,54] or decompose a mixture distribution into fluctuating,
directional, and antisymmetric components [55]. These two approaches, however, make the implicit
assumption that all individuals in a population have the same degree of directional asymmetry, which
may not be true.

The second, and most problematic issue, is that bones experiencing mechanical loading are subject
to remodeling throughout the life of the individual [56]. Consequently, individual asymmetry of a
trait can change over time [57]. In particular, mechanical loading on one side of the body can magnify
directional asymmetries. Nevertheless, bone remodeling can sometimes be advantageous, for example
when one’s goal is to infer cultural transitions in the archeological record. Mechanical loading through
tool use, for example, can exacerbate directional asymmetry of the upper limbs. Macintosh et al. [51],
for example, have inferred that changes in the upper limb asymmetry of women from the Bronze Age
to the Iron Age were caused by the introduction and use of the ard and plow in agriculture.

Bone is an actively growing tissue; consequently, errors should be largely multiplicative [43,44].
If additive measurement error is high, the resulting mixture distribution can create problems, such as
inverse size scaling with certain transformations, such as |log R − log L|. One should always
check that asymmetry does not increase (or decrease) with size. Moreover, size scaling needs to be
reevaluated after every transformation.

According to Hallgrimsson [57], skeletal asymmetry (even after scaling for size) increases
throughout the life of the individual. He attributed this to asymmetrical remodeling, locally variable
growth, or undirected remodeling. (See also Palestis and Trivers [58].) Whatever the cause of
the increasing asymmetry, age should probably be included as a covariate in all studies of
fluctuating asymmetry.

3.2. Dental Asymmetry

Fluctuating asymmetry of teeth was pioneered by Leigh Van Valen [4], who studied the lengths
and widths of upper teeth of extinct horses (Griphippus gratus = Pseudhipparion gratum Leidy 1869) and
the upper and lower cheek teeth of white-footed mice (Peromyscus leucopus). In human populations,
dental asymmetry has been especially popular with paleoanthropologists [59,60]. Bone is easily
damaged during fossilization or burial, but teeth are resistant to deformation and fracture [61].
Nevertheless, paleoanthropologists can reliably assign teeth to right and left sides of the same
individual only if the dental arch is intact (or partly intact).

For collections of fossilized human remains or skeletal populations from cemeteries,
measurements can be made on the actual teeth. For samples of living individuals, however,
measurements are generally made on dental casts.

Humans have 20 primary teeth and 32 permanent teeth. Although they are subject to wear,
teeth are not subject to remodeling, like bone. Various measurements can be made on teeth,
including buccolingual diameter of the lower first molars [1] and mesiodistal diameter of the upper
and lower incisors [62] and of all the permanent teeth (excluding third molars, [2]).

Because teeth are inert structures, one would expect errors (natural variation) to be mostly
additive [43,44]. Consequently, there should be little or no positive size scaling. In other words,
fluctuating asymmetry should not increase with tooth size, unless it is doing so for a reason other than
active growth. However, Garn [63,64] reported that tooth asymmetry of mesiodistal diameter increased
with size across tooth types (incisors, canines, premolars, molars), but that asymmetry of buccolingual
diameters did not. Ideally, this analysis needs to be done within a category of tooth. Barrett et al. [65]
and Sciulli [66], for example, found no significant size scaling when they plotted |R − L| against
(R + L) for pairs of individual kinds of teeth (M1, M2, P1, etc.). Most studies of dental asymmetry up
to this time have corrected for size scaling (usually without justifying the correction). Indeed, both
Barrett et al. [65] and Sciulli [66] went ahead and “corrected” for size-scaling anyway. Consequently,
much of the literature on dental asymmetry may be flawed. Nevertheless, researchers should not
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simply assume that errors are additive (or multiplicative) when working with teeth. It always pays
to plot |R − L| against (R + L); there should be no relationship between the two unless something
biologically interesting is going on.

Figure 2 presents the relationships between both mesiodistal and buccolingual asymmetry and
adult tooth size for M1, M2, P3, and C from the upper jaws of both males and females from a prehistoric
village, Ban Chiang, in Northeast Thailand. Database E.4 was accessed from tDAR [67], the Digital
Archeological Database. The only significant regression was for buccolingual M2 (F1, 26 = 6.001,
p = 0.021, r2 = 0.188) and this was influenced mostly by a single outlier. There are no consistent positive
relationships between asymmetry and size in the data, whether we looked at males and females
separately or pooled. The mean correlation (±standard error) between |R − L| and R + L for the eight
combinations of tooth (M1, M2, P3, or C) and tooth dimension (mediodistal or buccolingual) in the
pooled sexes was x = −0.035 (±0.0957), with n = 22–30.
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Figure 2. Regressions of |R − L| on R + L for mesiodistal and buccolingual tooth diameters (mm) of
M1, M2, P3, and C from the upper jaws of individuals from Ban Chiang, Thailand. Points represent
individuals in the sample of upper jaws. Females are filled circles; males are filled squares; unidentified
sexes are diamonds. Data from Database E.4 [67].

In addition to linear measurements, landmark methods of geometric morphometrics have recently
been used to study shape asymmetry of the dental arch [68].

3.3. Facial Asymmetry

Facial asymmetry is widely used in studies of sexual selection, under the assumption that
mate choice is partly based upon a potential mate’s facial symmetry. Linear measurements, such as
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deviations of eye, ear, nostril, and cheek horizontal midpoints from the facial mid-line [69] are common,
as are two- and three-dimensional imaging [30,70] and landmark methods for shape asymmetry
(geometric morphometrics) [28,41].

Facial symmetry is influenced by the symmetry of the underlying cranium. Facial asymmetry,
for example, is related to deviation of the nasal septum [52], which may be related, in turn,
to asymmetry of the brain [53]. Moreover, some directional asymmetry may be present.

3.4. Dermatoglyphic Asymmetry

Dermatoglyphic literally means “skin carving” [71]. It refers to the friction ridges on the fingers,
palms, and feet [72–74]. These ridges form during weeks 10–16 of fetal development [75,76] and are
not subject to environmental alterations after birth. Consequently, dermatoglyphic asymmetry can be
used to measure developmental instability during a precise period of fetal development [77,78]. This is
a significant advantage over many other traits, such as bones and soft tissues, because it allows one
to infer precisely when development has been perturbed. For example, King et al. [79,80] found that
mothers of children who experienced a natural disaster (an ice storm) during the critical period of gestation
gave birth to children with greater dermatoglyphic asymmetry than those gestating earlier or later.

Dermatoglyphic variables are either qualitative (patterns formed by dermal ridges and creases)
or quantitative (counts of ridges or measurements of angles) [38]. The most common traits used for
right–left asymmetry are finger and palmar ridge counts, palmar atd angles [1,81], ridge patterns on
the fingertips, and palmar flexion crease patterns. Finger ridge counts are made between the core of a
pattern and the nearest triradius. Arches are assigned a ridge count of zero, because they lack a triradius.

There are at least two main ways of treating finger ridge counts. They can be treated finger by
finger (i.e., homologous fingers are treated as separate traits) or all five fingers on each hand can be
taken together, as a single trait. The simplest approach is to take the difference between the total ridge
counts on each hand. For example,

|dc1| = |RTRC − LTRC| = |(RI + RII + RIII + RIV + RV) − (LI + LII + LIII + LIV + LV)|

where RI and LI through RV and LV are thumb through little finger on right and left hands, respectively.
This approach, however, ignores the symmetry of homologous fingers. One can also take the absolute
differences between each homologous finger and add them together, dividing by the total number of
fingers to get an average ridge count difference.

|dc2| = (|RI − LI| + |RII − LII| + |RIII − LIII| + |RIV − LIV| + |RV − LV|)/5.

We recommend the second approach, because it incorporates more information than the first one.
Palmar ridge counts are made between the a, b, c, and d triradii. The a triradius is on the palm

at the base of the index finger; the b triradius is at the base of the middle finger, and so on. There are
potentially three sets of counts, the a–b, b–c, and c–d palmar ridge counts on right and left sides.
Because c and d triradii are sometimes missing, however, the a–b ridge count is the one most commonly
encountered [77,82,83]. It has the advantage over fingerprint ridge counts in that zero counts do not
normally occur.

For atd angles, the measure of individual asymmetry (d) is straightforward, d = R − L or
|d| = |R − L|. The atd angle changes with age, however, as the size and shape of the hand
increases [84]. Consequently, it is important to compare individuals of similar ages.

