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Abstract: Images are an important medium to represent meaningful information. It may be difficult
for computer vision techniques and humans to extract valuable information from images with
low illumination. Currently, the enhancement of low-quality images is a challenging task in the
domain of image processing and computer graphics. Although there are many algorithms for image
enhancement, the existing techniques often produce defective results with respect to the portions of
the image with intense or normal illumination, and such techniques also inevitably degrade certain
visual artifacts of the image. The model use for image enhancement must perform the following
tasks: preserving details, improving contrast, color correction, and noise suppression. In this paper,
we have proposed a framework based on a camera response and weighted least squares strategies.
First, the image exposure is adjusted using brightness transformation to obtain the correct model
for the camera response, and an illumination estimation approach is used to extract a ratio map.
Then, the proposed model adjusts every pixel according to the calculated exposure map and Retinex
theory. Additionally, a dehazing algorithm is used to remove haze and improve the contrast of the
image. The color constancy parameters set the true color for images of low to average quality. Finally,
a details enhancement approach preserves the naturalness and extracts more details to enhance
the visual quality of the image. The experimental evidence and a comparison with several, recent
state-of-the-art algorithms demonstrated that our designed framework is effective and can efficiently
enhance low-light images.

Keywords: image enhancement; color constancy; Retinex theory; naturalness preservation; camera
response framework; low illumination

1. Introduction

In daily life, people receive information from images, music, videos, etc., and the human brain
is capable of effectively processing such visual information. In the modern age of smart phones in
which social media is so popular, many people have become interested in capturing and sharing
photos. The photos captured on professional or mobile phone cameras are impacted by various
weather conditions, which influence the image quality. Thus, the important contents of an image
are not always clearly visible. The conditions that most often lead to the degradation of such image
quality include bad weather, low illumination, and moving objects, among many others. The influence
of such conditions on the image quality can make it difficult for the human eye to clearly identify
the contents of the image. Images with clear visibility tend to depict more details, and the useful

Symmetry 2018, 10, 718; doi:10.3390/sym10120718 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8233-567X
https://orcid.org/0000-0002-7679-0980
https://orcid.org/0000-0003-2975-4976
https://orcid.org/0000-0003-2422-575X
https://orcid.org/0000-0002-2839-4289
http://www.mdpi.com/2073-8994/10/12/718?type=check_update&version=1
http://dx.doi.org/10.3390/sym10120718
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 718 2 of 15

contents of the image can be more easily identified. Enhancement techniques are often used to make
the hidden content of images visible, and they aim to facilitate the usability of valuable information for
human and computers alike [1]. Thus, image enhancement is one of the fundamental research topics
in image processing. To remove darkness and extract meaningful contents are very important tasks in
applications such as medical imaging [2], object tracking [3], face detection [4], facial attractiveness [5],
and object detection [6]. Therefore, such enhancement techniques play an important role in many
fields. For this purpose, many different approaches have been designed. These algorithms deal with
different aspects of image quality, such as dark areas, noise, light distortion, texture details, color, etc.
Indeed, the process of removing dark areas improves image quality. However, the models used to
enhance low-light images should not only remove the darkness from images, but also preserve the
important contents of the image with good efficiency [7]. Images can be degraded as a result of several
different conditions, and it is not enough to correct only one of the factors that lowers the image quality.
For example, a technique that is used to improve the brightness or contrast of an image may not be
well-suited for images that have high saturated portions. Thus, many important factors need to be
addressed when applying image enhancement algorithms.

The existing image enhancement algorithms can be divided into two broad categories: local and
global. Regardless of the spatial distribution of the pixels, global image enhancement affects all of
an image’s pixels, while local enhancement considers the spatial distribution of an image’s pixels.
To remove dark areas from low-light images is one of the simplest and most intuitive approaches.
However, this approach may create problems when a portion of an image is too bright or too heavily
saturated, causing the image to lose meaningful details. To solve this problem, several enhancement
techniques have been used for high intensity transformations, such as logarithms [8], the power law
equation [9], and gamma functions [10]. Histogram equalization (HE) is another simple and widely
used method of avoiding saturation [11]. Furthermore, several algorithms have built upon the HE
method and tuned some parameters to preserve the contrast [12] and brightness [13] of an image.
Nevertheless, some portions of local details might be lost while using global processing, because this
method cannot be used on all the local portions. Using spatial distribution to take pixels and then
apply HE locally by using a strategy of sliding window can lead to better results. The most widely
used method in image enhancement is Retinex theory (RT) [14], which decomposes color into two
factors (i.e., illumination and reflectance). RT is utilized in many enhancement techniques.

