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Abstract: Existing iris recognition systems are heavily dependent on specific conditions, such as the
distance of image acquisition and the stop-and-stare environment, which require significant user
cooperation. In environments where user cooperation is not guaranteed, prevailing segmentation
schemes of the iris region are confronted with many problems, such as heavy occlusion of eyelashes,
invalid off-axis rotations, motion blurs, and non-regular reflections in the eye area. In addition,
iris recognition based on visible light environment has been investigated to avoid the use of
additional near-infrared (NIR) light camera and NIR illuminator, which increased the difficulty
of segmenting the iris region accurately owing to the environmental noise of visible light. To address
these issues; this study proposes a two-stage iris segmentation scheme based on convolutional neural
network (CNN); which is capable of accurate iris segmentation in severely noisy environments of
iris recognition by visible light camera sensor. In the experiment; the noisy iris challenge evaluation
part-II (NICE-II) training database (selected from the UBIRIS.v2 database) and mobile iris challenge
evaluation (MICHE) dataset were used. Experimental results showed that our method outperformed
the existing segmentation methods.
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1. Introduction

Biometrics has two main categories: physiological and behavioral biometrics. Behavioral
biometrics considers voice, signature, keystroke, and gait recognition [1], whereas physiological
biometrics considers face [2,3], iris [4,5], fingerprints [6], finger vein patterns [7], and palm prints [8].
Iris recognition has been widely used in security and authentication systems because of its reliability
and high-security [9,10].

Most existing iris recognition algorithms are designed for highly controlled cooperative
environments, which is the cause of their failure in non-cooperative environments, i.e., those that
include noise, off-angles, motion blurs, glasses, hairs, specular reflection (SR), eyelids and eyelashes
incorporation, and partially open eyes. Furthermore, the iris is always assumed to be a circular object,
and common methods segment it as a circle, but considering intense cases of side view and partially
open eyes, the iris boundary deviates from being circular and may include skin, eyelid, and eyelash
areas. Iris recognition systems are based on the specific texture of the iris area, which is used as a base
entity for recognition and authentication purposes. Therefore, the accurate segmentation of the iris
boundary is important even in intense environments.

Algorithms for iris segmentation should be designed to reduce user cooperation to improve the
overall iris recognition performance. Many studies have attempted to reduce the error caused by the
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lack of user cooperation in the past two decades [11–13], but the detection of the true iris boundary is
still a challenge. To address this issue, we proposed a two-stage iris segmentation method based on
convolutional neural networks (CNN), which is capable of robustly finding the true iris boundary in
the above-mentioned intense cases with limited user cooperation. Our proposed iris segmentation
scheme can be used with inferior quality noisy images even in visible light environment.

2. Related Works

The existing schemes for iris segmentation can be broadly divided into four types based
on implementation. The first and most common type consists of the boundary-based methods.
These systems will first find the base element pupil as an inner boundary of the iris, and then find
the other parameters, such as eyelid and limbic areas, to separate them from the iris. The first type of
methods include Hough transform (HT) and Daugman’s integro-differential operator. HT finds the
circularity by edge-map voting within the given range of the radius, which is known as the Wildes
approach [14]. HT-based detection methods are also used [15,16]. Daugman’s integro-differential
operator is another scheme that finds the boundary using an integral derivative, and the advanced
method was developed in [17]. An effective technique to reduce the error rate in a non-cooperative
environment was proposed by Jeong et al. [18]. They used two circular edge detectors in combination
with AdaBoost for pupil and iris boundary detection, and their method approximated the real boundary
of eyelashes and eyelid detection. Other methods are also known to reduce noise prior to the detection
of the iris boundary to increase the segmentation accuracy [19]. All methods in the first type of
segmentation require eye images of good quality and an ideal imaging environment; therefore,
these types of methods are less accurate for non-ideal situations or result in higher error rates.

The second type of methods is composed of pixel-based segmentation methods. These methods
are based on the identification of the iris boundary using specific color texture and illumination
information gradient to discriminate between an iris pixel and another pixel in the neighborhood.
Based on the discriminating features, the iris classifier is created for iris and non-iris pixel classification.
A novel method for iris and pupil segmentation was proposed by Khan et al. [20]. They used
2-D profile lines between the iris and sclera boundary and calculated the gradient pixel by pixel,
where the maximum change represents the iris boundary. Parikh et al. [21] first approximated the iris
boundary by color-based clustering. Then, for off-angle eye images, two circular boundaries of the
iris were detected, and the intersection area of these two boundaries was defined as the iris boundary.
However, these methods are affected by eyelashes and hairs or dark skin. The true boundary of
the iris is also not identified if it includes the area of eyelids or skin, which reduces the overall iris
authentication performance.

The third type of segmentation methods is composed of active contours and circle fitting-based
methods [22,23]. A similar approach is used in the local Chan–Vese algorithm, where a mask is created
according to the size of the iris, and then an iterative process determines the true iris boundary with the
help of the localized region-based formulation [24]. However, this approach shares the drawback faced
by other active contour-based models, i.e., it is usually prevented by the iris texture during iteration,
and considers the iris pattern as the boundary, which results in erroneous segmentation. On the other
hand, active contour-based methods are more reliable in detecting the pupillary boundary because of
the significant difference in visibility.