Wang et al. [85] have introduced a new approach to dermatoglyphic asymmetry that resembles
landmark methods of geometric morphometrics, but without landmarks. It compares the ridge
orientation fields of homologous fingers on right and left hands. Digital images of homologous fingers
are superimposed by their contours and then the right and left orientation fields are compared.
The authors found this approach to be more sensitive than traditional approaches to right–left
asymmetry in a sample of schizophrenic patients.
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For ridge patterns (arches, radial loops, ulnar loops, and whorls), pattern discordance is
used [38,86,87]. For example, if right and left index fingers both have the same ridge pattern
(e.g., whorls on both fingers), then the patterns are concordant. If the ridge patterns differ (e.g., whorl on
the right index and arch on the left index), then the patterns are discordant. The number of discordant
fingers ranges from 0, if all fingers are concordant, to 5, if all fingers are discordant. Radial and ulnar
loops can be treated as being either concordant or discordant. Most studies, however, have lumped
radial and ulnar loops together as concordant.

In addition to ridge pattern discordance, Holt [88] introduced the finger-to-finger diversity of
ridge counts—S2, the sum of squares of deviations of the ten separate finger ridge-counts from their
mean: S2 = ∑10

n=1 q2 − Q2/10, where the qi are the ridge-counts on individual digits q1 through q10 and
Q is the total ridge count (Σq). Later, Holt [89] settled on S/

√
10, where S is the standard deviation

of q1 through q10; this index of diversity has a more symmetrical distribution. In contrast to Holt’s
diversity of ridge counts, Micle and Kobyliansky [90] introduced a ridge count diversity index based
on Shannon’s diversity index.

Because dermatoglyphic ridges are formed during a narrow window of time, one would not
expect them to exhibit multiplicative error and positive size scaling. Holt’s [45] raw data show no
evidence of size scaling; indeed, the slope of the regression was slightly negative (Figure 1). When one
divides |R− L| by (R + L), strong negative size scaling is generated. Groups with smaller total ridge count
will now appear to be more asymmetric. If this is a general pattern, then Karmaker et al.’s [91] conclusion
that West Bengali women have greater fluctuating dermatoglyphic asymmetry than the men may be an
artifact of inappropriate size scaling, because women usually have smaller ridge counts than men.

Statistical analyses of dermatoglyphic patterns are often seriously flawed. The most serious issue
is that individual fingers are not statistically independent of one another. One cannot, for example,
take a sample of 25 individuals and assume the sample size is now n = 250 fingers (with an order of
magnitude greater degrees of freedom). The unit of observation is the individual. While we have not
seen this in studies of fluctuating dermatoglyphic asymmetry, we have seen fluctuating asymmetry
correlated with finger ridge patterns that were inflated in such a way. Consequently, claims that a
greater frequency of, say, ulnar loops is associated with a particular physical anomaly, such as oral
cleft, needs to be reexamined with more realistic degrees of freedom (see Mathew et al. [92] for just
one example). Similarly, tallying the numbers of discordant fingers over all homologous pairs inflates
the degrees of freedom five-fold (see Mellor [38]).

Many analyses of dermatoglyphic asymmetry have other problems, especially with the choice of
asymmetry index. At the dawn of the modern interest in fluctuating asymmetry, two classic papers
took different approaches. Holt [45], following the example of Bonnevie [93], used the correlation
coefficient (r) as an index of quantitative value (i.e., fluctuating asymmetry) of finger ridge counts.
Mather [3], on the other hand, elected to use the variance of L − R as an index of developmental
instability [48]. Nine years later, Van Valen [4] used an offshoot of the correlation coefficient (r), 1 − r2,
the coefficient of indetermination, as an estimate of the unshared variance (i.e., the random variation).
Most early researchers working with humans, including Bailit et al. [2], Micle and Koblyliansky [90],
Mellor [38], and others [94–96] followed Holt’s [45] and Van Valen’s [4] lead (but see [77,82,83,97,98]).
Evolutionary biologists, on the other hand, favored some variant of Mather’s [3] approach and soon
found justification for it. Angus [39] argued that the correlation coefficient (r) is overly influenced
by the range of R and L. Even when Var(R − L) is large, the correlation of R and L will be small if
Var(R + L) is small. Palmer and Strobeck [8], in an influential paper, concluded that the correlation of R
on L behaves differently from all other indices and never achieves their statistical power. Nevertheless,
both the correlation coefficient and coefficient of indetermination were still in wide use five years ago,
especially by those studying human dermatoglyphic asymmetry (see [40,95,96,99]).

Minor directional asymmetry is present in some of the palmar and finger ridge counts [82,83,96].
Moreover, males have about 21 more ridges, on average, than females [45], though the effect size is
small (Cohen’s d = 0.36). Females have a higher ridge density [100].
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3.5. Brain Laterality

Human brains, and the brains of our close hominin relatives, exhibit several directional
asymmetries. Broca’s area, within the inferior frontal gyrus, for example, is consistently larger on the
left side and is associated with language [101]. There are also directional brain asymmetries in the
planum temporale. While these asymmetries are not fluctuating asymmetries, extreme directional
asymmetries associated with brain laterality have been correlated with fluctuating asymmetries in
other traits, such as a composite index of ear length and width, atd angle, and the widths of wrist,
hand, foot, and ankle [102,103], and finger length [104].

3.6. Asymmetry of Soft Tissues

Various soft tissues, such as breasts [105,106], ears [29], and feet [107] have been subject to studies
of fluctuating asymmetry. With any soft tissues, those overlying bone may reflect asymmetry of the
bone [108]. This is true of wrist and ankle diameters, as well as facial features. Unless the soft tissue
itself is of interest, these traits may not be the best choice, though they are often the most convenient
choice. It is difficult to measure soft tissue with precision, and measurement error is high, especially
compared to right–left differences. Moreover, soft tissue asymmetry may be temporally variable.
Breast asymmetry, for example, varies during the menstrual cycle in women [106]. Asymmetry is
greater at the beginning and end of the cycle.

3.7. Fractal Anatomy and Physiology

Fractals have symmetry of scale. Examples of human fractal anatomy and physiology include the
branching fractals of blood, lymph, and tracheal and bronchial vessels, time-series fractals of heart
beat and electroencephalographic records of brain-wave activity, cranial suture joints, and small-world
neural networks. Loss of fractal scaling under stress often manifests as a decrease in the fractal
dimension, an index of the complexity of a fractal pattern. Various fractals have been studied in plants
and animals [16,17,109–111], but nothing has been done on humans beyond anecdotal observations on
human retinas and cranial sutures. D. C. Freeman (Wayne State University, pers. comm.) observed
that the fractal dimension of the vasculature of human retinas is reduced among hyper-stressed,
myopic, diabetic, and senile humans [17]. He also observed that the fractal dimension of the cranial
sutures of Down syndrome individuals are reduced, so much so that the cranial bones often do not
fuse. Beyond this, little work has been done on human fractal structures, from the perspective of
developmental instability.

3.8. Behavioral Patterns

Temporal patterns of behavior have their own symmetry. Behavioral patterns occur sequentially,
in time. They can be characterized as either a kind of translatory symmetry in time, or as a fractal
dimension. Phase locking musicians (drummers) and dancers are examples. This is an area of research
open for exploration.

4. Sex Differences

Fluctuating asymmetry may differ between males and females. Females, for example, may be
more resilient against environmental and genetic stresses, because they carry two X-chromosomes.
Deleterious recessive alleles on the X-chromosome are more likely to be buffered, at least in a fraction
of the cells, in females than in males. Thus, females may develop in a more stable way. If true,
most men should be expected to exhibit greater fluctuating asymmetry than women. Kuswandari and
Nishino [112], for example, studied dental asymmetry of young boys and girls. Dentition of males was
more asymmetric than those of females. There are, however, numerous contradictory findings in the
literature on this issue [113–121]. Furthermore, random X-inactivation can generate mosaic patterns in
females for heterozygous loci on the X-chromosome; this could conceivably increase asymmetry for
some traits.
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Among Jamaican children, girls are more asymmetric than boys for a composite index of
asymmetry [120]. Moreover, Hadza women are more asymmetric than men [115]. In contrast, Wilson
and Manning [121] found no significant differences between English boys and girls for 11 traits.
Guatelli-Steinberg and colleagues [116] investigated 469 dental casts taken from persons of the
Gullah population living on St. James Island, South Carolina, during the 1950s. They found that,
female mandibular canines exhibited significantly greater fluctuating asymmetry than those of males.
Nevertheless, there were no significant sex differences in the asymmetry of the maxillary canines.
Moreover, they found that deciduous teeth were not significantly less asymmetric than their permanent
successors. Other studies also found little or no difference in odontometric asymmetry in comparisons
of males and females [2,122]. Finally, Albert and Greene [113] compared two skeleton groups from
Kulubnarti, Sudan, dating back to the early and late Christian era; they found no significant differences
in asymmetry between the sexes.