Early techniques based on Retinex (i.e., single-scale Retinex [15] and multi-scale Retinex [16])
considered the final enhanced result of reflectance, which usually appears under- or over-enhanced.
Recently, the proposed technique in [17] achieved good results by inverting images in a photometric
negative form and then performing an optimized dehazing technique. The recent model presented
in [18] has been used for illumination estimation and simultaneous reflectance. The method enhanced
the target images by processing the illumination along with the estimated reflectance. This is the
simplest way to estimate the illumination of the target images and to enhance it to make visible the
hidden contents of an image. To preserve naturalness and deal with other visual artifacts, such as
unbalanced light, dark areas, haze, dark lighting of one side, and nighttime images (e.g., Figure 1),
are challenging tasks.

In this paper, a smart framework has been designed to adjust the exposure based on a camera
response model and to remove dark areas based on an estimated illumination map and a Retinex
algorithm. A dehaze algorithm converts the contrast-free image into a photometric negative form and
obtains an enhanced result. Furthermore, gamma transformation controls the intensity and refines
the contrast of the image. Then, the color constancy sets the true and perceptually uniform color
of the image. Finally, the detail manipulation feature enhances the details of the image. Moreover,
the proposed model efficiently minimizes the computational cost to enhance images more quickly
and cost-effectively. This framework is different from past research paradigms because it addresses
important image artifacts such as dark lighting, haze, noise, color, and texture details.
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Contribution: This framework uses a camera response function and Retinex, which remove the
dark lighting by estimating an illumination map. In contrast to the traditional methods based on
Retinex in which an image is decomposed into illumination and reflectance, our method estimates
only the illumination of the image, which reduces the computational cost. To improve the contrast and
remove haze, a dehazing and intensity transformation technique is utilized. Moreover, color constancy
sets the true color for images based on the idea that the distribution of the color derivatives reflects the
variation in the direction of the light source. Thus, the average of the color derivatives is measured to
estimate the direction of the lighting. The detail manipulation sharpens the textural contents, and the
weighted least squares method, exposure, and boosting factors are used to enhance the details of the
image at different levels.
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Figure 1. Various conditions that negatively affect image quality, such as (a) bad weather; (b) dark
light; (c) one side with darkness and one side with normal contrast; and (d) haze or fog.

The remaining sections of the paper are organized as follows: Section 2 briefly provides a literature
review of low-light image processing. Section 3 shows a step-by-step explanation of the proposed
framework. The validation of the proposed model is shown in Section 4, and Section 5 is the conclusion.

2. Literature Review

Image enhancement is an important tool in image and signal processing, and also a broad category
that encompasses individual tasks, such as color enhancement [19], contrast enhancement [9], detail
enhancement [20], and composition enhancement [21]. To understand the evolution of the field of
research, we begin with the famous Retinex Theory (RT), which is part of most enhancement algorithms.
The fundamental idea behind RT is the decomposition of the image into a reflectance and illumination
map [14], where reflectance is treated as the final enhanced result, but sometimes this model alters
the color of the image or produces an over-enhanced result. Furthermore, the RT has been used by
other enhancement models [22,23] with slight changes to the traditional parameters to achieve better
results. For instance, Gao et al. [1] proposed the LIME model based on RT. This model individually
estimated the illumination for each pixel and found the total maximum value in the three channels of
the image. Although, the model efficiency and results were good, the gamma correction required a
non-linear operation to resize and adjust the enhanced illumination map. The extra post-processing
steps reduced the strength of the model, and the enhanced results often suffered from color distortion.

