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Abstract: We show that probabilities in quantum physics can be derived from permutation-symmetry
and the principle of indifference. We then connect unitary-symmetry to the concept of “time” and
define a thermal time-flow by symmetry breaking. Finally, we discuss the coexistence of quantum
physics and relativity theory by making use of the thermal time-flow.
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1. Introduction

Quantum theory, which originated in the early 20th century, has been defined in its mathematical
structure for decades. Its empirical success has ever since been astounding. And yet, there still is
a vivid debate around the interpretation of the formalism. The mathematical theory seems to be
ontologically underdetermined [1]. Among the key issues, the questions range from the nature of the
probabilities, which seem fundamental to the theory, to the notion of “time”. A related question is
the coexistence of quantum physics with relativity theory. We want to show in this paper that the
concept of unitary-symmetry and symmetry-breaking by measurement can be the starting point for
an understanding of these questions. The paper is structured as follows. In Section 2 we will show
that symmetry under permutations of orthogonal states lies at the heart of the Born-rule. In Section 3
we will relate unitary-symmetry to the notion of change and “time” and show that the breaking
of unitary-symmetry, jointly with the probabilities, leads to an empirical time-flow, which we call
thermal time. Finally, in Section 4 we consider space and time and discuss the coexistence of relativity
theory and quantum physics with the help of the thermal time-flow. Of course, unitary symmetry is a
foundational concept of quantum theory far beyond the scope of this paper. This becomes particularly
clear in quantum field theory [2].

2. Probabilities

Every interpretation of quantum physics today needs to introduce probabilities in order to
explain experimental results, which are only available in form of statistics. Independently of quantum
physics, there has for a much longer time been a debate in philosophy what probabilities really
are [3]. Consequently, the various interpretations of quantum physics take different positions
regarding the nature of probabilities. Given the formalism, there are mathematical proofs of the
existence and uniqueness of a corresponding probability measure. The most famous result stems
from Gleason [4]. Aage Bohr and O. Ulfbeck derive the probabilities directly from the symmetries
of the theory [5]. The basis of these results is the axiomatic definition of probability measures. To
rely on these proofs to understand the nature of probability, however, carries a flavor of circularity.
The Bayesian approach is shared by QBism [6] jointly with the many-worlds interpretation [7].
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In these interpretations probabilities are subjective degrees of belief, which allow agents to take
rational decisions. (The intuition can be gained from the “Dutch-book” argument.) While somebody
adopting QBism needs to explain why the world is manifesting itself probabilistically, the many-worlds
interpretation definitely needs to explain why probabilities exist at all. This is not immediately clear,
if all branches of the quantum state are realized [8]. The frequency approach, where ensembles of
physical systems are considered, is the most operative of all, since it represents what experimentalists
do in the lab. It is the underlying probability concept of the Copenhagen interpretation. Since its
definition is based on ensembles, there is the inherent difficulty to interpret a single trial or single event.
Based on the frequency and the Bayesian notion, there are successful derivations of quantum physics
as a probabilistic theory from a few (four or five) axioms [9,10]. Finally, hidden variable theories, like
Bohmian mechanics for instance, rely on the epistemic or ignorance approach to probability. There is a
vast literature on the topic, and this short overview makes no pretense of giving an adequate account
of the discussion. We take another route instead.

There is an understanding of probability, shared by a generation of scientists like Bernoulli,
Leibniz, Laplace and Euler: Due to symmetry, there arises a lack of distinguishability between certain
individual events and properties of a system and hence, by the principle of insufficient reason or
indifference, these events or properties are ex-ante equally probable. This fundamental intuition
creates a link between the world, which embodies some symmetry, and the observer, who responds by
indifference to the resulting inability to distinguish. The principle of indifference, though at first sight
Bayesian, has thus a basis in reality, namely in the symmetry of certain properties. By sharpening an
argument in reference [11], we will show, in a first step, that this view of probability can be discovered
in the formalism of quantum physics