To eliminate the drawbacks of all current segmentation methods and reduce the complexity of
intensive pre- and post-processing, a fourth type of segmentation methods evolved, which consists
of learning-based methods [25]. Among all learning-based methods, deep learning via deep CNN
is the most ideal and popular in current computer vision applications because of its accuracy and
performance. This method has been applied to damaged road marks detection [26], human gender
recognition from human body images [27], and human detection in night environments using visible
light camera [28]. Considering segmentation, CNN can provide a powerful platform to simplify the
intensive task with accuracy and reliability similar to brain tumor segmentation done by CNN [29].
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Iris-related applications are sensitive because of the very dense and complex iris texture. Therefore,
few researchers focus on CNN related to iris segmentation. Liu et al. [30] used DeepIris to solve an
intra-class variation of heterogeneous iris images where CNNs are used to learn relational features
to measure the similarity between two candidate irises for verification purposes. Gangwar et al. [31]
used DeepIrisNet for iris visual representation and cross-sensor iris recognition. However, these two
types of research focus on iris recognition instead of iris segmentation.

Considering iris segmentation using CNNs, Liu et al. [32] identified accurate iris boundaries in
non-cooperative environments using fully convolutional networks (FCN). In their study, hierarchical
CNNs (HCNNs) and multi-scale FCNs (MFCNs) were used to locate the iris boundary automatically.
However, due to the use of full input image without the definition of region of interest (ROI) into the
CNN, the eyelids, hairs, eyebrows, and glasses frames, which look similar to iris, can be considered as
iris points by the CNN model. This scheme has better performance compared to previous methods.
However, the error of the iris segmentation can potentially be further reduced.

To address these issues concerning the existing approaches, we propose a two-stage iris
segmentation method based on CNN that is robust, to find the true boundary in less-constrained
environments. This study is novel in the following three ways compared to previous works.

- The proposed method accurately identified the true boundary even in intense scenarios, such as
glasses, off-angle eyes, rotated eyes, side view, and partially opened eyes.

- The first stage includes bottom-hat filtering, noise removal, Canny edge detector, contrast
enhancement, and modified HT to segment the approximate the iris boundary. In the second stage,
deep CNN with the image input of 21× 21 pixels is used to fit the true iris boundary. By applying
the second stage segmentation only within the ROI defined by the approximate iris boundary
detected in the first stage, we can reduce the processing time and error of iris segmentation.

- To reduce the effect of bright SR in iris segmentation performance, the SR regions within the
image input to CNN are normalized by the average RGB value of the iris region. Furthermore, our
trained CNN models have been made publicly available through [33] to achieve fair comparisons
by other researchers.

Table 1 shows the comparison between existing methods and the proposed method.

Table 1. Comparisons between the proposed and previous methods on iris segmentation.

Type Methods Strength Weakness

Boundary-based
methods

Integro-differential operator [17] Fast processing speed using a
simple technique. These methods are less accurate for

iris segmentation in non-ideal
situations or visible light.

Iris localization by circular HT.
Upper and lower eyelids detection

by parabolic curves [14].

As the first practical scheme, it can
produce a good approximation of the

iris region with image smoothness.

Using two-circular edge detector
along with AdaBoost eye detector.

In addition, eyelash and eyelid
detection is performed [18].

This method provides satisfactory
results in non-ideal situation, and a
closed eye can be detected as well.

This method fails in iris segmentation
in case the RGB values of the eyelids
are similar to the iris or pupil/eyelid

detection error.

Pixel-based
methods

Drawing 2D profile line on the
iris-sclera area and calculating the
gradient to find the boundary
points [20].

A new way to estimate iris boundary
from both side gradient.

The calculated gradient is affected by
the eyelashes, and the true boundary
of the iris is not found.

Initially approximating iris
boundary by color clustering, and
then fitting the boundary by two

side curves [21].

To reduce the error of iris
segmentation, the upper and lower

eyelids and the eyelashes are removed
by average intensity analysis.

Some empirical threshold is set for
eyelid and eyelash detection, but the

limitations in detecting the true
boundary of the iris still exist.

Active contour and
circle fitting-based

methods

Iterative method by starting with
mask, checking the gradient, and
reaching the boundary [24].

For non-ideal cases, it can segment
the iris true boundary more accurately
than those by boundary- and
pixel-based methods.

These methods are better for detecting
pupil boundary because they can be
prevented by the iris texture
considering the iris pattern as
the boundary.
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Table 1. Cont.

Type Methods Strength Weakness

CNN-based
methods

Using HCNNs and MFCNs based
deep learning method [32].

This approach has better accuracy
relative to existing segmentation
methods for non-ideal conditions.

As they use full image into the
network, the eyelids, hairs, eyebrows,
and glasses frames, which look
similar to iris can be considered as iris
points by the CNN model.

Two-stage iris segmentation
method (Proposed method)

This approach simply finds the rough
boundary of the iris and applies CNN
just within the ROI defined based on

the rough boundary.

A large amount of data is needed for
CNN training.