The classical problems of image processing (i.e., image decomposition) also arise in enhancement
tasks. In reference [18], a weighted variational model was used to estimate illumination and reflectance.
The computational complexity of this method was slightly high, because it simultaneously performed
operations in two channels. Dong et al. [17] also used an interesting method to enhance images. First,
the images were converted into a photometric negative state, which looked similar to hazy images,
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and then, a dehazing model was used to achieve the final enhanced results. Later, Song et al. [24]
improved upon this model and solved an issue relating to blocking artifacts. This model worked well,
but to some extent, it lacked a physical aspect. The camera response function has also been used for
variety of different tasks [25,26]. The framework used in [27] was the first to borrow illumination
for image fusion to obtain the weight matrix and set the final exposure ratio to be underexposed.
This model, however, has a limited ability to improve images in which one area is over-enhanced.
In this case, the over-enhanced area becomes more enhanced, resulting in the loss of important details.

The method in [28] enhanced the contrast in nighttime images by using the concept of lab color
space. Then, the model in [29] enhanced images based on histogram and fuzzy-logic. In that model,
the histogram value of an image was calculated, finding the average value of the intensity. To obtain
chromatic details, the RGB image was decomposed for HSV. The model achieved good results at a
reduced computational cost. However, important details were lost while applying this algorithm,
when part of the image had too much contrast and the other parts had less contrast. Hao et al. [30]
proposed a simple model to estimate illumination and applied a guided filter to divide textural
patterns in a refined illumination map. The technique was related to low-light illumination map
estimation LIME [1], but the illumination estimation was a bit different in both strategies, and one of
the big limitations of this technique was that the constancy of true color of the finished images still
needed to be enhanced. Guo et al. [31] presented a model to enhance the color quality of images and
highlighted the contrast of dark areas according to the characteristics of human vision and logarithm
transformation. Additionally, gamma transformation was used to enhance the contrast of an image.
As a result, this algorithm achieved improved color restoration results.

A wavelet-based algorithm was proposed in [32] for color enhancement. The use of the
Euler–Lagrange formula worked in conjunction with wavelets to find detail coefficients. The method
removed the color cast from both over- and underexposed images. Such light distortion is often found
in images where the light environment is very complex. The strategy was used to combine different
existing algorithms to [33] enhance images that have poor illumination conditions. After estimating the
weak illumination, the final enhanced result was obtained by combining multiple results with the help
of a multi-scale pyramid. The algorithm worked well and performed multiple tasks, such as nighttime,
backlighting, and non-uniform illumination. The limitation of this model was that some visual artifacts
still needed to be addressed, such as color and noise. Thus, the image enhancement schemes adopted
different ways of achieving the target results. Based on the aforementioned comprehensive concepts,
we designed a smart system for image enhancement to solve multiple complex issues at once.

3. Proposed Framework

Images that are badly affected by different illumination conditions are still challenging tasks.
The proposed framework handles several conditions and preserve the image quality. The steps
are follows:

3.1. Camera Response Model

In our proposed framework, the initial step was to remove the low-light portion from images
using a camera response model (CRM) technique, as shown in Figure 2. This model can be divided into
two parts: the bright transform function (BTF) and the camera response function (CRF). The parameters
for the CRF are determined by the camera, and those for the BTF are determined by the exposure ratio.
In general, a camera uses non-linear functions, such as de-mosaicking and white balance to improve
the overall visual quality of an image. The non-linear function is used as shown in Equation (1):

P = f (Le) (1)
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where P represents the pixel value and Le is the irradiance of the image. To transform the brightness,
a mapping function was applied to two images (Px and Py) as shown in Equation (2). The images were
slightly different in terms of the level of exposure, as shown in Equation (2):

Px = b(Py, e) (2)

where b is the BTF, and e represents the exposure ratio. The CRF equation can be easily derived using
Equations (1) and (2) as follows:

b( f (Le), e) = f (e.Le) (3)

Pi = b(P, Eval) (4)

To remove the dark areas from an image, Equation (4) further extends the exposure ratio to Eval
and b. As shown in Equation (4), Pi and P are the input and the output images. Furthermore, RT is
utilized to get the exposure ratio, and we can put the values into a non-linear function by inputting RT
into Equation (5) as follows:

Le = RT (5)

where the Le is the irradiance of the image, R is the reflectance, and T is the illumination map. Thus,
we can get the desired input and output image from Equation (5) and then plug the RT values into
Equation (6).

Px = f (Le), Py = f (R) (6)

The relation of e and T can be derived using a combination of Equations (2) and (5). It is the most
efficient way to collect the dark areas of an image in large ratio and the bright portions in small ratio.
Additionally, the RT equation is used to show the exposure Kval, and it is derived by estimating T using
Equations (7) and (8).