Does facial symmetry differ between males and females? The most comprehensive study of facial
asymmetry in males and females was performed by Özener and Fink [123], who analyzed frontal
photos of 503 high school students aged 17–18 years who were either living in slum areas or wealthy
neighborhoods of Ankara, Turkey. Males and females showed no differences in a composite index of
asymmetry in the group living in relatively good conditions, while men living in poor conditions had
significantly greater asymmetry than females. Finally, Simmons et al. [119] found that male faces were
significantly more asymmetric in a mixed-ethnic sample.

Early sex hormone levels may play a crucial role in the development of body morphology [124,125]
and also facial asymmetries [126]. Testosterone released at high levels, for example, results in
low immunocompetence. Given that men are less resilient against environmental stress because
of their testosterone levels, a high concentration of testosterone is expected to increase fluctuating
asymmetry. Fink and colleagues [126] found a significant correlation between prenatal testosterone
level (low second-to-fourth digit ratio) and high facial asymmetry in males, but not females.
These findings, however, are controversial [127].

As we have shown, there are numerous controversial findings in the literature regarding sex
differences. Some of the variation among studies may arise because of (1) different methods;
(2) poor statistical power; (3) use of different characters; and (4) unexplained variation. Even if
all methodological conditions necessary for the analysis of fluctuating asymmetry are provided,
it may be unreasonable to expect differences between sexes in a population not exposed to significant
developmental stress. Sex differences in fluctuating asymmetry probably become evident as stress
increases [128]. On the other hand, living conditions of females in some traditional patriarchal
societies may be worse than those of men, which may explain increased asymmetry in women. Finally,
the differences in dental asymmetry may be an artifact of inappropriate size scaling; females have
smaller teeth on average than men.

5. Stressors

Stress dissipates energy away from growth and production [12]. Common stressors include
inadequate diet, disease and parasitism, environmental toxins, extreme climate, social competition,
emotional response to natural or man-made disasters, inbreeding depression, breakdown of genomic
coadaptation, homozygosity, mutation, and chromosomal aberrations (polyploidy, aneuploidy,
translocation, deletion, duplication, etc.). Perturbations, on the other hand, are energy or mass
communicated from the environment. A perturbation can be as small as the kinetic energy of Brownian
motion within a cell or can be as large as physical trauma experienced during fetal development.
Stress and perturbation, acting together, can compromise developmental stability, possibly causing an
increase in fluctuating asymmetry.

Stressors operate through the hypothalamic–pituitary–adrenal axis [127], which acts in
part as a link between the nervous system and the immune system. Under normally stressful
conditions, corticotropin releasing hormone stimulates the release of adrenocorticotropic hormone,
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which stimulates the adrenal gland to release cortisol (a corticoid hormone). Cortisol suppresses
the immune system and aids the metabolism of lipids, proteins, and carbohydrates. It also provides
a negative feedback to both the hypothalamus and the pituitary. Acute or chronic stress, however,
elevates cortisol levels. Extended prenatal exposure to maternal cortisol early in development is
associated with cognitive impairment [129]. Furthermore, children born during a natural disaster
(chronic stress) have both elevated cortisol levels and greater dermatoglyphic asymmetry, supporting
this hypothesis [79,80].

Stressors known, or suspected of, causing increased asymmetry fall into two categories:
environmental and genetic.

5.1. Environmental Stressors

5.1.1. Dietary Inadequacy, Growth, and Socioeconomic Status

Socioeconomic living conditions shape the human body. People living in low socioeconomic
conditions are known to have a worse diet and to experience more infectious diseases. Consequently,
growth is known to differ between individuals living in lower and upper socio-economic
conditions [130].

Kieser et al. [131] studied the Lengua Indians of the Gran Chaco region of Paraguay. Historically,
the Lengua were subsistence hunters and gatherers prior to the advent of missionary settlements in the
Chaco. There was a high rate of dental asymmetry in older members of the population, who had been
exposed to widespread malnutrition and disease. More symmetric younger individuals, in contrast,
had had access to western medicine.

Livshits et al. [132] show how socioeconomic status affects body symmetry. They studied physical
asymmetry of infants born at different gestational ages. In general, preterm infants were the most
asymmetric. They also studied the relationship between the mother’s education and health status,
and the infant’s body asymmetry. There was a negative relationship between asymmetry and maternal
health (cardiovascular only), but not between asymmetry and the mother’s education.

On the other hand, a few studies have examined socioeconomic groups having different
growth and nutrition. For example, Little et al. [133] studied chronically malnourished children
in southern Mexico. Well-nourished children were used as the control group. Contrary to expectations,
body asymmetry was lower in the malnourished children. A similar observation was seen in villages on
the east coast of the Dominican Republic. Flinn and colleagues [134] compared fluctuating asymmetry
of adopted and biological children from several families. The biological children had better weight and
length increases compared to the foster children in all age groups between 0 and 20 years. Fluctuating
asymmetry of nine bilateral traits, however, was lower in the adopted children [134].

What is the relationship between physical growth potential and developmental stability? How can
one explain the surprising results of Little and Flinn? Wells et al. [135] studied 172 boys, aged 9 years.
The study included estimates of fetal growth rate, early infant growth rate, and total post-natal growth
rate. No relationship was found between birth weight and height at 9 years. Faster post-natal growth
rate, however—but not fetal growth rate—was associated with increased asymmetry at the end of
9 years.

Several comprehensive studies of nutrition, social status, and fluctuating asymmetry have been
conducted in the city of Ankara, Turkey [118,123,128,136]. Özener [118] studied the effects of heavy
labor and poor socioeconomic conditions on fluctuating asymmetry in three groups of young males:
(1) those from lower socioeconomic classes employed in heavy industry; (2) those from the same
socioeconomic classes who were not laborers; and (3) non-laborers from the higher socioeconomic
classes. Ten bilateral measures were taken from 309 young adults. The two lower socioeconomic groups
had significantly greater fluctuating asymmetry. In addition, biomechanical pressures associated with
heavy labor appeared to increase the directional asymmetry of the upper extremities [137]. Moreover,
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the directional asymmetry increased with the number of years of heavy labor [118]. In another study,
tall young men from Ankara living under good conditions were found to be more symmetric [118,136].

Poor conditions also contribute to facial asymmetry. Özener and Fink [123], as mentioned
previously, compared high school students from schools in city slums with those from schools in higher
socioeconomic areas. The group from the lower socioeconomic level had a higher composite index of
fluctuating asymmetry. Consequently, poor living conditions influence developmental instability in
humans, manifested in their facial asymmetry [123]. Findings from Turkey indicate that persons living
in good conditions exhibit both greater facial and morphological symmetry.

5.1.2. Climate

Inhospitable climate has long been associated with increased asymmetry in human populations [2].
Nevertheless, it is difficult to disentangle the effects of climate, diet, disease, and inbreeding in
most anthropological studies. Recently, Tomaszewska et al. [138] suggested that symmetry of the
orbital opening may be related to climate, with fluctuating asymmetry transitioning to directional
asymmetry as one travels from warmer to colder climates. Nevertheless, the degrees of freedom
in this study are inflated by the pooling of 846 skulls from several populations across Europe into
three categories—warm, temperate, and cold. The degrees of freedom are inflated by not including
populations nested within climatic category as an effect.

5.1.3. Environmental Toxicology

There is a large literature on the effects of toxins, such as heavy metals, chlorinated
hydrocarbons, pesticides, air pollution, and sewage on the developmental stability of plants [139–141],
invertebrates [142,143], fishes [144,145], amphibians [146], reptiles [147], birds [148], and mammals [149].
These select references represent a small fraction of the literature on environmental toxicology
and fluctuating asymmetry. See Beasley et al. [150] for a wide-ranging meta-analysis of
anthropogenically-induced asymmetry in animals. Yet we have been unable to find any comparable
human studies. Humans, of course, are exposed to the same environmental toxins [151]. Environmental
toxicology and fluctuating asymmetry of human populations should be a research priority.

5.1.4. Drugs

Despite an absence of studies on environmental toxins and fluctuating asymmetry, there have been
a handful of studies on maternal drug use. Maternal alcohol consumption, for example, is associated
with increased dental [152], dermatoglyphic [153], and facial [154] asymmetry of children. In contrast,
smoking of tobacco by both parents was not associated with increased dental asymmetry in a sample
of 199 school children [155], but a combination of smoking and obesity was associated with increased
dental asymmetry in a much larger sample of 440 school children [156]. This underscores the possibility
that different stressors can interact with one another.

5.1.5. Natural Disasters

King et al. [79,80] discovered stress-related phenomena in children who were in utero during the
Quebec Ice Storm of 1998. In addition to elevated dermatoglyphic asymmetry, children displayed
elevated levels of cortisol, a marker of stress. Two additional studies of chronic stress and natural
disasters are in progress [79]: the Iowa Flood Study and the Queensland Flood Study.