2.1. Quantum Physics

The ansatz for the mathematical theory of quantum physics is to represent a measurable property
of a physical system, called an observable, as a self-adjoint operator AεL

(
Hd
C

)
in the space of linear

operators over a state space Hd
C, which carries the structure of a complex Hilbert space of some

dimension dεN. (We only consider the finite-dimensional case.) The values, which this property can
assume in an experiment, are the corresponding eigenvalues λkεR, k ≤ d, of A. (We assume that
there are d different, non-degenerate eigenvalues.) Quantum theory assigns probabilities to these
eigenvalues, which are then observed in repeated experiments on identically prepared systems. To do
this, states are represented as unit-vectors |ψ〉 ∈ Hd

C, ‖ψ‖ = 1. They can be linearly expanded on the

basis of orthonormal eigenstates of A, {|ek〉}k≤d ⊂ Hd
C, |ψ〉 =

d
∑

k=1
ψk|ek〉, ψkεC . A probability pk is

then assigned to the measurement of eigenvalue λk, k ≤ d, by

pk = |ψk|2. (1)

This assignment is also known as the “Born-rule” [12]. There is another way to represent
states, which is more general. We define the (one-dimensional) orthogonal projection operators

{Πk|Πk = |ek〉〈ek|}k≤d ⊂ L
(

Hd
C

)
, projecting to the eigenspaces of A. Orthogonal projections, Π, are

idempotent and self-adjoint, two properties which define this class of operators:

Π2 = Π, Π = Π∗. (2)

A pure state is a projector $ψ, associated with a unit-vector |ψ〉εHd
C

$ψ = |ψ〉〈ψ| =
d

∑
i,k=1

ψiψ
∗
k |ei〉〈ek|. (3)
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With tr : L2
(

Hd
C

)
→ C denoting the trace-operator and Πk the projector to the eigenspace,

spanned by |ek〉, the Born-rule (1) takes the form

pk = tr
(
$ψΠk

)
. (4)

We can now define the space D of all states to be the convex-hull of the pure states $ψ. Therefore,
a general state $εD is a positive operator of the form

$ = ∑
lεL

ql$ψl , 0 ≤ ql ≤ 1, ∑
lεL

ql = 1. (5)

The numbers ql are empirical probabilities, which reflect ignorance of preparation, for instance.
Elements of D are also called density-operators. The question is whether the probabilities of pure
states $ψ, given by Equations (1) or (4), are any different from those in Equation (5).

As an additional tool, we need the symmetry group U(d) ⊂ L
(

Hd
C

)
, consisting of the isometries

of the Hilbert space Hd
C. The action of the symmetry group on Hd

C leaves the scalar product 〈·|·〉
and physical quantities like average energy and entropy of systems invariant. We now have all the
elements in place to recover the probabilities of pure quantum states.

2.2. Permutation Symmetry

The action of Uε U(d) on Hd
C, | ek〉 → U |ek〉 induces a corresponding action on the projection

operators:
Πk → Π̂k = U−1ΠkU, k ≤ d. (6)

It holds by Equation (2)
Π̂2

k = U−1Π2
kU = U−1ΠkU = Π̂k. (7)

By Equation (2), together with U∗ = U−1, (U∗)∗ = U, it holds that

Π̂∗k = U∗Π∗k
(

U−1
)∗

= U−1Π∗k U = Π̂k. (8)

Therefore, the action maps orthogonal projectors onto themselves. In particular isometries,
which map the set of basis vectors {|ek〉}k≤d onto itself, induce permutations on the set {Πk}k≤d.
On the other hand, for every permutation σεΣ(d) of {Πk}k≤d there exists Uε U(d) such that
U|ek〉 = |eσ(k)〉 and Π̂k = U−1ΠkU = Πσ(k). So the permutation group of the orthogonal projectors is
isomorphic to a sub-group Σ(d) of U(d). Due to the commutative property of addition, there holds for
every pure state $ψ

$ψ =
d

∑
i,k=1

ψiψ
∗
k |ei〉〈ek| =

d

∑
i,k=1

ψσ(i)ψ
∗
σ(k)|eσ(i)〉〈eσ(k)|, σεΣ(d). (9)

Hence pure states are invariant under permutations σεΣ(d) of the set {Πk}k≤d. The same holds a
fortiori for the whole state space D as the convex-hull of the pure states.