Py = f (R)
Eq.5→ f (Le.(1/T)

Eq.3→ b( f (Le), 1/T) = b(Px, 1/T)
(7)

Eval = 1/T (8)
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Two images from same scene have been taken to calculate b for the BTF, but the exposure should
not be the same, as shown in Equation (2). Therefore, the two parameters for the BTF are modeled
as follows:

Px = b(Py, e) = βPy
λ (9)

The parameters β, γ for the BTF in Equation (9). also have a relationship with the exposure ratio
(b). It has been observed from Equation (9) that the color channels almost have equal model parameters.
The basic reason behind this is that the response curves for the different channels of the images are
usually the same for most general cameras. To obtain the CRF model and find the relationship between
β, γ, we need to plug in b = β f γ from Equation (3) into Equation (10).

f (e.Le) = β f (Le)
γ (10)

In Equation (10), the f closed-form, which was derived in [34], is used as given below:

f (L) = eb(1−Le), i f γ 6= 1 (11)

f (L) = Lc, i f γ = 1 (12)

a = logk γ, b =
ln β

1− γ
(13)

c = logk β (14)

With the condition γ 6= 1, a, b are model parameters, while for γ = 1, c is considered to be a
model parameter. Additionally, the above parameters and the estimation of the exposure ratio is
important for final equation to enhance each pixel in the low-light image. For this purpose, we need to
use Equation (8) to estimate the illumination map. As the exposure ratio and illumination map are
inversely proportional, we must first solve T and then Eval . The estimation process is the same as in [1],
but it is slightly different with respect to the weighted matrix. We consider the light component for the
initial estimation for every individual pixel x and weighted matrix as follows:

Lx = maxPκ(x)κ ∈ {R, G, B} (15)

Wm(x) =
1∣∣∣∑y∈w(x)∇dL(y)

∣∣∣+ ε

d∈{c,r} (16)

where w(x) is the local window, which applies to pixel x, and ε is used to prevent a zero denominator.
The filter ∇d takes ∇v (vertical) and ∇h (horizontal). This optimization technique solves T for the
illumination map as shown below:

MinT = ∑
x

(T(x)− L(y))2 + λ ∑
d∈{h,v}

wd(x)(∇dT(x))2

|∇dL(x)|+ ε

 (17)

3.2. Dehazing and Intensity Transformation

While discussing the enhancement of the dark areas, one cannot ignore the issue of haze or
fog. The dehazing algorithm is applied to remove haze and improve the overall contrast. First,
the contrast-free images are converted into a photometric negative form and treated as hazy images,
as shown in Figure 2. These inverted images are further enhanced by the dehazing algorithm and then
inverted back to obtain the enhanced results. The images are inverted using Equation (18):

Rc(x) = Vr − Pc(x) (18)
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where c is the RGB color channel. Pc(x) is the color channel intensity of the input image pixel, and
Rc(x) is the inverted image intensity. We utilized the algorithm in [35] to estimate the emitted light
t(x) as follows:

t(x) = 1−ω min
c∈{r,g,b}

( min
y∈Ω(x)

(
Rc(y)

Ac )) (19)

where Rc is the intensity of the pixel, Ac is the global atmosphere, and t(x) represents the emitted light
from the scene. To estimate t(x), we first selected 100 pixels of minimum intensities in RGB. Then,
among all these pixels, we picked a single pixel whose highest value was the sum of the three channels
(RGB). The RGB pixel values can be used for A; therefore, according to the dehazing model in [35],
we can recover the intensity of original scene, as shown in Equation (20):

J(x) =
R(x)− A

t(x)
+ A (20)

After dehazing, the intensity transformation is used in the spatial domain (i.e., Gamma
transformation). This simple technique either darkens or brightens the intensity on the basis of
the gamma values. In the case of a heavily saturated image, where the CRM makes the image brighter,
the power law equation is utilized to preserve the contrast and brightness of the image.