5.2. Genetic Stressors

Potential genetic stressors include chromosomal anomalies (aneuploidy, polyploidy,
unbalanced translocations), point mutations, deleterious recessive alleles exposed by inbreeding,
reduced heterozygosity, and reduced genomic coadaptation caused by outbreeding. Genetic subsidies
include heterosis and overdominance associated with increased heterozygosity.
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5.2.1. Aneuploidy

Aneuploidy (monosomy and trisomy) entails the loss or gain of individual chromosomes.
Monosomies, such as Turner syndrome (45, X), involve the loss of a single chromosome. Trisomies,
such as Down syndrome (47, +21), Edward’s syndrome (47, +18), Patau syndrome (47, +13), Triple X
syndrome (47, XXX), Klinefelter syndrome (47, XXY), and XYY syndrome (47, XYY), entail the addition
of a single chromosome. The chromosomal imbalance provoked by the loss or gain of a single
chromosome upsets the gene dosage (i.e., the evolved balance of gene products), which then disturbs
development [157–160].

One of the first genetic stressors to be associated with fluctuating asymmetry was Down
syndrome, which is a trisomy involving the 21st chromosome. Down syndrome is accompanied
by deceleration of growth and differentiation [161] as well as intellectual disability and modified
craniofacial features [158,162–164]. Garn et al. [165], Barden [166], and Townsend [167] showed that
dental asymmetry was greater in Down syndrome individuals than corresponding controls. However,
two of these older studies have statistical problems. Barden [166], for example, used right–left
correlation coefficients as the index of fluctuating asymmetry, so the significant results could easily
have been caused by a small range of sizes in the Down syndrome sample but not in the control
sample. Furthermore, Townsend [167] scaled the right–left asymmetry values by tooth size, without
justifying the transformation. Given that others have found no relationship between tooth asymmetry
and tooth size [65,66], the elevated asymmetry of the Down syndrome sample could have been easily
magnified by the transformation; Down syndrome individuals have smaller teeth and scaling by tooth
size would have increased the relative asymmetry of smaller teeth. Despite these potential problems,
the conclusions of both Barden and Townsend are consistent with Garn et al.’s [165] earlier paper.
His team used a root-mean squared index of asymmetry, based on R − L, and no corrections for tooth
size. They found that the dental asymmetry of the Down syndrome individuals was nearly twice that of
a control population. More recently, Starbuck et al. [168] reported 140%–160% greater facial asymmetry
in Down syndrome individuals than in normally developing siblings and sibling pairs. Nevertheless,
there have been well-designed studies that have found no increase in fluctuating asymmetry with
Down syndrome. Palmar dermatoglyphic asymmetry, for example, was not significantly greater in a
Down syndrome sample [169]. Furthermore, Bots et al. [170] were unable to demonstrate increased
asymmetry of the long bones (ulna, radius, femur, tibia, fibula, digit 2, and digit 4) in a sample of
deceased fetuses having Down syndrome.

There have been few studies of fluctuating asymmetry in other aneuploidies. Nevertheless,
a pooled sample of deceased fetuses having trisomy 13 (n = 10), trisomy 18 (n = 24), Turner syndrome
(n = 9), and triploidy (n = 10) had 1.5 times greater asymmetry than either controls or Down syndrome
individuals [170]. All three of these other trisomies are more severe in the sense that they have greater
spontaneous abortion rates during pregnancy than Down syndrome [171].

5.2.2. Polyploidy

Polyploidy involves the duplication of entire haploid sets of chromosomes. The normal adult
complement of chromosomes is diploid (two complete haploid sets). Triploidy, a kind of polyploidy,
involves three haploid sets of chromosomes, while tetraploidy involves four sets, and so on. For human
embryos and fetuses, polyploidy is invariably fatal—100% of polyploid fetuses are spontaneously
aborted [171]. Bots et al. [170], studying long bone asymmetry of deceased fetuses, included 10 triploid
individuals in their group of highly asymmetric individuals. Mean asymmetry of these 10 individuals
was similar to that for Trisomy 18 and Turner syndrome, and was greater than that of either controls or
Down syndrome individuals.
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5.2.3. Unbalanced Translocation

Translocations involve the rearrangement of parts of non-homologous chromosomes. Unbalanced
translocations, where one or more chromosome segments are missing or duplicated, would be
most likely to compromise developmental stability. Hereditary Down syndrome, {46, t(14;21)} or
{45, t(21;21)(q10;q10)}, is one such translocation that duplicates the long arm of chromosome 21. To our
knowledge, however, there have been no studies of fluctuating asymmetry associated with particular
chromosomal translocations in humans.

5.2.4. Point Mutation

Although a few point mutations have been linked to increased asymmetry in Drosophila [172],
Mus [173], and other species [174], there are no clear and unambiguous examples in humans that
we are aware of. Single-gene knockouts or over-expression studies cannot be done with humans.
Furthermore, the necessary search of quantitative trait loci (QTL) affecting asymmetry has not been
done with humans, though there are studies of such QTLs in mouse models [173,175,176].

5.2.5. Inbreeding and Heterozygosity

Inbreeding exposes deleterious recessive alleles and reduces heterozygosity [177]. Moreover,
overdominance (heterozygote superiority) at a few critical loci (e.g., the major histocompatibility
complex) may contribute to inbreeding depression if those key loci are in the homozygous state.
Several studies have established that the detrimental fitness effects of inbreeding are most evident
when the environment is also stressful [178–180]. This implies a statistical interaction between genetic
and environmental stressors. Under benign conditions, then, inbred individuals may perform nearly
as well as outbred ones. Meagher et al. [179], for example, raised inbred and outbred wild-caught
house mice (Mus musculus) in both large, semi-natural enclosures and in the laboratory. The reduction
in fitness of male mice under semi-natural conditions was 81% (57% overall for males and females),
whereas the reduction in litter size in the laboratory was only 11%. The main stress in the semi-natural
enclosures was male–male competition.

The link between heterozygosity and mortality in humans is significant, but small; every standard
deviation increase in heterozygosity above the mean is associated with a 1.57% decrease in
mortality [181]. Nevertheless, both detrimental and beneficial impacts of human inbreeding have been
described [182,183]. Consequently, it may be difficult to establish absolute rules for inbreeding and
developmental instability.

Inbreeding has been linked to developmental instability in a number of plant [184] and
animal [3,109,185–189] species, though contrary results are common [188,190–194]. As with mice
raised under controlled conditions, inbred bird populations have greater fluctuating asymmetry when
there is the additional stress of forest fragmentation [195]. Results from human studies have been mixed
as well, perhaps because inbreeding is interacting with environmental stress in some populations, but
not in others.

Several researchers, for example, have reported high fluctuating asymmetry in small, inbred,
human populations [131,196–199], but few of these studies have controlled for other variables
(environment, diet, disease, parasite load, etc.). At first, children of first-cousin marriages in Sivas,
Turkey, appeared to fit this same pattern. Children of first cousins had greater asymmetry than those
of unrelated parents, but differences in education, not inbreeding, accounted for the difference [200].
Level of inbreeding was confounded with level of education, which was in turn confounded with local
smoking rates. Less educated parents were more likely to smoke cigarettes and engage in first-cousin
marriages. Smoking, or other differences in life style, may explain the results better than inbreeding.

Inbred individuals are often from the lowest socioeconomic classes. This was the case with
our study of inbreeding and fluctuating asymmetry in Sivas, Turkey [200]. Education is a surrogate
measure of socioeconomic class. Consequently, the less well-educated may be exposed to additional
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environmental stresses, and a composite measure of fluctuating asymmetry correlated strongly with
education, especially males and inbred females. In another study that incorporates both socioeconomic
status and inbreeding, Schaefer et al. [201] compared dental arch asymmetries of an isolated population
from Hvar, in the Eastern Adriatic, to a population from Zagreb, on the mainland of Croatia. Hvar is
rural and the residents are mostly farmers and fishermen. Zagreb, in contrast, is a large city and
the capital of Croatia. Its residents have the highest purchasing power and gross domestic product
per capita in Croatia. Fluctuating asymmetry was greater in the Hvar population than in the Zagreb
population, presumably because of greater environmental stress. Even an outbred subsample from
Hvar had greater dental asymmetry than the outbred sample from Zagreb. Access to medical care
was much less on the island, though other stressors may also be involved. Moreover, fluctuating
asymmetry increased with level of inbreeding (outbred, low endogamy, high endogamy) on Hvar.
Unfortunately, the Zagreb sample was not subdivided by level of inbreeding, so as to make for a
clear comparison. Future studies of inbreeding and fluctuating asymmetry need to clearly control for
socioeconomic status.