3. Proposed Method

3.1. Overview of the Proposed System

Figure 1 shows an overall flowchart of the proposed two-stage iris segmentation method. In the
first stage, the rough iris boundary is obtained from the input image to define ROI for next stage.
The resultant image from Stage 1 includes parts of the upper and lower eyelids and other areas,
such as skin, eyelashes, and sclera. Consequently, the true iris boundary needs to be identified. In the
second stage, within this ROI (defined by Stage 1), CNN is applied, which can provide the real iris
boundary with the help of learned features. Considering the standard information of the ratio between
pupil contraction and dilation, pupil approximation is performed, and finally, the actual iris area can
be obtained.
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Figure 1. Flowchart of the proposed method.

3.2. Stage 1. Detection of Rough Iris Boundary by Modified Circular HT

An approximate localization of the iris boundary is the prerequisite of this study, and it is obtained
by modified circular HT-based method. As shown in Figure 1, Stage 1 consists of two phases, namely,
pre-processing and circular HT-based detection.
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3.2.1. Phase 1. Pre-Processing

In Phase 1, as shown in Figures 2 and 3c, the RGB input image is converted into grayscale
for further processing, and morphological operation is applied through bottom-hat filtering with
symmetrical structuring element disk of size 5 for contrast enhancement. Finally, two images of the
gray image and resultant image by bottom-hat filtering are added to obtain an enhanced image as
shown in Figure 3d.
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Figure 3. Resultant images by Phase 1 of Figure 1. (a) Original input image of 400 × 300 pixels;
(b) grayscale converted image; (c) resultant image by bottom-hat filtering; (d) resultant image by
adding the two images of (b,c).
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3.2.2. Phase 2. ROI Detection by Rough Iris Boundary

The overall process of Phase 2 is presented by the flowchart in Figure 4. In Phase 2, the filtered
image from Phase 1 is redefined as an image of 280× 220 pixels to reduce the effect of eyebrows
in detecting the iris boundary. Then, a 17× 17 median filter is applied to smooth the image from
salt and pepper noises and reduce the skin tone and texture illumination as shown in Figure 5c.
13× 13 symmetrical Gaussian smoothing filter with σ of 2 is applied to the filtered image to increase
pixel uniformity as shown in Figure 5d. Then, Canny edge detector with same σ value is used to
detect the edges of the iris boundary as shown in Figure 5e. However, the edges are not very clear,
and gamma adjustment with γ = 1.90 is applied to enhance the contrast of the image as shown in
Figure 5f. With the gamma-enhanced image, the binarized edge image is obtained with eight neighbor
connectivity as shown in Figure 5g. In this edge image, there are more circular edges along the iris
boundary edges, and circular HT can find all possible circles in the image. However, the incorrect
circle-type edges as shown in Figure 5h can be removed by filtering the edges whose radius is out
of the range of the minimum and maximum human iris radius. Then, the most-connected edges are
selected as iris edges, and the rough iris boundary is detected in Figure 5i. Considering the possibility
of detection error of the iris boundary, ROI is defined slightly larger than the detected boundary as
shown in Figure 7a.

For fair comparisons, all the optimal parameters for the operation in ROI detection including
median filter, Gaussian smoothing filter, Canny edge detector, gamma adjustment, and binarization,
etc., were empirically selected only by training data without testing data.
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Figure 5. Resultant images of rough iris boundary detected by Phase 2 of Figure 1; (a) pre-processed 
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Figure 5. Resultant images of rough iris boundary detected by Phase 2 of Figure 1; (a) pre-processed
image of 400 × 300 pixels from Phase 1; (b) redefined image of 280 × 220 pixels; (c) median filtered
image; (d) image by Gaussian smoothing; (e) image after Canny edge detector; (f) image after gamma
contrast adjustment; (g) binarized edge image; (h) resultant image by removing incorrect circles by
radius (i) final image with rough iris boundary.
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3.3. Iris Rough Boundary Analysis

The rough iris boundary detected in Stage 1 is not the real iris boundary, but an approximation
for the next stage. Considering ideal cases in which user cooperation is available, the output of the HT
can show the accurate iris boundary. However, for non-ideal cases, such as off-angle eyes, rotated eyes,
eyelash occlusions, and semi-open eyes, the HT can sometimes produce inaccurate iris boundaries
as shown in Figure 6. Moreover, the detected iris circle includes the eyelid, eyelash, pupil, and SR,
which should be discriminated from the true iris area for iris recognition. Therefore, we proposed
a CNN-based segmentation method of the iris region based on the ROI defined by the rough iris
boundary in Stage 1.
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3.4. CNN-Based Detection of the Iris Region

3.4.1. Extracting the Mask for CNN Input

To detect the iris region accurately, the square mask of 21 × 21 pixels is extracted from the ROI of
Figure 7a and is used as input to CNN. The mask is extracted within the ROI to reduce the number of
objects to be classified. Specifically, in many cases, iris color can be similar to the eyebrows and eyelids.
Furthermore, in non-ideal cases, the skin can have similar color to iris. Therefore, by extracting the
mask only within the ROI, we can reduce the iris segmentation error by CNN. This mask is scanned in
both horizontal and vertical directions as shown in Figure 7b. Based on the output of CNN, the center
position of the mask is determined as an iris or non-iris pixel. Figure 7c shows the examples of the
collected masks of 21 × 21 pixels for CNN training or testing. As shown in Figure 7c, the mask from
the iris region has the characteristics where most pixels of the mask are from the iris texture, whereas
that from the non-iris region has the characteristics where most pixels are from the skin, eyelid, eyelash,
or sclera.
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shown in Figure 8b. The threshold of 245 was experimentally found with training data. Here, we can 

Figure 7. Extracting the mask of 21 × 21 pixels for training and testing of CNN. (a) ROI defined
from Stage 1 of Figure 1; (b) extracting the mask of 21 × 21 pixels within the ROI; (c) examples of the
extracted masks (the 1st (4th) row image shows the masks from the boundary between the upper (lower)
eyelid and iris, whereas the others represent those from the left boundary between iris and sclera).