3.3. Color Constancy

The color of the image is a very important factor to handle in enhancement schemes. The algorithm
we use for color constancy sets true color for the input images. The Minkowski norm [36] is utilized for
color constancy. The technique is based on the idea that the distribution of the color derivatives shows
the largest variation in the direction of the light source. To estimate this direction, the average of these
derivatives is taken. This technique is applied to the visible contents to determine the true color of an
image. The goal is to achieve the correct color, evaluate the light source chromaticity, and then set the
canonical illumination of an image. The color constancy can be mathematically modeled as follows:

fc(x) =
∫

ω
e(λ, x)s(λ, x)c(λ)dλ (21)

c(λ) = R(λ)G(λ)B(λ) (22)

where fc(x) is the (RGB)T Lambertian surface, ω is the visible spectrum, λ is the wavelength, e(λ, x) is
the light source, s(λ, x) denotes the surface reflectance, and c(λ) is the function for camera sensitivity.
The color constancy is important in an image enhancement model, because color is a significant visual
factor and it should not be ignored.

3.4. Details Enhancement

The final step of the proposed framework is to enhance the details of the image. The weighted
least squares method is used to obtain the final enhanced result with more detail. To preserve the
edges, obtain input image q, seek to achieve improved details, and enhance the image g, the process is
expressed mathematically as follows:

∑
s

(
(gs − qs)

2 + λ

(
ax,s(q)

(
δg
δx

)2

s
+ ay,s(q)

(
δg
δx

)2

s

))
(23)

where s denotes the pixel spatial location and the data term (gs − qs)
2 is used to minimize the distance

between the two images g and q. The second term is a regularity term that can be used to minimize
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partial derivatives, and λ keeps the balance between these two terms. As g, is extracted from q, it is
based on a non-linear operator Fλ that depends on q:

g = Fλ(q) = (I + λLq)
−1q (24)

Although this is a spatially variant operator and it is difficult to examine the frequency
response [37], we focused on the image regions that would not contain meaningful edges. Moreover,
to recover q and the layers of detail, each time the value of λ increased from the initial value λ by factor
c, as shown in Equation (25):

gi+1 = Fci
λ
(q) (25)

Construct decomposition at three levels was used to manipulate the details and the contrast at
different levels of an image. There were two levels for detail d1, d2 and a coarse level b of the CIELAB
channel. The exposure and boosting factors were also used: δ0 is the base level, and δ1, and δ2 were the
layers of detail. The process for manipulating T at every pixel p is shown in Equation (26):

Tp = µ + Sc(δ0, ηbp − µ) + Sc(δ1, d1
p) + Sc(δ2, d2

p) (26)

where Sc denotes the sigmoid curve (i.e., Sc(a, x) = 1/(1 + exp(−ax))), and µ is lightness range
mean. The term in Equation (24), Sc(δ0, ηbp − µ) controls the contrast and exposure of the base layer.
The other terms control the details.

4. Evaluation and Results

This section elaborates on the evidence of several experiments to properly analyze the overall
performance of the proposed framework. Therefore, publicly available datasets (LIME [1], NUS [38],
UAE [39], MEF [40], and VV [41]) were used to check the quality and efficiency of our framework.
The code implementation was done in MATLAB 2016a, and each experiment was properly conducted
on a PC with the following specifications: Windows 10 OS, 2.5 GHz CPU, and 4 GB RAM
(Random-Access Memory). The parameters of the CRM in the proposed framework were fixed
such that ε = 0.001, λ = 1, and the local window size w(x) = 5. In the CRM, we assumed that
information about the camera was not provided, so a = −0.3293, b = 1.1258 was taken to fit with most
camera models. Additionally, the detail manipulation λ was set to 0.3. All the experimental results
were conducted according to the aforementioned parameters. The time-consuming part in the CRM is
the optimization of the illumination map. To improve the efficiency, the pre-conditioned conjugate
gradient ((N)) was used with the CRM. The quantitative and qualitative performance of the proposed
framework was tested with several well-known, state-of-the-art methods, such as DONG [17], Multi
Retinex [42], NPE [43], SRIE [18], LIME [1], BIMEF [44], and LSTWC [45]. It’s clear from the results
that our proposed framework is efficient and preserve the enhanced image quality.