2.3. The Born-Rule

Let a state |ψ〉εHd
C be represented by |ψ〉 =

d
∑

k=1
eiϕk

√
mk
N |ek〉, mkεN, ϕkεR, N =

d
∑

k=1
mk [13].

Since the rational numbers Q ⊂ R are a dense subset of the real numbers, this is general enough.
We now perform, as done in [11], a generalized measurement on an ancilla-system, represented by N
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orthogonal states
{
|nε〉HN

C
}

1≤n≤N . For this purpose let M0 = 1, Mk =
k
∑

i=1
mi, k ≥ 1 and define the

set of N operators
{

Π̃lk |Π̃lk =
1√
mk

Πk

}
1 ≤ k ≤ d

Mk−1 ≤ lk ≤ Mk

. It holds:

N

∑
n=1

Π̃nΠ̃∗n =
d

∑
k=1

Mk

∑
lk=Mk−1

Π̃lk Π̃∗lk =
d

∑
k=1

ΠkΠ∗k = l. (10)

Therefore, the operators
{

Π̃lk

}
1 ≤ k ≤ d

Mk−1 ≤ lk ≤ Mk

define a generalized measurement, i.e., a

unitary transformation U, on the combined state |ψ〉⊗ |0〉εHd
C
⊗

HN
C

|ψ〉
⊗
|0〉 U→

d

∑
k=1

Mk

∑
lk=Mk−1

Π̃lk |ψ〉
⊗
|lk〉, (11)

or at the level of density matrices $ψ
⊗ |0〉〈0|εD⊗DN

$ψ

⊗
|0〉〈0| U→

d

∑
k=1

Mk

∑
lk=Mk−1

Π̃lk $ψΠ̃∗lk
⊗
|lk〉〈lk|. (12)

Consequently, a measurement-result can be one of the N states
{

Π̃lk $ψΠ̃∗lk

}
1 ≤ k ≤ d

Mk−1 ≤ lk ≤ Mk

.

By permutation-symmetry of the resolution (12) and the lack of any sufficient reason to do otherwise,
an observer assigns ex-ante to each possible measurement result Π̃lk $ψΠ̃∗lk a probability plk = 1

N .
The observer therefore holds the state

$̃ψ =
d

∑
k=1

Mk

∑
lk=Mk−1

1
N

(
Π̃lk $ψΠ̃∗lk

)
. (13)

By construction

$̃ψ =
N

∑
n=1

1
N

(
Π̃n$ψΠ̃∗n

)
=

d

∑
k=1

Mk

∑
lk=Mk−1

1
N

(
Π̃lk $ψΠ̃∗lk

)
=

d

∑
k=1

mk
N

Πk. (14)

Since by design
d
∑

k=1

mk
N = 1, we have due to the definition of a general state (5) and the choice of

ψk, k ≤ d,

pk =
mk
N

= |ψk|2. (15)

This is the Born-rule (1), (4). Note at this point that, since the elements Π̃lk $ψΠ̃∗lk have no mixed
terms |ei〉〈ek|, i 6= k, the symmetry argument in Section 2.1 holds, even if the symmetry group is
reduced to a connected component UεSU(d) ⊂ U(d), where U|ek〉 = ±|eσ(k)〉.