However, if the mask is extracted from the bright SR region, the characteristics of the pixels of the
mask can be changed as shown in Figure 8a, which can increase the error of iris segmentation by CNN.
To solve this problem, if the bright pixels whose gray level is higher than 245 exist inside the mask,
they are replaced by the average RGB value of the iris area (the red dotted box in Figure 8a) as shown
in Figure 8b. The threshold of 245 was experimentally found with training data. Here, we can reduce
the effect of SR on the iris segmentation by CNN. The position of the red dotted box is determined
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based on the rough iris boundary detected in Stage 1. If the dark pixel exists inside the box because the
dark pupil can be included in the box, the box position is adaptively moved into the lower direction
until it does not include the dark pixel, and the average RGB value is extracted in this box.
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Group 1 

Conv-1  

(1st convolutional layer) 
64 224 × 224 × 64 3 × 3 1 × 1 1 × 1 
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Conv-2  
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Figure 8. Example of replacing specular reflection (SR) pixels by the average RGB value of the iris
region. (a) The mask including the SR region; (b) the mask where SR pixels are replaced.

3.4.2. Iris Segmentation by CNN

The mask of 21 × 21 pixels is used as input to CNN, and the output of CNN is either iris or
non-iris area. In this study, a pre-trained VGG-face model [34] is used by fine-tuning with the help
of our training images. The VGG-face model was pre-trained with about 2.6 million face images of
2,622 different people. Detailed explanations of the configuration of VGG-face are shown in Table 2
and Figure 9. To obtain an accurate boundary and its difference from other objects, the ROI is selected
with slightly increased rough iris boundary detected by HT.

Table 2. Configuration of the VGG-face model used in the proposed method.

Type of Layer No. of Filter Feature Map Size Kernel Size No. of
Stride

No. of
Padding

Image input layer 224 × 224 × 3 (height ×
width × channel)

Group 1

Conv-1
(1st convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1

Relu-1 224 × 224 × 64

Conv-2
(2nd convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1

Relu-2 224 × 224 × 64
Pool-1 1 112 × 112 × 64 2 × 2 2 × 2 0 × 0

Group 2

Conv-3
(3rd convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1

Relu-3 112 × 112 × 128

Conv-4
(4th convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1

Relu-4 112 × 112 × 128
Pool-2 1 56 × 56 × 128 2 × 2 2 × 2 0 × 0

Group 3

Conv-5
(5th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1

Relu-5 56 × 56 × 256

Conv-6
(6th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1

Relu-6 56 × 56 × 256
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Table 2. Cont.

Type of Layer No. of Filter Feature Map Size Kernel Size No. of
Stride

No. of
Padding

Conv-7
(7th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1

Relu-7 56 × 56 × 256
Pool-3 1 28 × 28 × 256 2 × 2 2 × 2 0 × 0

Group 4

Conv-8
(8th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1

Relu-8 28 × 28 × 512

Conv-9
(9th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1

Relu-9 28 × 28 × 512

Conv-10
(10th convolutional layer) 512 28 × 28 × 512 3 × 3 1×1 1 × 1

Relu-10 28 × 28 × 512
Pool-4 1 14 × 14 × 512 2 × 2 2 × 2 0 × 0

Group 5

Conv-11
(11th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1

Relu-11 14 × 14 × 512

Conv-12
(12th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1

Relu-12 14 × 14 × 512

Conv-13
(13th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1

Relu-13 14 × 14 × 512
Pool-5 1 7 × 7 × 512 2 × 2 2 × 2 0 × 0

Fully connected layer-6 (1st FCL) 4096 × 1
Relu-6 4096 × 1

Dropout-6 4096 × 1

Fully connected layer-7 (2nd FCL) 4096 × 1
Relu-7 4096 × 1

Dropout-7 4096 × 1

Fully connected layer-8 (3rd FCL) 2 × 1
Softmax layer 2 × 1
Output layer 2 × 1
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The VGG-face model consists of 13 convolutional layers and 5 pooling layers in combination with
3 fully connected layers. The filter size, rectified linear unit (Relu), padding, pooling, and stride are
explained in Table 2 and Figure 9. A total of 64 3 × 3 size filters are adopted in the 1st convolutional
layer. Therefore, the size of the feature map is 224 × 224 × 64 in the 1st convolutional layer. Here,
224 and 224 denote the height and width of the feature map, respectively. They are calculated based
on (output height (or width) = (input height (or width) − filter height (or width) + 2 × the number
of padding)/the number of stride + 1 [35]). For example, in the image input layer and Conv-1 in
Table 2, the input height, filter height, number of padding, and number of strides are 224, 3, 1, and 1,
respectively. As a result, the height of the output feature map becomes 224 (= (224 − 3 + 2 × 1)/1 + 1).