Moreover, the performance and image quality were measured using several non-reference and full
reference quality assessment methods, such as the peak signal-to-noise ratio (PSNR), mean square error
(MSE), visual information fidelity (VIF) [46], visual saliency index (VIS) [47], and Naturalness image
quality evaluator (NIQE) [48]. A visual comparison along with other methods is shown in Figure 3,
and their image quality assessment is shown in Table 1, respectively. The proposed method was
applied to these images, and the quality of these images had been degraded from several conditions
such as fog, poor texture details, color, and noise, as shown in Figure 4.
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Figure 4. A comparison of the results of the handling of several visual artifacts. For example, in the
first row, the sky color, clouds, wall texture, and dark regions were addressed. The haze and color
were treated well in the images given in second row. The texture details, trees, and leaf colors were
enhanced well in the images given in the third, fourth, and fifth rows, respectively.
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Table 1. Result of the quality assessment along with the running time.

Methods PSNR MSE VIF VSI NIQE TIME

BIMEF 11.29358 0.074241 1.07210 0.998304 3.0815 1.179365
NPE 9.132491 0.12211 0.891493 0.96469 2.9666 1.717044
SRIE 12.6508 0.054315 1.20474 0.985432 3.1348 2.765191

LSTWC 11.14675 0.076794 0.91805 0.985332 3.2217 1.14674
LIME 10.21465 0.095178 1.630941 0.979886 2.8744 1.269965
Ours 16.47228 0.028364 2.166639 0.99922 2.6730 1.128813

4.1. Light Distortion

There is a simple way to check the light distortion in images. To measure the quality performance
of the proposed framework, we selected several images from available datasets to find a lightness error
(LOE). Mathematically, it is defined as follows:

LOE =
1
P

P

∑
n=1

Rd(n) (27)

where P denotes the pixel number, and Rd is the difference of the relative order between the input
image and the enhanced image. Further, the equation for Rd can be written as follows:

Rd(n) =
P

∑
y=1

U(L(n), L(y))⊕U(L′(n), L′(y)) (28)

where ⊕ denotes an exclusive operation, and L(n), L′(n) represent the maximum values in RGB at
location n. The U(k, j) function is 1 in the case of k >= j, otherwise the value is 0.

To reduce the running time complexity, down-sampling was required for the images. To measure
the LOE the images were set to 100 × 100, as shown in Table 2 and Figure 5.

Symmetry 2018, 10, x FOR PEER REVIEW  11 of 15 

 

Ours 420 488 423 501 492 337 

Input MSRCR NPE Dong LSTWC BIMEF SRIE LIME Ours  

Figure 5. Lightness distortion visual representation and comparison of the various algorithms. The 

lightness error (LOE) value range is 0–5000. The lower values of the LOE indicate that the images 

were slightly degraded from light distortion, while the higher values of the LOE indicate that heavy 

light distortion occurred in the images. 

4.2. Color Distortion. 

The color checker dataset (NUS [38] and UAE [39]) represents the image captured along with a 

color checker board. To measure the color distortion between the input and the enhanced image, E  

the color difference is defined in the same way as the Euclidean distance of the two colors with respect 

to CIE Lab color space (CIELAB). 

2 2 2

1 2 1 2 1 2( ) ( ) ( )E L L a a b b        (29) 

where 
*L  is lightness, and 

*a , 
*b  are blue-yellow and green-red, respectively. CIELAB is 

designed to be perceptually uniform to human vision. The average of RGB is calculated in the 

enhanced image, and then, each pixel value is mapped in the lab space. Finally, the difference E  

is calculated, and by using this method, we can determine the color distortion. The results are shown 

in Table 3 and Figure 6, respectively. 

Table 3. Comparison of the color distortion on the color checker datasets. 

Dataset MSRCR NPE Dong SRIE LIME LSTWC BIMEF Ours 

UEA 26.93 19.59 21.60 23.70 26.18 20.99 21.23 17.99 

NUS 22.04 19.89 24.51 18.55 27.79 21.55 19.66 16.89 

Input MSRCR NPE Dong LSTWC BIMEF SRIE LIME Ours  

Figure 6. Results of the color distortion; the enhanced result can be zoomed in to clearly see the 

difference. 

4.3. Running Time Comparison 

Figure 5. Lightness distortion visual representation and comparison of the various algorithms.
The lightness error (LOE) value range is 0–5000. The lower values of the LOE indicate that the
images were slightly degraded from light distortion, while the higher values of the LOE indicate that
heavy light distortion occurred in the images.
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Table 2. Result comparison of the light distortion.