5.2.6. Outbreeding Depression, Heterosis, and Genomic Coadaptation

Outbreeding between genetically distinct populations can lead to (1) the breakup of genomic
coadaptation [202] or (2) the restoration of higher levels of heterozygosity. If outbreeding has negative
fitness consequences, it is referred to as outbreeding depression [203]. If it has positive fitness
consequences (e.g., if both populations were highly inbred before hybridization), it is referred to
as hybrid vigor or heterosis. In most cases, outbreeding depression occurs when populations are
separated at the species or subspecies levels, having been isolated for thousands of generations,
though several studies have observed outbreeding depression within a single species of copepods
in neighboring tidal pools [204–206] and among breeding stocks of salmon [207–209]. Heterosis is
expected when small, inbred populations meet and hybridize.

Virtually no research that we are aware of has been done on the fitness effects (positive or negative)
of outbreeding between human populations. It is a missed opportunity. An obvious suggestion would
be to extend the research of Lewis [210] and Little et al. [211], who reported that individuals of
mixed-ethnicity are considered more attractive than those of relatively “pure” ethnicity. Is part of the
attraction due to increased facial symmetry?

6. Phylogenetic Patterns of Fluctuating Asymmetry in the Hominidae and Other Primates

Fluctuating asymmetry has been studied in several primates other than Homo sapiens [212–217].
Much of the interest, though, has been with morphological integration of the primate skull [216] and
limbs [212]. Nevertheless, Manning and Chamberlain [214] studied dental asymmetry of endangered
gorillas (Gorilla gorilla), following reduction in their populations over several decades.

Population declines of gorillas are associated with increased dental asymmetry, presumably
because of inbreeding in smaller populations. Fluctuating asymmetry of male canines, for example,
increased between 1911 and 1986, a period when gorilla populations were declining from hunting and
habitat loss [214]. The authors, however, used relative fluctuating asymmetry, despite an absence of
positive size scaling. Indeed, according to the authors, the females even showed negative size scaling
of |R − L| for their canine asymmetries. Consequently, it is difficult to say how the use of relative
asymmetry has influenced this study, because the average size of gorillas (and their teeth) did not
decrease during the period.

There has been keen interest in phylogenetic patterns of fluctuating asymmetry among living and
extinct hominids, including extinct species in the genus Homo, as well as Australopithecus, Paranthropus,
Pan, Gorilla, and Pongo. Extinct human species that have been studied include H. habilis [218,219],
H. erectus [220,221], H. floresiensis [222,223], and H. neanderthalensis [220,221,224], though sample sizes
are often too small to say much, especially for H. floresiensis (n = 1).
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In broad phylogenetic comparisons, Kieser and Groeneveld [221] concluded that
H. neanderthalensis had greater dental asymmetry than H. erectus and Australopithecus sp.,
while Frederick and Gallup [220] suggested there was broad overlap in dental asymmetry
among H. habilis, H. erectus, H. neanderthalensis, and H. sapiens, but that all four species of Homo
had greater asymmetry than Pan, Gorilla, and Pongo. All of these studies of dental asymmetry used
relative indices of fluctuating asymmetry. Consequently, it is possible that the perceived increase in
fluctuating asymmetry in the genus Homo is an artifact of a reduction in tooth size, especially the
canines, compared to Pan, Gorilla, and Pongo. Finally, Babb and colleagues [222,225] concluded that the
single specimen (LB1) of H. floresiensis from Liang Bua (Flores) was within the range of normal cranial
asymmetry for the genus Homo. One cannot say more with a single individual.

7. Human Populations

7.1. Fossil Hominids

Although the literature is small, there is some information regarding fluctuating asymmetry of
fossil hominids. Most of our information is based on the observation of teeth. Homo neanderthalensis
is the species for which we have the greatest knowledge. Suarez [224], for example, studied
36 Neanderthal skeletons from various regions; these individuals had greater dental asymmetry
(mesiodistal and buccolingual crown dimensions) than a population of H. sapiens from 20th century
Ohio. According to Suarez, prevalence of inbreeding is probably the main cause of high fluctuating
asymmetry in Neanderthals. Recent evidence of low genetic variation in Neanderthals is consistent
with this hypothesis [226,227]. Doyle and Johnson [228], however, compared dental asymmetry of
Pueblo and Eskimo populations, in which inbreeding was not widespread, to that of Neanderthals.
They found no significant differences between the groups and concluded that environmental stress
is responsible for the observed asymmetry in Neanderthals, rather than inbreeding. Kieser and
Groeneveld [221] showed that H. erectus and H. neanderthalensis had greater dental asymmetry than
Australopithecus. They also found that both H. erectus and H. neanderthalensis were developmentally
unstable in mesiodistal dimensions of the maxillary teeth. Finally, H. neanderthalensis had
significantly greater mesiodistal asymmetry than H. erectus. On the other hand, the methods used in
fluctuating asymmetry studies before the 1990s were quite unsophisticated and based on correlation
indices [2,63,221,229,230]. Barrett et al. [65], in contrast, used more current methods suggested by
Palmer and Strobeck [8,231]. These methods include the analysis of measurement error, analysis of size
scaling, the use of two-way mixed-model ANOVA, and the appraisal of directional asymmetry and
antisymmetry. With these methods, they confirmed that Neanderthals had higher dental asymmetry
than recent and prehistoric populations of H. sapiens. Unfortunately, they scaled right and left tooth
sizes by their average, in essence correcting for positive size scaling where it was probably not present.
It is unclear how using an index of relative fluctuating asymmetry has affected their conclusions.

Frederick and Gallup [220] studied 296 specimens, including several great apes and various
species of Australopithecus, Paranthropus, and Homo. Once again, H. erectus and H. neanderthalensis had
the greatest dental asymmetry (Figure 3). As with Barrett’s study, some of the variation in this data,
however, may be an artifact of correcting for tooth size.

Fluctuating asymmetry of fossil hominids can also be conducted on postcranial bones. However,
because these skeletal materials may be deformed during fossilization, they are not as useful as dental
remains. Nevertheless, skeletal remains do reveal aspects of asymmetry. Homo erectus, KNM-WT
15000, sometimes known as Nariokotome Boy, from Nariokotome, Kenya, is a case in point. Greater
development of the clavicular region on which the right deltoid muscle of the skeleton is attached,
and a longer right ulna, suggest right handedness [232]. Until recently, this skeleton was thought to
exhibit skeletal deformities and scoliosis—signs of developmental instability. Recent research, however,
suggests that Nariokotome Boy was relatively normal [233].
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Directional asymmetry, especially of the upper extremities, can indicate bone remodeling and
reveal aspects of an individual’s lifestyle [232]. The hunter-gatherer lifestyle, for example, can increase
asymmetry of the upper extremities; this is observed more markedly in Neanderthals [232,234].
In particular, abnormal thickening of the long bone’s diaphyseal size and narrowing of the joint space
observed in this species suggests that the hunter-gatherer lifestyle has a very high biomechanical effect
especially on the upper extremities.
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This situation is repeated in human skeletons of the Northern European Mesolithic Age,
presumably because of similar lifestyles. Constandse-Westermann and Newell [235], for example,
found that diaphyseal sizes of the right upper extremities of individuals were quite large and the
difference was higher among women. The Neolithic Age, which represents a transition from a
hunter-gatherer lifestyle to agriculture, shows decreased upper extremity asymmetry in agricultural
communities. Undoubtedly, the radical changes in lifestyle should be considered responsible for
this decrease. Although agricultural production requires intense physical activity, equal levels of
biomechanical stress caused by activity in the bilateral extremities is the main cause of the mentioned
decrease in directional asymmetry. The conclusion to be drawn here is that increased asymmetry
of the upper extremity does not always follow a parallel course to the increase in biomechanical
stress. Although differences in asymmetry observed between the sexes in pre-agricultural societies
has gradually decreased with the transition to agriculture, indicating that women and men have been
involved in similar activities, this does not mean that biomechanical stresses on the two sexes have
decreased [49,234].

7.2. Prehistoric and Historic Skeletal Samples

With the end of the Pleistocene glacial epoch, the establishment of agricultural societies, adopting
a sedentary lifestyle on the fertile plains of the Middle East, is associated with numerous lifestyle
diseases. Dental caries, dental hypoplasia, and growth retardation, as well as many infectious diseases
have been the most important problems for agricultural societies in Neolithic communities [236].

Sciulli [66] compared dental asymmetry of pre-historic hunter-gatherers with those of settled
agricultural societies in the Ohio Valley of North America. The hunter-gatherers were of the Late
Archaic period (3200–2700 Before Present (BP)) and the agriculturists were of the Late Prehistoric
period (950–300 BP). He found that directional asymmetry and fluctuating asymmetry were prominent
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in the Late Archaic and Late Prehistoric groups, but that there were no significant differences in dental
asymmetry between these two societies. This finding may imply that farming of corn has not increased
fluctuating asymmetry, and consequently not increased stress in the Late Prehistoric period. Similarly,
Hoover and Matsumura [237] could not find significant differences in asymmetry among 13 different
prehistoric communities of Japan’s Jamon Period, despite their different lifestyles. They used three
bilateral traits from the nasal and orbital regions of the cranium and also collected hypoplasia data
on the maxillary and mandibular anterior dentitions. Unfortunately, the study examined only 49
individuals collected from 13 different archaeological sites. This is an insufficient sample size to detect
differences if they exist [237].