There are three common activation functions, such as sigmoid, tanh function, and Relu [35].
The sigmoid-based activation function forces the candidate input value between the range of 0 and 1
as shown in Equation (1), which means that for the negative inputs, the output becomes zero, whereas
it becomes 1 for large positive inputs.

σ(x) =
1

1 + e−x (1)

The tanh function is slightly different from the sigmoid activation function because it keeps fitting
the input value in the range of −1 and 1 as shown in Equation (2).

tan h(x) =
ex − e−x

ex + e−x (2)

Relu performs faster compared to these two nonlinear activation functions, and it is useful to
wipe off the gradient problem in the back propagation at the time of training [36,37]. In [38], they also
showed that the speed of training by Relu with the CIFAR-10 dataset based on the four-layered CNN
is six times faster than the tanh function with same dataset and network. Therefore, we use Relu for
faster training with simplicity and to avoid the gradient issue in CNN. The Relu was initially used in
Boltzmann machines, and it is formulated as follows.

yi =

{
xi, xi ≥ 0
0, xi < 0

, (3)

where yi and xi are the corresponding outputs and inputs of the unit, respectively. The Relu layer
exists after each convolutional layer, and it maintains the size of each feature map. Max-pooling
layers can provide a kind of subsampling. Considering pool-1, which performs max pooling
after the convolutional layer-2 and Relu-2, the feature map of 224 × 224 × 64 is reduced to that
of 112 × 112 × 64. In the case that the max-pooling layer (pool-1) is executed, the input feature map
size is 224 × 224 × 64, the filter size is 2 × 2, and the number of strides is 2 × 2. Here, 2 × 2 for the
number of strides denotes the max-pooling filter of 2 × 2 where the filter moves by two pixels in both
the horizontal and vertical directions. Owing to the lack of overlapped area due to filter movement,
the feature map size is reduced to 1/4 (1/2 horizontally and 1/2 vertically). Consequently, the feature
map size after passing pool-1 becomes 112 × 112 × 64 pixels. This pooling layer is used after Relu-2,
Relu-4, Relu-7, Relu-10, and Relu-13 as shown in Table 2. For all cases, the filter of 2 × 2 and stride of
2 × 2 are used, and the feature map size diminishes to 1/4 (1/2 horizontally and 1/2 vertically).

When an input image of 224 × 224 × 3 is given to the CNN shown in Figure 9, it passes through
13 convolutional layers (Conv-1 to Conv-13), 13 Relu functions, and 5 pooling layers (pool-1 to
pool-5). Therefore, after Group 5 (Conv-11, Relu-11, Conv-12, Relu-12, Conv-13, Relu-13, and pool-5),
the feature-map of 7× 7× 512 is obtained. Then, this feature-map passes through three fully connected
layers (fully connected layer-6 to fully connected layer-8), from which two outputs can be obtained.
These two final outputs correspond to the two classes of iris and non-iris regions. The number of
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output nodes of the 1st, 2nd, and 3rd FCLs are 4096, 4096, and 2, respectively. After the fully connected
layer-8, the softmax function is used as follows [39].

σ(q)j =
eqj

∑S
n=1 eqn

(4)

In Equation (4), given that the array of the output neurons is q, the probability of neurons of the
jth class can be obtained by dividing the value of the jth component by the summation of the values of
all the components.

CNN usually has an over-fitting issue, which can reduce the testing accuracy. Therefore, to solve
this issue, the dropout method and data augmentation have been considered. Dropout methods are
important during training to avoid the same type of neurons representing the same feature repeatedly.
Which can cause overfitting, wastage of network capacity, and computational resources. Therefore,
the solution is to drop out these cases at random by using the dropout ratio to obtain specific benefits,
such as the dropped-out neurons’ contribution in forward or back propagation. Consequently, it can
reduce co-adoption during the process by decreasing dependencies over other neurons and it can force
the network to learn strong features with different neurons [38,40]. In this study, we use the dropout
ratio of 0.5. The dropout layer was used twice, that is, after the 1st FCL with Relu-6 and after the 2nd
FCL and Relu-7, as shown in Table 2.

Compared to the elements and parameters of the original VGG-face model, three parts of initial
learning rate, the momentum value, and the size of the mini-batch were modified, and their optimal
values were experimentally found with training data. The detailed explanations of these values are
included in Section 4.2. In addition, the last part modified is the number of CNN output as 2 as shown
in Figure 9 because the number of classes in our research is 2 as iris and non-iris pixels.

3.5. Pupil Approximation by the Information of the Ratio of Pupil Contraction and Dilation

When applying CNN, false positive errors (non-iris pixel is incorrectly classified into iris pixel)
exist in the pupil area. However, the noisy iris challenge evaluation part -II (NICE-II) database used
in our experiment includes inferior quality images, where it is very difficult to segment pupillary
boundary accurately. Therefore, we used anthropometric information provided by Wyatt [41].

dp =
Pd
Id

(5)

where Pd represents the pupil diameter and Id shows the iris diameter. This anthropometric
information [41] provides the details of pupil dilation ratio (dp) in Equation (5) that varies from 12% to
60%, and we use the minimum value in our experiment. Specifically, the iris pixel that is extracted by
CNN belongs to the region whose dp is less than 12% is determined as non-iris pixel (pupil).