Methods NUS UEA VV NPE LIME MEF

MSRCR 3034 1578 2728 1881 1829 1678
NPE 411 689 817 639 1468 1146
Dong 711 1337 848 1021 1239 1057

LSTWC 991 881 1011 994 1189 979
BIMEF 789 754 864 912 790 1021
SRIE 414 657 560 530 819 747
LIME 1428 960 1168 1090 1317 1063
Ours 420 488 423 501 492 337

4.2. Color Distortion

The color checker dataset (NUS [38] and UAE [39]) represents the image captured along with a
color checker board. To measure the color distortion between the input and the enhanced image, ∆E
the color difference is defined in the same way as the Euclidean distance of the two colors with respect
to CIE Lab color space (CIELAB).

∆E =

√
(L1 − L2)

2 + (a1 − a2)
2 + (b1 − b2)

2 (29)

where L∗ is lightness, and a∗, b∗ are blue-yellow and green-red, respectively. CIELAB is designed to
be perceptually uniform to human vision. The average of RGB is calculated in the enhanced image,
and then, each pixel value is mapped in the lab space. Finally, the difference ∆E is calculated, and by
using this method, we can determine the color distortion. The results are shown in Table 3 and
Figure 6, respectively.

Table 3. Comparison of the color distortion on the color checker datasets.

Dataset MSRCR NPE Dong SRIE LIME LSTWC BIMEF Ours

UEA 26.93 19.59 21.60 23.70 26.18 20.99 21.23 17.99
NUS 22.04 19.89 24.51 18.55 27.79 21.55 19.66 16.89
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the difference.

4.3. Running Time Comparison

The quality of a well-enhanced image is important, and the model should also be fast enough to
obtain the desired results in a timely manner. As shown in Figure 7, the proposed method enhances
images quickly as compare with other methods. LSTWC, BIMEF, NPE, and SIRE are a little bit slower
and tend to produce light distortion. Thus, the final enhanced result of these methods is quite good,
but the results still require enhancement of some image aspects.

Furthermore, MSRCR and Dong enhance images with high speed, but they create high light
distortion. LIME achieved visually pleasing results but suffered from light distortion. As we increase
the size of the images, the performance of LIME, and SRIE become more time-consuming. As we
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observed with respect to our proposed framework, the computational cost is not high, and the model
produces quality results, addressing many important visual aspects of an image.
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5. Conclusions and Future Work

To the best of our knowledge, most articles related to image enhancement in the extant literature
have presented traditional approaches, and the findings of these studies have provided few analytical
results with respect to low-light image enhancement. The fundamental problems solved by the
proposed method that have been raised by the current enhancement algorithms are the result of
various factors. In this paper, we proposed an effective and efficient framework to enhance normal and
low-light images. The main purpose of low-light image enhancement is to make visible the important
contents of an image and to preserve the overall image quality. Therefore, enhancement schemes must
enhance images with less distortion and good efficiency. However, the main theoretical contributions
of this paper are as follows: First, the camera parameters and exposure were set to estimate an
illumination map and the Retinex algorithm was utilized to remove dark areas from images. To handle
factor like dense fog and to keep the balance between contrast and brightness, a dehazing algorithm
and an intensity transformation algorithm were used. Furthermore, the color constancy significantly
improved the color appearance, setting the true color of an image. A detail manipulation algorithm was
also added, which was based on the weight least squares method and served to boost the details of the
image to create an enhanced result with better visual quality. The experimental results revealed that the
proposed model performed multiple tasks and it was effective as compared with other state-of-the-art
techniques. The results offered meaningful insights and suggested that low-light image enhancement
can be applied in many vision-based applications (e.g., object recognition, edge detection, feature
matching, image classification, surveillance, and tracking systems).

Moreover, the authors believe that the present study could be expanded for future research.
The limitations are as follows: With respect to images that have been particularly degraded due to
extremely bright and dark portions, the enhancement algorithm over-enhanced the bright portion.
Thus, important details were lost, and the quality of the image was diminished. Apart from this,
the CRM algorithm used fixed parameters for the camera model. Therefore, in the future, researchers
could extend this work and add a deep learning strategy to properly set camera parameter values
according to the individual camera information and scene exposure.
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