2.4. Frequencies

The theory so far does only cover single trials. Assume, there exists a pure state $εD and
a complete set of projectors {Πk}k≤d. To find probabilities for a sequence of different outcomes
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k1, . . . , kN , of N trials of an experiment on $ we assume that the state of N-trials $N is given by the
tensor product

$N = $

N−times︷ ︸︸ ︷
⊗ . . .⊗$. (16)

As explained in reference [14], this representation implies the independence of the single trials
and we get

p(k1, . . . kN) = pk1 . . . pkN , (17)

with probabilities
pk = tr($Πk). (18)

So the outcomes of repeated measurements are identically and independently distributed
(i.i.d.). The probability for outcome k to occur nk times, k ≤ d, ∑

k
nk = N, is given by the

multinomial distribution
p(n1, . . . nd) = (N!/n1! . . . nd!)pn1

1 . . . pnd
d . (19)

The individual counting functions nk are binomially distributed and hence E(nk) = Npk. For large
N the averages, nk, of the statistical counting functions approach the expectation values and therefore

nk/N ≈ pk. (20)

The fact that nk → E(nk), N → ∞, is due to the law of large numbers. The frequencies indeed
replicate the probabilities. This is achieved by the independence-assumption for the multi-trial
states $N , NεN, reflected in Equations (17), (19) and (20). All the probabilities involved can be
interpreted classically.

3. The Notion of “Time”

In the above paragraphs we were able to introduce the proabilities of pure quantum states as a
result of unitary symmetry. To achieve this, we made use of the permutations, which form a subgroup
of the symmetry group Σ(d) ⊂ U(d). Where does quantum physics need the full symmetry group?

3.1. Identity and Change

So far we considered quantum physics in a purely static way. There are two fundamental intuitions
about the world, which in combination force us to extend the model. The first one is the intuition of
“identity”. Some physical system can be recognized as being individual and hence as having an identity.
(Of course, quantum physics knows systems, like highly entangled ones or elements of Fock-space,
which lack individuality.) In this paragraph we do not work in the mathematical model of quantum
physics but with abstract functional relations. Let εΛג be an element of the set of individual systems.
We assume that such an individual system is uniquely defined by all its properties (here a “property”
can be anything, which uniquely defines the system) i.e., ג = ,(a)ג where aεA denotes an element of
a set of properties A. So we have a one-to-one correspondence a↔ ג between the set of properties
and the set of individual systems. The second intuition is that a system can have different properties
without losing its identity, i.e., (a)ג = ג

(
b
)

, even if a 6= b. Because of the one-to-one relationship
a↔ ג , this is logically only possible by the introduction of an extra degree of freedom τεT, such that
the map A× T → Λ : (a, τ) 7→ ,a)ג τ) satisfies(

,a)ג τ1) = ג
(

b, τ2

))
∧
(

a 6= b
)
⇒ τ1 6= τ2. (21)

Relation (21) implies that the restriction of the map to fixed τ is one-to-one, whereas the whole
map is not. We call this degree of freedom τεT “time”. “Time” is by construction not on equal footing
with the properties a. At a given τ a system has exactly one set of properties a, which can, however,
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vary with τ without violating identity. This is what we call “change”. Given the above, we can
represent the system ,a)ג τ) simply by a map T → A, τ 7→ aτ , where τ labels the defining properties
a at “time-point” τ. We see that there is a one-to-one correspondence between any two “time-points”
aτ1 ↔ aτ2 in order to preserve identity.

Our arguments have so far been logical by nature, and we now need to come back to the model
of quantum physics, which we introduced in Section 2, and to give the abstract notions a and τ a
representation in the model.