4. Experimental Results

4.1. Experimental Data and Environment

In this study, we used the NICE-II training database, which was used for NICE-II competition [42].
The database includes extremely noisy iris data of the UBIRIS.v2. This database contains severely
noisy 1000 image of 171 classes. The size of the image is 400 × 300 pixels. The images of the iris
were acquired from people walking 4–8 m away from a high-resolution visible light camera with
visible light illumination [43]. Therefore, this database includes the difficulties, such as poorly focused,
off-angle, rotated, motion blur, eyelash obstruction, eyelids occlusions, glasses obstructions, irregular
SR, non-uniform lighting reflections, and partial captured iris images as shown in Figure 10.
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In this study, among the total 1000 iris images, 500 iris images are used for training, and the other
500 iris images are used for testing purposes. The average value of two accuracies was measured by
two-fold cross validation. CNN training and testing are performed on a system using Intel® Core™
i7-3770K CPU @ 3.50 GHz (4 cores) with 28 GB of RAM, and NVIDIA GeForce GTX 1070 (1920 Cuda
cores) with graphics memory of 8 GB (NVIDIA, Santa Clara, CA, USA) [44]. The training and testing
are done with Windows Caffe (version 1) [45].

4.2. CNN Training

In our proposed method, we fine-tuned the VGG-face model using 500 iris images for classification
of two classes (iris and non-iris). For two-fold cross validation, we used the first 500 images and the
other 500 images for testing. From the first 500 iris images for training, we have 9.6 million images of
21 × 21 pixels from the iris ROI for training, and in the second training for cross validation, we have
8.9 million images of 21 × 21 pixels from the iris ROI. During the CNN training, stochastic gradient
descent (SGD) is used to minimize the difference between the calculated and desired outputs with the
help of the gradient derivative [46]. The number of the whole training set divided by a mini-batch
size is defined as iteration. The total time taken for the complete training including all the iterations
is set as 1 epoch, and the training was executed several times as per a pre-determined epoch. In this
study, CNN was trained by 10 epochs. For the fine-tuning of VGG-face, the optimum fine-tuning
model was experimentally found based on the optimal parameters of initial learning rate of 0.00005,
the momentum value of 0.9, and the size of the mini-batch of 20. The detailed explanations of these
parameters can be found in the following literature [47]. Figure 11a,b show the curves of average
loss and accuracy with training data in case of two-fold cross validation. Epoch count is represented
on the X-axis, whereas the right Y-axis represents the training accuracy and the left Y-axis shows the
training loss. Depending on the learning rate and mini-batch size, the loss varies. While training, it
is important to reach the minimum training loss (maximum training accuracy); therefore, learning
rate should be decided carefully. The loss value decreased dramatically with a higher value of the
learning rate, which can deteriorate the loss value with reaching to a minimum. In our proposed
method, the finest model in which the training loss curve converges to 0% (training accuracy of 100%)
is used for testing as shown in Figure 11. To have fair comparisons by other researchers, we have made
our trained CNN models publicly available through [33]. Figure 12 shows the examples of trained
filters of 1st convolutional layer of Table 2 in case of two-fold cross validation.
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4.3. Testing of the Proposed CNN-Based Iris Segmentation

The performance of the proposed method for iris segmentation is evaluated based on the metrics
of the NICE-I competition to compare the accuracy with that of the teams participating in NICE-I
competition [48]. As shown in Equation (6), the classification error (Ei) is measured by comparing the
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resultant image (Ii(m′, n′)) by our proposed method and the ground truth image (G(m′, n′)) with help
of the exclusive-OR (XOR) operation.

Ei =
1

m× n ∑
(m′ ,n′)

Ii
(
m′, n′

)
⊗ Gi

(
m′, n′

)
(6)

where m and n are the width and height of the image, respectively. To evaluate the proposed method,
the average segmentation error (E1) is calculated by averaging the classification error rate (Ei) of the
whole images as shown in Equation (7).

E1 =
1
k ∑

i
Ei (7)

where k represents the total number of testing images. E1 varies between [0,1], which denotes that “0”
represents the least error and “1” represents the largest error.

4.3.1. Iris Segmentation Results by the Proposed Method

Figure 13 shows the examples of good segmentation results by our proposed method. In our
experiment, we can consider two types of error, such as false positive and false negative errors.
The former denotes that the non-iris pixel is incorrectly classified into an iris, whereas the latter denotes
that the iris pixel is incorrectly classified into non-iris. In Figure 13, the false positive and false negative
errors are shown in green and red, respectively. The true positive case (iris pixel is correctly classified
into iris one) is shown in black. As shown in Figure 13, our proposed method can correctly segment
the iris region irrespective of various noises in eye image. Figure 14 shows examples of incorrect
segmentation of the iris region by our proposed method. False positive errors occur in the eyelash area
whose pixel values are similar to that of the iris region whereas false negative errors happen in case of
the reflection noises from glasses surface or severely dark iris area.
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Figure 13. Examples of good segmentation results by our proposed method. (a,c) segmentation results
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in green and red, respectively. The true positive case (iris pixel is correctly classified into iris one) is
shown in black).
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Figure 14. Examples of incorrect segmentation of the iris region by our proposed method. (a) Original
input images; (b) segmentation results with corresponding Ei; (c) ground truth images (the false
positive and false negative errors are shown in green and red, respectively. The true positive case
(iris pixel is correctly classified into iris one) is shown in black).