Albert and Greene [113] compared a temporal series of skeletal groups from Kulubnarti, Sudan,
and dated from the early to late Christian periods. The authors reported more intense environmental
stress during the early period, and demonstrated that the long-bone asymmetry was also greater in
this group. That study, however, revealed no significant differences between males and females.

In addition to studies of the post-cranial skeleton, studies have also successfully used the skull,
with its complex structure [114,238]. DeLeon [238] examined 60 skulls belonging to two Christian
medieval communities, Christian Kulubnarti (Sudanese, Nubia), one early and one late-period.
She used three-dimensional coordinates from landmarks on the skull to compare cranial asymmetry of
the two samples. The crania from the Early Christian cemetery were more asymmetric than those from
the Late Christian cemetery, which was consistent with Albert and Greene [113]. In a similar study,
Bigoni and colleagues [114] studied 129 skulls from a high socioeconomic class at Mikulčice, a medieval
settlement in the Czech Republic. Surprisingly, the females from this group had higher fluctuating
asymmetry than those from a lower socioeconomic group in a nearby cemetery. The asymmetry of
these females was similar to that of a modern low socioeconomic collection.

We have previously mentioned that bilateral asymmetries observed in skeletal groups are
also caused by biomechanical stress. Consequently, fluctuating asymmetry may reveal the level
of environmental and genetic stress, while directional asymmetry may indicate mechanical stress
experienced by the populations. Biomechanical stress mostly causes increases in bone length, cortical
thickness, and bone weight. Moreover, it manifests itself as enlargement of the joint surface in parallel
with increased cartilaginous tissue. The effect of biomechanical stress on the joint surface is considered
to have lower phenotypic plasticity compared with other regions of the bone [239,240]. According to
some researchers, these parts of the bone are less influenced by mechanical stress, which demonstrates
that development of these areas are rather controlled by genetic factors. In other words, these areas
have lower phenotypic plasticity [239]. Some specialists maintain that intense mechanical stress in the
joints causes deterioration of the surface of the joint rather than increasing the amount of tissue in the
joint, leading to arthritis and other joint diseases [241,242]. Even small mechanical stresses caused by
handedness may lead to deviation from symmetry in the joint surface. In a study of 80 skeletons from
archaeological excavations in Missouri, Plochocki [243] studied joint spaces of the humerus, radius,
femur, and tibia. In that study, measures of the joint surfaces in the upper extremities showed higher
values on the right side. The measure that has shown the highest directional asymmetry in the upper
extremities is the height of the humeral head. In a similar study by Čuk et al. [244] on a collection of
42 skeletons, the humerus was especially seen to have a high degree of asymmetry.

In addition to long bones, asymmetry studies have also been performed on clavicles and
sacra [245,246]. In one of these studies, Mays et al. [245] examined the right and left clavicles of
136 skeletons from a small medieval town in Wharram Percy, England. Five measurements were
taken on each clavicle; the left clavicles were longer [245]. The researchers proposed that growth
was inhibited on the dominant right side by lateral differences in mechanical loading. Increased
compression of the right shoulder girdle hinders longitudinal growth on that side. In a similar study,
Plochocki [246] took three bilateral measures on each sacrum and found an inverse correlation between
the dominant hand and these measures. In other words, the left side of the sacrum was larger in
individuals who were strongly right handed [246].
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8. Evolutionary Biology

A great deal of recent interest in evolutionary biology has focused on developmental stability
as a component of Darwinian fitness. This naturally has led to fluctuating asymmetry as a surrogate
measure of fitness. Nevertheless, because fitness is a characteristic of individuals, not populations,
we are not really talking about fluctuating asymmetry any longer, but individual asymmetry.

Even if developmental instability is related to fitness, it is a weak association, because fluctuating
asymmetry is a weak measure of individual developmental instability [247,248]. A significant
association between fluctuating asymmetry and fitness components has been demonstrated in
plants [249], but plants have the advantage of a modular design [250]. One can potentially sample
hundreds of leaves from a single individual, and one can even sample multiple ramets from a
single clonal colony, or genet. With animals, there are only two sides of a bilaterally symmetrical
trait. One partial solution is to study several traits and combine them in a composite index of
fluctuating asymmetry [251]. Composite indices of fluctuating asymmetry work best when the traits
are developmentally independent of one another, but are nevertheless responsive to perturbations.

With this in mind, it is no surprise that studies of mate selection, a component of fitness,
and developmental instability, as measured by fluctuating asymmetry, have proved so controversial.
The hypothesis that symmetrical mates might have an advantage, because of “good genes” or
an absence of disease or parasites, was a good one for its time [252]. An early meta-analysis
by Møller and Thornhill [253], for example, on 146 data sets gleaned from 65 studies on a wide
assortment of animal species claimed a moderately significant effect of individual symmetry on mate
selection. However, a re-analysis of their data by Palmer [254] suggested that variation in asymmetry
actually accounted for less than 6% of the variation in attractiveness (but see Thornhill et al.’s
reply [255]). Moreover, the associations between facial symmetry and attractiveness ratings were
often contradictory. Van Dongen [256] suggested that there was a relationship, but that it was weaker
than had been portrayed and that the associations were stronger when the asymmetry was visible
(i.e., facial traits) than when it was not (i.e., wrist, ankle, etc.). Van Dongen and Gangestad [257] and
Van Dongen [256] conducted meta-analyses of published papers and concluded that the literature
did not support an association between facial symmetry and attractiveness. Moreover, a second
meta-analysis by Van Dongen [258] failed to find an association between developmental instability,
as measured by fluctuating asymmetry, and perceived masculinity or femininity (but see [259]). Finally,
an additional study by Van Dongen [260] also failed to find an association between attractiveness and
facial symmetry.

Other aspects of attractiveness, such as voice quality [261–264] and skin condition [265] have
been linked to fluctuating asymmetry. A meta-analysis of all five studies of voice quality and facial
asymmetry in men and women supports a robust negative association between the two; individuals
with more attractive voices have more symmetrical faces. The effect sizes, however, for an association
between fluctuating asymmetry and voice quality are not large (r = −0.23 for men and r = 0.29 for
women) [264]. Moreover, the association between skin condition (color homogeneity, texture, etc.)
and fluctuating asymmetry is also small. According to Jones et al. [265], skin condition has a strong
effect on male facial attractiveness (rs = 0.70), but the correlation between facial symmetry and skin
condition is much smaller (rs = 0.23). Consequently, the association between facial attractiveness and
symmetry may be confounded by skin condition, which is correlated with both variables.

Fluctuating asymmetry may not actually be the best indicator of reproductive fitness, simply
because the modal state is still perfect symmetry, even for individuals of low developmental stability.
Symmetry transitions from fluctuating asymmetry to directional asymmetry make more sense as an
honest indicator of reproductive fitness and mate suitability. If individuals having low developmental
stability also exhibit directional asymmetry for a sexually selected trait, then asymmetric individuals
are more likely to be poor mate choices.

Fitness is always relative to other individuals in a population. Nevertheless, one may still be able
to follow trends and associations and it may still be possible to estimate a population’s mean fitness.
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9. Medicine

Fluctuating asymmetry has been especially problematic as an indicator of health and disease.
Studies of overall health and disease have not been well supported. Van Dongen and Gangestad [257],
for example, conducted a meta-analysis of nearly 100 studies addressing health and fluctuating
asymmetry. They looked at studies focusing on infectious diseases, genetic defects, fetal anomalies,
psychological disorders, attractiveness, and reproductive outcomes, finding only a weak effect size
(Pearson r = 0.2) and evidence of publication bias. When publication bias was taken into account,
the effect size decreased to r = 0.1. They concluded that “more work is needed to provide a full
understanding” (Van Dongen and Gangestad [257], (p. 397)).

The most strongly supported studies have focused on genetic defects, such as cleft lip/cleft
palate [266]. Adams and Niswander [1], for example, first described elevated dermatoglyphic and
dental asymmetry in individuals with cleft lip/cleft palate. This is a classic, but equivocal paper,
because the methods are so poorly described. In a more recent large study, Neiswanger et al. [267]
did not find significant differences in ridge counts and atd angle asymmetries among 500 individuals
having cleft-lip/palate, 421 of their unaffected relatives, and 66 unrelated controls. Only in families
with a history of cleft-lip/palate was asymmetry (pattern discordance) greater than that of the controls.
Recently, Miller et al. [70] identified three genes associated with facial asymmetry (actually directional
asymmetry) in the relatives of nonsyndromic cleft lip with or without cleft palate; these genes are
LEFTY1, LEFTY2, and SNAI1.