3.2. Dynamics

We have seen that in quantum physics an observable is represented by a self-adjoint operator
AεL

(
Hd
C

)
over the Hilbert space of states |ψε〉Hd

C. A system |ψ〉 is hence uniquely defined by the

set of coefficients
{

cA
i |cA

i εC,
d
∑

i=1
|cA

i |
2
= 1, 1 ≤ i ≤ d

}
of its resolution in the eigenbasis of A. As we

have seen in the first part of the paper, the coefficients have a natural interpretation as probabilities
pi = cA

i
(
cA

i
)∗

= |cA
i |

2. With respect to the basis of a different self-adjoint operator BεL
(

Hd
C

)
, there

is an element UεU(d), such that for the coefficients with respect to B, cB
i εC, 1 ≤ i ≤ d, there holds

cB
i =

d
∑

k=1
UikcA

k . This holds because both operators have an orthonormal eigenbasis and total probability

has to be preserved. So in the terminology of Section 3.1, we can identify the system uniquely by

the vector
→
cA =

(
cA

1 , . . . , cA
d
)
εCd, and the coefficients cA

i εC, i ≤ d, correspond to the properties.
The elements UεU(d) relate the properties and form equivalence-classes of vectors representing the
same system.

The degree of freedom τ is represented by the real numbers tεR. This choice is close to our
intuition of an ordering between time-points “s < t” and of the continuity of “change”. If time is
quantized, then nεZ might be a more appropriate choice, but as we will see, a quantization of some kind
is also implied by the choice of tεR. As noted in Section 3.1, a necessary condition for two different

vectors
→
cA

t1
and

→
cA

t2
to represent the same system is, that there exists a one-to-one correspondence

between the two under preservation of total probability. Hence we are led to the symmetry-group U(d)

and demand that there is U(t2, t1)εU(d) such that
→
cA

t2
= U(t2, t1)

→
cA

t1
. Since we chose the time-parameter

to be continuous tεR, we can think of a curve or trajectory through Cd and write

→
cA

t = U(t)
→
cA

0 , U(0) = l. (22)

Note that the relation
→
cA

t2
= U(t2, t1)

→
cA

t1
is symmetric in time, i.e.,

→
cA

t1
= U∗(t1, t2)

→
cA

t2
.

3.3. Quanta of Time

“Time” was introduced in Section 3.1 to allow variance of properties under preservation of
identity. This is what we called “change”. “Time” is hence a different kind of degree of freedom than
those encoded in the vector

→
c εCd, and we cannot expect that there is an operator, which measures

“time”. (There is an argument of W. Pauli: If T were a self-adjoint time-operator conjugate to H, then
[TH] = i} and the energy spectrum would be unbounded.) In fact, one point t0 of any trajectory can
be fixed arbitrarily; hence, it has the aspect of a gauge, and we can assume that t0 = 0. The duration
∆t = (t− t0) = t, however, is relational and indeed a measure of change. If a system is in the

state
→
ct = U(t)

→
c0, then the probability that a measurement finds it in the state

→
c0 is |〈→ct |

→
c0〉|

2
; hence,

the probability that
→
c0 has undergone change after a time-interval of t is

P(t) = 1− |〈→ct |
→
c0〉|

2
. (23)
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In particular, if
→
ct⊥

→
c0, then P(t) = 1 and there is certain change. By Equation (23) we can predict

the likelihood that an initial state
→
c0 is in a different state

→
ct after time t, if we know the evolution

operator U(t), t ≥ 0. U(t) can be written

U(t) = e−
i
} Ht, t ≥ 0. (24)

HεL
(

Hd
C

)
denotes a self-adjoint operator representing the observable “energy”. (We assume

the operator H to be constant.) So U(t), t ≥ 0 is known, if H is, and the potential for change is
an observable of the system. With E denoting the average energy E = 〈→c0|H|

→
c0〉 and E0 the lowest

eigenvalue of H, it holds by a theorem in reference [15] that the minimum time needed to reach an
orthogonal

→
ct , and hence certain, change, is

tmin =
h

4
(
E− E0

) . (25)

Expression (25) defines a natural time scale by dt′ = 1
tmin

dt. If an evolution is well behaved, like
in a measurement for instance, we may assume that the function P : [0, tmin]→ [0, 1] in Equation (23)
is monotonous. So not only the potential for change but also the time-quantum for certain change
is embodied in the energy operator H. It is in this sense that time in quantum physics is quantized,
and tmin is a “quantum of certainty”. We call theories, in which change is certain for every t > 0,
temporally deterministic.