4.3.2. Comparison of the Proposed Method with Previous Methods

In Table 3, we show the comparisons of the proposed method with previous methods based on
E1 of Equation (7). As shown in these results, our method outperforms the previous methods in iris
segmentation error.

In addition, we compared the results by support vector machine (SVM) with those by our CNN.
For fair comparison, we used the same training and testing data (obtained from the stage 1 of Figure 1)
of two-fold cross validation for both SVM and CNN. From the two-fold cross validation, we obtained
the average value of E1 of Equation (7). As shown Table 3, E1 by proposed method (using CNN for the
stage 2 of Figure 1) is lower than that by SVM-based method (using SVM for the stage 2 of Figure 1),
from which we can confirm that our proposed CNN-based method is better than traditional machine
learning method of SVM. The reason why the error by CNN-based method is lower than that by
SVM-based method is that optimal features by optimal filters can be extracted by the 13 convolutional
layers (Table 2) of our CNN compared to SVM.

The goal of our research is to detect the accurate positions of iris pixels based on pixel-level labels.
For this purpose, we can consider fast R-CNN [49] or faster R-CNN [50], but only the area of square box
shape (based on box-level labels) can be detected by these method [49,50]. Therefore, in order to detect
the accurate positions of all the iris pixels (not square box-level, but pixel-level), we should consider
the different type of CNN such as semantic segmentation network (SSN) [51,52]. By using this SSN,
the accurate positions of all the iris pixels can be obtained. In details, for SSN, whole image (instead
of the mask of 21 × 21 pixels extracted from the stage 1 of Figure 1) was used as input without the
stage 1 of Figure 1. For fair comparison, we used the same training and testing images (from which the
mask of 21 × 21 pixels were extracted for our method) for the SSN. From the two-fold cross validation,
we obtained the average value of E1 of Equation (7). As shown Table 3, E1 by proposed method (using
CNN for the stage 2 of Figure 1) is lower than that by SSN-based method (using SSN for the stages
1 and 2 of Figure 1), from which we can confirm that our proposed method is better than SSN-based
method. The reason why the error by SSN-based method is higher than that by our method is that the
classification complexity of iris and non-iris pixels is increased by applying the SSN to whole image
instead of the ROI detected by the stage 1 of Figure 1.

Table 3. Comparison of the proposed method with previous methods using NICE-II dataset.

Method E1

Luengo-Oroz et al. [53]
(8th rank in NICE-I competition) 0.0305

Labati et al. [54]
(7th rank in NICE-I competition) 0.0301

Chen et al. [55]
(6th rank in NICE-I competition) 0.029

Jeong et al. [18]
(5th rank in NICE-I competition) 0.028
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Table 3. Cont.

Method E1

Peihua et al. [56]
(4th rank in NICE-I competition) 0.022

Tan et al. [57] 0.019

Proença [58] 0.0187

de Almeida [59]
(3rd rank in NICE-I competition) 0.0180

Tan et al. [60] 0.0172

Sankowski et al. [61]
(2nd rank in NICE-I competition) 0.016

Tan et al. [19]
(1st rank in NICE-I competition) 0.0131

Haindl et al [62] 0.0124

Zhao et al. [16] 0.0121

SSN-based method [51,52] 0.02816

Proposed method
(Using SVM for the stage 2 of Figure 1) 0.03852

Proposed method
(Using CNN for the stage 2 of Figure 1) 0.0082

4.3.3. Iris Segmentation Error with Another Open Database

We performed additional experiments with other open database of the mobile iris challenge
evaluation (MICHE) data [63,64]. There are various databases of the CASIA datasets and iris challenge
evaluation (ICE) datasets. The goal of this study is to obtain correct iris segmentation with the iris
image captured by the visible light environment. However, very few open iris databases by visible
light environment exist, and we used the MICHE datasets for this reason. They were collected by three
mobile phones, such as iPhone 5, Galaxy Samsung IV, and Galaxy Tablet II in both indoor and outdoor
environments. The ground truth images are not provided; therefore, among the whole images, we used
the images where the ground truth iris regions can be obtained by their provided algorithm [56,58]
according to the instruction of MICHE. Same procedure of two-fold cross validation was also used for
the MICHE data as that for NICE-II dataset.

Figures 15 and 16 show the examples of good segmentation and incorrect segmentations by our
proposed method, respectively. Like Figures 13 and 14, the false positive and false negative errors
are shown in green and red, respectively. The true positive case (iris pixel is correctly classified into
iris one) is shown in black. As shown in Figure 15, our method can correctly segment the iris region
with the images captured by various cameras and environment. As shown in Figure 16, the false
positive errors are caused by the eyelid region whose pixel values are similar to those of iris region.
On the other hand, false negative errors happen in case of the reflection noises from glasses surface or
environmental sunlight.