Unsurprisingly, individuals having facial paralysis have greater facial asymmetry than those
without it [268]. This is one of the few noncontroversial studies.

There has been much research on limb asymmetry and the performance of athletes (both hominid
and murid). In a long-term laboratory experiment involving mice, Garland and Freeman [269] selected
for running endurance. The high-runner lines had reduced directional asymmetry of their hind limb
bones. In general, the lower limbs of humans have lower asymmetry than the upper limbs, presumably
for mechanical efficiency [120,270]. Nevertheless, directional asymmetry in the upper limbs may be
amplified by behavioral laterality and bone remodeling.

Trivers et al. [270] found that knee asymmetry in Jamaican children influences sprint speed later
in life. Moreover, elite athletes have more symmetrical knees, and possibly ankles, than a matched
control group [271]. Moreover, Oxford [272] found that lower limb asymmetry (mostly long bones)
does not influence performance of athletes. He did not examine knee asymmetry.

There has been some indication that skeletal asymmetries may be related to health issues.
Pelvic asymmetry, for example, has a strong effect on lower back pain [273]. Furthermore, vertebral
asymmetry has been linked to scoliosis [274].

10. Psychology

Because psychological disorders, such as schizophrenia, psychosis, and autism spectrum disorder
have their genesis during prenatal development, dermatoglyphic patterns and asymmetry have
become the trait of choice for detecting developmental disturbances that might influence the nervous
system [275]. Dermatoglyphic patterns form during weeks 10–16 of fetal development, just as the
population of neurons in the brain is beginning to expand and differentiate [276].

Schizophrenia is a mental disorder with complex, polygenic roots, which it shares with bipolar
disorder, intellectual disability, major depressive disorder, and autism spectrum disorders [277].
Several studies have linked fluctuating asymmetry with schizophrenia. Markow and Wandler [87],
for example, have argued that the increased dermatoglyphic asymmetry (both fluctuating asymmetry
and pattern discordance) observed in schizophrenic patients is evidence of schizophrenia’s polygenic
origins. Mellor [38] and Reilly et al. [278] both reached similar conclusions, but their choice of indices
is problematic. Mellor [38] had used the coefficient of indetermination, which—in addition to having
low statistical power—could bias the asymmetry estimates in either direction, depending on the range
of ridge counts in the samples. Furthermore, for pattern discordance, he counted each finger pair as an
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independent observation, thus inflating the degrees of freedom fivefold and increasing the chance of a
type I error. Finally, Reilly et al. [278] corrected for size scaling when it was unnecessary (and without
justification). The schizophrenia patients had smaller a–b and finger ridge counts, so it is likely that
any difference between patients and controls was inflated by using an index of relative asymmetry.

Psychosis is accompanied by hallucinations, delusions, and thought disorders. It shares
phenotypic and genetic features with schizophrenia, so it is only natural that it may be associated with
developmental disorders during the prenatal period. Mittal et al. [275] reported significant elevation in
fingerprint ridge count asymmetry in a small sample of students (n = 16) who had reported occasional
non-clinical psychoses. The control group was much larger (n = 205). The effect size, however, was
moderate (Cohen’s d = 0.44), by Cohen’s [279] criteria. More recently, the same research team [97,98]
has shown that a larger sample of adolescents at risk for psychosis also have greater dermatoglyphic
asymmetry, with a similar effect size (Cohen’s d = 0.48). The authors suggest that the results of
both studies support the Diathesis-Stress Model in which prenatal insults disturb the structure and
function of the hippocampal region, which regulates the hypothalamic–pituitary–adrenal axis. Then,
psychosocial stress acting on the poorly regulated hypothalamic–pituitary–adrenal axis, increases
cortisol secretions, even at rest, triggering further damage and psychoses.

Autism spectrum disorder is a collection of neurological disorders, including autistic
disorder, Asperger syndrome, and Pervasive Developmental Disorder Not Otherwise Specified.
Like schizophrenia, the autism spectrum has a complex genetic basis [280,281] and one might expect
developmental disturbances similar to those that accompany schizophrenia. To the best of our
knowledge, there have been no complete analyses of fluctuating asymmetry in autistic children,
but pattern discordance is present in individuals having mild autism and average IQ [86]. There were
no significant differences in atd angle asymmetry, and ridge count asymmetry was not examined.

Some researchers have claimed that intelligence is influenced by developmental disturbances [282].
Consequently, fluctuating asymmetry should be correlated with intelligence. Furlow et al. [283],
for example, conducted two replicate studies of college students and found significant negative
correlations between intelligence (culture neutral CFIT) and a composite index of fluctuating
asymmetry. The traits examined were linear measurements of feet, ankles, fingers, wrists, elbows,
and ears. The correlation coefficients were a modest r =−0.21 and r =−0.24. Prokosh et al. [284] found
an even stronger negative relationship (r = −0.39) between the same traits and a general factor of
mental ability (g), as measured by the g-loaded cognitive tests. Other studies from different research
groups, however, were unable to confirm a negative correlation between asymmetry of these same
traits and general intelligence, even with much larger sample sizes [54]. A meta-analysis [285] of
14 samples, both published and unpublished, suggests a significant, but lower, correlation between
r = −0.12 and r = −0.20. The authors were concerned about evidence of possible publication bias
(unpublished data sets had smaller correlations than published ones). Recent research suggests that
dermatoglyphic asymmetries are related to hippocampal dependent cognitive function [97].

Handedness is related to brain laterality. Yeo et al. [103,286] have argued that handedness is
critically influenced, not by a few gene loci, but by developmental instability. They called this the
Developmental Instability Model of Handedness. Under this model, deviations from right-handedness
are a consequence of disturbance early in development. Recent genomic studies [287] have failed to
find a major gene for left handedness, providing some additional support for their model.

A recent trend has emerged in evolutionary psychology, in which researchers obtain a new
tool, or measure, and apply it without regard for theory. Without theory to guide predictions,
any finding based upon the new measure becomes interesting only to those who use it. Research on
fluctuating asymmetry and behavioral patterns, for example, has occupied several researchers despite
many failures to replicate findings [288–291]. The relationship between fluctuating asymmetry and
aggressiveness is a case in point.

Early studies of aggressive behavior and fluctuating asymmetry revealed a negative relationship
between body asymmetry and aggressive behavior. According to Manning and Wood [292],
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physically aggressive boys, but not girls, are more symmetrical, on average. Testosterone and/or
cortisol effects on growth and behavior may explain the correlation.

Soon after Manning and Wood’s [292] paper, Furlow et al. [289] argued that asymmetry of ten
body traits (e.g., ankle width, ear length, etc.) was negatively correlated with the number of fights
among male university students, but not females, in the three previous years. Unlike Manning and
Wood [292], who only examined asymmetry of one trait, the 10 traits they used were combined in
a composite index of fluctuating asymmetry, but without standardizing each trait in the composite
by its mean fluctuating asymmetry. Doing so emphasizes the most asymmetric of the 10 traits [251].
Fluctuating asymmetry was also associated with the initiation of fights by males. Consequently,
human aggression is probably not a compensatory response by subdominant males, but is associated
instead with alpha males maintaining their dominance.

Benderlioglu et al. [288] then attempted to replicate the findings of Manning and Wood [292] and
Furlow et al. [289]. They studied 11 bilateral traits in 100 (average age = 20.1; 51 male, 49 female) college
students and also combined their asymmetries (the average of two replicates) in an unstandardized
composite index. In contrast to the two previous studies, however, they concluded that asymmetrical
individuals were more aggressive. They also suggested that common prenatal insults, such as maternal
alcohol and tobacco abuse, may influence both agonistic behavior and neurological functioning,
providing further insight into the association between asymmetry and aggression.

Özener et al. [290] studied asymmetry (four bilateral traits) and aggression in a large non-western
sample (100 male, 102 female) in Sivas (Central Anatolian Region), Turkey. They used the Buss
and Perry Aggressiveness Questionnaire to establish self-reported aggressiveness, and found
no relationship between a standardized index of composite asymmetry and any component of
aggressiveness for either sex.

Further studies continued to confuse the issue. Some examined facial symmetry and
aggressiveness. According to Muñoz-Reyes et al. [293], facial asymmetry is negatively associated with
anger in older adolescent males, while it is negatively associated with hostility in females. Moreover,
Holtzman et al. [294] argued that aggression and neuroticism are positively related to both body
and facial symmetry. Özener et al. [291] concluded that facial symmetry is an unreliable predictor of
self-reported aggressiveness of healthy young people in Ankara, Turkey.