“Time”, introduced in Section 3.1, is clearly a real and by Equation (21) logically necessary degree
of freedom of any physical system, keeping its identity under change. But does the parameter “tεR”
really represent what we experience as “time”? As mentined before, there is no operator, which could
measure the parameter “t”. In addition “t” is system-dependent, and we never measure the vector

→
ct .

What we measure are elements λεR of the the spectrum σA of an observable A, and by doing so we
break the symmetry (22). In addition, the time-parameter “t” does not distinguish between past and
future, since Equation (23) is invariant under time-reversal t→ −t . We will now show how breaking
the symmetry (22) can lead to a flow, which carries qualities of empirical time.

3.4. Thermal Flow

Assume that an observable is measured on a system
→
c0 = ∑

iεI
ci|ei〉 by an apparatus A with

pointer-states {Ai}iεI such that the joint system after measurement-interaction is represented by
|ψ〉 = ∑

iεI
〈→c0|i〉|i〉, where |i〉 = |ei〉

⊗ |Ai〉 and 〈i|j〉 = δij. If $ = |ψ〉〈ψ| is the corresponding density

matrix, then there is entropy S$ = −tr($log2$), encoded in
→
c0. The reduction to a single outcome

breaks the symmetry (22) and reduces the entropy S$ to zero. By the second law, there is minimally
the equal amount of entropy dissipated to the environment |ε0〉. If the system is in an environmental
heat-bath at temperature T, then there is consequently a (minimal) average dissipation of energy
to the environment of the amount E = S$kBT = EkBTlog2$($), where kB is the Boltzmann constant.
The origin of the dissipation is the erasure of a former, unknown apparatus-system state, a process,
which is irreversible [16]. The induced interaction with the environment can be assumed to leave the
system-apparatus state |ψ〉 invariant

|ε0〉 =∑
iεI
〈→c0|i〉|i〉|ε0〉

Ut
$→ ∑

iεI
〈→c0|i〉|i〉|εi〉 =|ε1〉. (26)

There holds 〈ε0|εi〉 = 0, iεI, and hence 〈ε0|ε1〉 = 0. By Equation (25) there results a time-scale

t$
min =

h
4S$kBT

. (27)
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After t$
min the environment “knows” with certainty that a measurement has happened. Note the

similarity with the thermal time-flow defined in [17], where the flow is introduced in an abstract
operator-algebra. A thermal clock hence divides time into steps of

dτ =
1

t$
min

dt =
4kBTS$

h
dt. (28)

The thermal flow is still system-dependent, but it has an implicit direction due to the irreversibility
of its origin, namely erasure. Of course, since we fall back to quantum theory to develop Equation (27),
we cannot expect an explicit asymmetry. There is again no direct measurement of thermal-time in the
sense of observables. It can in principle be measured, if the | εi〉, iεI, are pointer-like states. This way
the environment serves as a clock. The thermal flow is fuelled by the entropy of a system and the
thermal energy of the heat-bath. The system-dependence is not an obstacle, since we can gauge
two clocks, which evolve with time-parameters τ1 and τ2, say, by demanding them to march in step.
This means that there is αεR, α > 0, such that

dτ1 = αdτ2. (29)

So any physical system, whose evolution develops linearly (α > 0) with a thermal flow, can be
called a thermal clock. If we set α = 1

S$
we have

dτ =
α

t$
min

dt =
4kBT

h
dt. (30)

In this sense there exists a universal thermal clock. Gauging the universal thermal clock with
other clocks, like oscillating photons for instance, leads to various interesting results in the geometry
of space-time, in particular to the derivation of Einstein’s equations. Related work can be found in
references [18,19].