Symmetry 2017, 9, 263 19 of 25 

Peihua et al. [56] 

(4th rank in NICE-I competition) 
0.022 

Tan et al. [57] 0.019 

Proença [58] 0.0187 

de Almeida [59] 

(3rd rank in NICE-I competition) 
0.0180 

Tan et al. [60] 0.0172 

Sankowski et al. [61] 

(2nd rank in NICE-I competition) 
0.016 

Tan et al. [19] 

(1st rank in NICE-I competition) 
0.0131 

Haindl et al [62] 0.0124 

Zhao et al. [16] 0.0121 

SSN-based method [51,52] 0.02816 

Proposed method 

(Using SVM for the stage 2 of Figure 1) 
0.03852 

Proposed method 

(Using CNN for the stage 2 of Figure 1) 
0.0082 

4.3.3. Iris Segmentation Error with Another Open Database 

We performed additional experiments with other open database of the mobile iris challenge 

evaluation (MICHE) data [63,64]. There are various databases of the CASIA datasets and iris 

challenge evaluation (ICE) datasets. The goal of this study is to obtain correct iris segmentation with 

the iris image captured by the visible light environment. However, very few open iris databases by 

visible light environment exist, and we used the MICHE datasets for this reason. They were collected 

by three mobile phones, such as iPhone 5, Galaxy Samsung IV, and Galaxy Tablet II in both indoor 

and outdoor environments. The ground truth images are not provided; therefore, among the whole 

images, we used the images where the ground truth iris regions can be obtained by their provided 

algorithm [56,58] according to the instruction of MICHE. Same procedure of two-fold cross validation 

was also used for the MICHE data as that for NICE-II dataset. 

Figures 15 and 16 show the examples of good segmentation and incorrect segmentations by our 

proposed method, respectively. Like Figures 13 and 14, the false positive and false negative errors 

are shown in green and red, respectively. The true positive case (iris pixel is correctly classified into 

iris one) is shown in black. As shown in Figure 15, our method can correctly segment the iris region 

with the images captured by various cameras and environment. As shown in Figure 16, the false 

positive errors are caused by the eyelid region whose pixel values are similar to those of iris region. 

On the other hand, false negative errors happen in case of the reflection noises from glasses surface 

Figure 15. Cont.



Symmetry 2017, 9, 263 20 of 25

Symmetry 2017, 9, 263  20 of 25 

 

 

 
(a) (b) (c) (d) 

Figure 15. Examples of good segmentation results by our method. (a) And (c) segmentation results 

with corresponding 𝐸𝑖 . (b) and (d) ground truth images (the false positive and false negative errors 

are shown in green and red, respectively. The true positive case (iris pixel is correctly classified into 

iris one) is shown in black). 

Figure 15. Examples of good segmentation results by our method. (a) And (c) segmentation results
with corresponding Ei. (b) and (d) ground truth images (the false positive and false negative errors are
shown in green and red, respectively. The true positive case (iris pixel is correctly classified into iris
one) is shown in black).
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Figure 16. Examples of incorrect segmentation of the iris region by our method. (a) Original input
images; (b) segmentation results with corresponding Ei; (c) ground truth images (The false positive
and false negative errors are shown in green and red, respectively. The true positive case (iris pixel is
correctly classified into iris one) is shown in black).

In the next experiments, we compared the error of the iris segmentation by our proposed method
with that by previous methods in terms of E1 of Equation (7). As shown in these results of Table 4,
our proposed method outperforms the previous methods in iris segmentation error.

Table 4. Comparison of the proposed method with previous methods using MICHE dataset.

Method E1

Hu et al. [65]
Sub-dataset by iPhone 5 0.0193

0.0193
Sub-dataset by Galaxy Samsung IV 0.0192

Proposed method

Sub-dataset by iPhone 5 0.00368
0.00345Sub-dataset by Galaxy Samsung IV 0.00297

Sub-dataset by Galaxy Tablet II 0.00352

5. Conclusions

In this study, we proposed a robust two-stage CNN-based method, which can find the true iris
boundary within noisy iris images in a non-cooperative environment. In the first stage, a rough iris
boundary is found via modified circular HT, which defines the ROI by the slightly increased radius of
the iris. In the second stage, CNN is applied by VGG-face fine-tuning to the data obtained from the
ROI. The CNN output layer provides two output features. Therefore, based on these features, the iris
and non-iris points are classified to find the true iris boundary. Experiments with NICE-II and MICHE
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databases show that the proposed method achieved higher accuracies of iris segmentation compared
to the state-of-the-art methods.

Although our method shows the high accuracy of iris segmentation, the traditional image
processing algorithms should be used in the stage 1 of Figure 1. In addition, it is necessary to
reduce the processing time for CNN-based classification with the window masks extracted from the
stage 1. To solve these problems, we can consider the other type of CNN such as semantic segmentation
network (SSN) which can use whole image as input (without the stages 1 and 2 of Figure 1). However,
as shown in Table 3, its performance is lower than proposed method. As future work, we would
research the method of using this SSN with appropriate post-processing so as to get high accuracy and
fast processing speed. In addition, we would apply our proposed method to various iris datasets in
NIR light environments, or other biometrics, such as vein segmentation for finger-vein recognition or
human body segmentation in thermal image.
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