As seen from these seven studies, there are three conflicting results. Manning and Wood [292],
Furlow et al. [289], Holtzman et al. [294], and Muñoz-Reyes et al. [293] concluded that asymmetrical
body and face is associated with lower aggressiveness. They hypothesize that aggressiveness
reflects Darwinian fitness and is consequently related to lower fluctuating asymmetry. In contrast,
Benderlioglu et al. [288] argued that asymmetrical individuals are more aggressive. The third group
of findings are from studies of Turkish students. Özener and his colleagues [290,291] have not found
any relationship between aggressive behavior and fluctuating asymmetry.

As Özener et al. [290] have stated, differences among studies may arise as a result of differences
in (1) the traits studied; (2) the statistical power of the tests, which is a function of sample size and the
effect size to be detected; and (3) the methods of measuring aggressiveness. Fluctuating asymmetry can
be measured from a variety of traits (dermatoglyphic, skeletal, dental, morphological, etc.). The choice
of traits and analysis influences the reliability of the predicted relationships. Moreover, there are a
variety of methods of measuring aggressiveness. Finally, most studies were conducted on western
populations. Only two studies [290,291] have been done in a non-western society. The negative
association between aggressiveness and facial and bodily symmetry may not be universal. Therefore,
aggression and asymmetry should be examined in several cultures.

11. Discussion

Fluctuating asymmetry of human populations has been linked to a wide variety of environmental
and genetic stressors. Nevertheless, much of the research, especially the older research, does not
measure up to current best practices, as outlined by Palmer and colleagues [8,22,23,36,231],
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Leung et al. [251], Van Dongen et al. [55], and Graham et al. [12]. The use of correlation coefficients,
for example, and the closely related coefficient of indetermination, is widespread in the older literature.
Both indices are highly susceptible to the range of R and L [39] and are far less sensitive than alternative
indices [8]. Moreover, differences in correlation coefficients between two or more populations can easily
be the spurious result of restriction in the range of R and L for one of the populations. Consequently,
the probability of a Type I error (i.e., false positive result when the null hypothesis is true) may be
much greater than 0.05 when the correlation coefficient is the index of asymmetry.

Because fluctuating asymmetry is such a small component of total phenotypic variation,
it is important to have large sample sizes and to estimate, and account for, measurement error.
Measurement error inflates estimates of fluctuating asymmetry. Consequently, replicate measurements
are required to estimate measurement error. One can estimate measurement error from a subsample,
but it is better to do replicate measurements for the entire sample. Besides improving the accuracy of
one’s measurements, the best way to eliminate measurement error is to average replicate measurements.
Each round of averaging reduces measurement error by 50%. Using the averages will become important
when dealing with size scaling. Unfortunately, measurement error is only rarely reported in the human
fluctuating asymmetry literature.

Size scaling needs to be addressed in every study of fluctuating asymmetry, both before and after
any transformations to correct it. Positive size scaling occurs when asymmetry |R − L| increases with
size (R + L). This needs to be examined within a particular population of interest, not in a pooled sample,
and the range of variation needs to be great enough to detect size scaling if it really exists. Moreover,
it is important to graphically examine the relationship between |R− L| and (R + L). Blindly correcting
for positive size scaling can quickly get one into trouble, as we demonstrated in Figure 1, where an
unnecessary transformation of fingerprint ridge counts caused asymmetry to decrease with the total
ridge count. As with measurement error, very few studies of human fluctuating asymmetry report
whether size scaling exists or not.

To understand why a transformation for positive size scaling might fail, fluctuating asymmetry
researchers need an appreciation for multiplicative and additive error. A mixture distribution of
the two can easily undermine an analysis of fluctuating asymmetry. Additive error, for example,
is characteristic of measurement error and the natural variation of inert tissues, such as teeth, fingernails,
and dermatoglyphic ridge counts. Multiplicative error, on the other hand, is characteristic of actively
growing tissues, such as bone and soft tissues. Additive measurement error and multiplicative growth
interact to generate a mixture distribution that will respond poorly to size scaling. If |log R− log L| or
|R − L|/(R + L) decrease with size (R + L), it is likely that additive measurement error is a significant
part of the asymmetry variation. The solution to this problem may be as simple as averaging replicate
measurements until measurement error is nil.

To reduce size scaling, we prefer |log R − log L| to |R − L|/(R + L) or |R − L|/((R + L)/2).
It addresses multiplicative error directly, and |log R − log L| has better statistical properties [43,57].
If a mixture distribution is encountered and replicate measurements have not been done, one can use a
Box–Cox power transformation, [(Rλ − 1)/λ] − [(Lλ − 1)/λ], as a last resort to reduce size scaling [12].

Directional asymmetry needs to be addressed as well, mainly because it can inflate estimates
of fluctuating asymmetry. Most of the human skeleton exhibits directional asymmetry. As with size
scaling, directional asymmetry needs to be addressed graphically. For example, does directional
asymmetry increase allometrically with size? Prescriptions for dealing with directional asymmetry can
be found in Graham et al. [48] and Van Dongen et al. [55].

In addition to those concerns that are unique to fluctuating asymmetry, statisticians have expressed
concern regarding statistical abuses in all of the sciences. Studies of fluctuating asymmetry are
especially vulnerable to these abuses, which include p-hacking ([295], but see [296]), overuse of
one-tailed tests [297,298], confirmation bias [299], lack of effect-size estimates and confidence
intervals [295], poor experimental design, small sample sizes, low statistical power, and lack
of replication.
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p-hacking, the testing of statistical hypotheses until a significant effect is found, is especially
problematic, because fluctuating asymmetry is, almost by definition, characterized by “small effects
hidden in noisy data” [295]. If a researcher examines enough traits, at least 5% of them will be
statistically significant at p < 0.05, even when the null hypothesis is true. For example, if one examines
antimeric asymmetry in a full set of permanent teeth (32 total), there are 16 different variables and
16 different tests to address, unless one takes a multivariate approach or combines the 16 different
variables into a composite index of fluctuating asymmetry [251].

True experiments often cannot be conducted on humans, and so anthropologists, medical
researchers, and psychologists are often forced to adopt a comparative approach. Virtually all studies
of human fluctuating asymmetry adopt the comparative approach and spurious results are always
possible if researchers have overlooked an explanatory variable. In our study of the children of
first-cousin marriages, for example, we could have wrongly concluded that inbreeding had had a
significant effect on the children’s fluctuating asymmetry if we had not also included level of education
as an explanatory variable. Of course, it is unlikely that education itself influences the developmental
stability of one’s children, but other factors (smoking, diet, etc.) correlated with level of education may
influence children in utero.

Furthermore, with respect to many of the claims that have been made for human fluctuating
asymmetry, such as associations between asymmetry and general intelligence, we agree with Carl
Sagan’s dictum “extraordinary claims require extraordinary proofs”.

12. Conclusions

Studies of human developmental instability and fluctuating asymmetry are extremely popular.
Many studies, such as the association between schizophrenia and developmental instability,
have produced robustly repeatable results. Others, such as the attempts to establish an association
between developmental stability and general intelligence, have been less successful and consequently
more contentious.

As we have pointed out repeatedly in this review, studies of human fluctuating asymmetry have
not always followed best practices. Consequently, it has been difficult, perhaps impossible, to compare
results from different studies. While it is natural that traits and measurements should vary, it is the
lack of reliability introduced by less-than-ideal indices and statistical approaches that undermines
most research.

We encourage researchers to take more care with how fluctuating asymmetry is treated in human
studies. At the moment, many studies (even classic ones) are of questionable value, because they
used insensitive indices, or used unnecessary transformations, or used the wrong transformations,
or did not deal with directional asymmetry or measurement error. We recommend that every study
of fluctuating asymmetry take the following precautions: (1) employ a large enough sample; (2) use
a sensitive index of asymmetry; (3) take replicate measurements; (4) estimate measurement error as
a fraction of total variation and asymmetry variation; (5) graphically test for size scaling, (6) use an
appropriate transformation for size scaling if it exists; (7) estimate directional asymmetry; (8) evaluate
whether measurement error is contributing to a mixture distribution of additive and multiplicative
error; (9) measure asymmetry of several traits and either combine them in a composite index of
fluctuating asymmetry or use a multivariate approach; and (10) include all correlated factors that could
influence developmental instability in the design of the study.
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Abbreviations

The following abbreviations are used in this manuscript:

ANOVA Analysis of Variance
BP Before Present
C Canine Tooth
CFA Composite Index of Fluctuating Asymmetry
CFIT Culture Fair Intelligence Test
E Expectation
M1 First Molar
LB1 Liang Bua 1 specimen of Homo floresiensis
QTL Quantitative Trait Locus
M2 Second Molar
KNM-WT 15000 Specimen Number of Nariokotome Boy
P3 Third Premolar
Var Variance
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