We do not know for sure whether unitary symmetry-breaking and the corresponding thermal
time-flow are ontological or merely perspectival. A deeper discussion is found in, e.g., reference [20].
In this paper we treat it as a fact, which offers an explanation as to why empirical time is directed.
This has the further consequence that, along the Feynman–Stückelberg interpretation, anti-matter
cannot last in empirical space-time. The mechanism in Section 3.4 also offers an interpretation of the
Big Bang. The first collapse in a coherent universe was the beginning of empirical time and must have
caused en enormous energy dissipation, if we assume that the average energy per bit of information
T = ∂E

∂S was very large. Yet, our theories of nature are only aware of a symmetric time parameter.
We want to dicuss in the next paragraph to what degree these theories can coexist with the intuition of
empirical time and the thermal flow.

4. Space-Time

Let the observable AεL(HC) be “position in physical space”. The corresponding vectors
→
cx, xεR3,

representing a single quantum system, are no longer elements of a finite-dimensional but of an
infinite-dimensional Hilbert space

→
cxεL2

C
(
R3). Quantum physics does not describe “change”

→
ct(x)

directly in physical space, and the time-parameter, with respect to which it is symmetric, does not
reflect the empirical time of a dynamically developing “present”. It is, however, able to give an account
of this experience by collapse and the corresponding erasure of a former “present”. This process
induces the thermal time-flow (26). The theories, which describe change directly in physical space, are
the classical ones, including relativity theory. But they also are invariant with respect to time-reversal.
In addition, there is a sort of incompatibility between the notion of collapse and relativity, since a
collapse allows the definition of a preferred reference frame. In summary we are left with the following
situation: Either our theories of nature live outside of empirical space-time, like quantum physics, or
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they live in empirical space, are deterministic and their time-parameter lives outside empirical time.
In addition, the way that quantum physics offers to reconstruct our empirical space-time seems at
odds with relativity. It looks as if theory and experience of space and time live in different “worlds”,
and our narratives sometimes confuse them.

4.1. Speed of Light

Special relativity is a classical theory, where change of position is temporally deterministic.
It is characterized by two “axioms”: (1) The independence of the speed of light in vacuum with
respect to inertial frames; (2) The covariance of all physical laws with respect to the respective
symmetry-transformations, the elements of the Lorentz group. If we characterize the speed of light,
c, locally as the maximum possible velocity of any freely moving physical system |ψ〉, it must be
invariant with respect to relative motion. Since change is temporally deterministic, relation (25)
suggests that there can be no instantaneous change of position. Therefore, if a system “moves” a
distance d, then we have for its average velocity ν|ψ〉 ≤ d

tmin
< ∞. This fits well into Newtonian

physics, where velocities are finite but can still be arbitrarily large. We have to explain why it holds
ν|ψ〉 ≤ c. The concept of thermal time allows us to sketch a possible solution. Assume that we are in
an expanding de-Sitter universe with a cosmic horizon at radius R∞ from an inertial observer. With a∞

denoting the acceleration of the horizon and H0 the Hubble constant, it holds

a∞ = cH0 =
c2

R∞
. (31)

An inertial observer measures thermal radiation of temperature T∞ [21], which allows the
definition of a thermal flow. By Equation (30), we get for the average velocity of any physical system,
locally “moving” over a distance d,

ν|ψ〉 ≤
d

tmin
=

4kBT∞d
h

. (32)

For the Unruh-de-Sitter temperature T∞ = }a∞
2πkBc we have by Equation (31)

T∞ =
}a∞

2πkBc
=

}H0

2πkB
. (33)

Since H0 = c
R∞

and d∞ = π
2 R∞, Equation (32) turns into

ν|ψ〉 ≤
4kBT∞d

h
=

4kB
h
· }c
2πkB

· πd
2d∞

≤ c. (34)

Measuring time by the quanta of the thermal clock of an expanding de-Sitter vacuum locally
limits average velocities of material systems. It is natural to expect a model of empirical time to play a
role in an explanation of the limit (34), since we measure the speed of light by experiments in empirical
space-time, after all. So the first postulate of relativity coexists consistently with quantum physics and
empirical space-time. The situation with covariance turns out to be more intricate.

4.2. Covariance

If probabilities are to be independent of inertial reference frames, then the probabilities of two
space-like separated measurements have to be independent of their time-order. Let us consider the
probabilities of two spin-measurements A, Bε{±1} on a pair of entangled photons in freely chosen
directions a, b. We denote the outcomes by A = (A, a) and B = (B, b). In the sequel we follow an
argument in references [22,23], and the formulation is independent of the details of quantum theory.
Assume that the measurement A happens before B and that there is no influence from the future, what
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we call no “retrocausality”. (The notion of “causation” is intricate and we use the word simply to
express the independence of correlations from future events.) This means that events in the future,
in particular B, have no impact on the probabilities of A. Denote by λA all the variables, which
could otherwise influence A independently of a. Since A happens first, and there is no retrocausality,
we have

PA(A|a, B, b, λA) = PA(A|a, λA). (35)

The analogous conclusion holds for a reference frame, where B happens before A

PB(B|b, A, a, λB) = PB(B|b, λB). (36)

Independence of PA/B of time order together with Equation (35), Equation (36) and λ = λA ∪ λB ,
define a Bell-local model

P(AB|a, b, λ) = PA(A|B, a, b, λ)·PB(B|a, b, λ) = PA(A|a, λ)·PB(B|b, λ). (37)

Such models contradict quantum physics theoretically [24] and experimentally [25]. As a
consequence, there are either preferential reference frames, contrary to relativity, or we have to
drop the assumption of no retrocausality. There has been renewed interest in the question of
retrocausality [26–28], and its existence seems, not least given the above result, a sensible way within
a realist interpretation of quantum physics to avoid serious tension with relativity. (There are other
possibilities, like renouncing the causal Markov property, which prevents the first factorization in
Equation (37), or assuming a kind of gigantic conspiracy, which prevents the free setting of a and b.
We could also think of the two entangled photons in three space-dimensions as of one in six dimensions
and thus overcome non-locality. In case we do not attest to any of the notions in quantum physics
to represent something real and take a purely epistemic view instead, then the above arguments are
obsolete.) It is, however, evident that the picture of empirical space-time, which we introduced in
Section 3.4, where the “present” dynamically emerges, cannot be made compatible with retrocausality,
not even in its temporally non-local form. So, again, we have to either accept a violation of a postulate
of relativity or accept the reality of a realm, maybe parallel to empirical space-time, where correlations
can depend on past and future events. In any case we cannot have it all in one, i.e., a relativistic
quantum theory in empirical space-time. This is the key conclusion.

5. Consequences

We have shown that the notions of unitary symmetry and symmetry-breaking are central to the
understanding of probabilities and “change” in quantum physics. Of course, symmetry-preservation
and symmetry-breaking, respectively, lead to different regimes and it seems that the theory of relativity,
in particular, combines aspects of both. The tensions between relativity and quantum physics are thus
based on the insufficient distinction between two realms. Some conundrums in quantum physics,
like the parallel existence of collapse and the unitary evolution of a realist wave function [29], or the
quantum liar paradox and others [30,31], can be better understood under the assumption that quantum
physics does not live in empirical space-time. There is work which recognizes the existence of two
realms as a possible way forward [32,33]. The success of the thermal time-flow to explain phenomena
in general relativity [18,19] and the arguments in Sections 3 and 4 of this paper also suggest that the
assumption of the existence of two realms, which influence each other in a specific way, is worth
further exploration. Ultimately, falling back again on our human experience, is it not the case that
our mind constantly anticipates future possibilities, which do not yet exist in physical space-time but
influence our actions in the present, which in turn help shape the future? Maybe we should take our
experience seriously and try to shape our theories of nature accordingly.
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