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Abstract: Image processing methods often introduce distortions, which affect the way an image is
subjectively perceived by a human observer. To avoid inconvenient subjective tests in cases in which
reference images are not available, it is desirable to develop an automatic no-reference image quality
assessment (NR-IQA) technique. In this paper, a novel NR-IQA technique is proposed in which the
distributions of local gradient orientations in image regions of different sizes are used to characterize
an image. To evaluate the objective quality of an image, its luminance and chrominance channels
are processed, as well as their high-order derivatives. Finally, statistics of used perceptual features
are mapped to subjective scores by the support vector regression (SVR) technique. The extensive
experimental evaluation on six popular IQA benchmark datasets reveals that the proposed technique
is highly correlated with subjective scores and outperforms related state-of-the-art hand-crafted and
deep learning approaches.

Keywords: image quality assessment; local gradient orientations; high-order derivatives ; support
vector regression

The recent advancement of digital imaging has stimulated a tremendous growth in the use of
visual information for communication [1–3]. Therefore, it is essential to develop reliable automatic
image quality assessment (IQA) measures for the evaluation of results of image processing methods
for the acquisition, storage, transmission, restoration, or enhancement. The main role of IQA measures
is to provide the objective assessment and replace cumbersome tests with human subjects [4]. The IQA
measures are divided into three categories, based on the availability of reference images [1,5,6]:
full-reference (FR), reduced-reference (RR), and no-reference (NR) approaches. In an FR-IQA measure,
a distorted image is compared with its reference image, while only some statistics of the distortion-free
image are available in the RR-IQA case. The peak signal-to-noise ratio (PSNR) is often used as
an FR-IQA model due to its simplicity. However, it weakly correlates with human perception [5].
Therefore, more suitable measures have been developed that employ structural information [7],
image statistical properties [8], visual saliency maps [9,10], structure and contrast changes [11], phase
congruency [12], distortion distribution [13], or other measures [14,15]. The RR-IQA measures use only
a part of reference data [16].

In this work, the discussion is confined to NR approaches, which are considered challenging and
highly desired due to their applicability in absence of reference images. Many measures are devoted
to evaluating the perceptual quality of images distorted by Gaussian white noise, JPEG compression,
contrast change, or Gaussian blur [17,18]. Since their practical application is limited and based on the
prior knowledge of distortion types, general-purpose NR methods have been developed. Many of
them assume that statistical regularities of natural images can be reflected by natural scene statistics
(NSS), as the Human Visual System (HVS) is very sensitive to local regularities [19]. Consequently, NSS
characteristics of distorted images are used for the IQA in many domains, e.g., Discrete Cosine
Transform (DCT) [20], wavelet [21,22], or spatial [23]. A variety of gradient-based features are
often employed to model NSS [24]. Furthermore, the use of perceptual features [25–27] or image
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patches [28] can be found in the literature.Since the supervised learning bridges image statistics
with the perceptual quality, it is often applied to obtain a model used for the quality prediction.
For the learning, the Support Vector Regression (SVR) [20,21,23,27], neural networks [24], or random
forests [29] are applied. In methods that do not use supervised learning, distortion types are modeled
with a set of centroids of quality levels or NSS from multiple cues [30,31]. Another direction is
to employ a pseudo-reference image which is created and compared with a distorted image with
blockiness, sharpness, and noisiness metrics [32]. Recently, many NR-IQA approaches which use deep
neural network (DNN) architectures have been introduced. They merge the feature extraction and
quality prediction steps. However, they suffer from a small number of training examples available
in IQA benchmark datasets or use complex architectures that are devoted to image recognition tasks.
To overcome these limitations, most of them use image patches [33,34], train models using FR-IQA
measures instead of subjective scores [34,35], or perform fine-tuning to adopt an architecture to the
IQA [36]. Interestingly, some DNN-based approaches use features introduced in earlier methods [35].

The HVS is sensitive to local structures, which are often described using local binary patterns (LBP)
and gradient-based statistics. However, a spatial distribution of LBP may not be able to capture more
complex structures [37]. Thus, statistics extracted from gradient maps often occur in conjunction with
other approaches to improve the IQA performance [27,38]. Such techniques use global distributions of
gradient magnitude maps [25], relative gradient orientations or magnitude [24,39].

To describe an image and efficiently take into account local gradient orientations, Histogram of
Oriented Gradients (HOG) descriptor can be used [40]. However, the HOG produces high-dimensional
feature vectors, which are devoted to object recognition tasks due to their discriminative capabilities.
Consequently, considering its application to the IQA, it is worth noticing that an original image
content of an assessed image, which is described using the HOG, may influence the quality prediction
performance. The descriptor also strongly depends on the size of processed image blocks and the
described neighborhood. Since the image gradient orientation captured by the HOG and its relevance
for the NR-IQA is interesting and still seems largely uninvestigated, in this paper, a novel no-reference
technique for the image quality assessment with a SEt of Histogram of OriEnted GRadients (HOG)
descriptors [40] (SEER) is introduced. In the SEER, in contrary to a widely accepted application
of the HOG, an image is described by a set of descriptors which are obtained taking into account
different local neighborhoods. In other words, each feature vector is composed of histograms of
gradient orientations calculated for image regions (cells), which are arranged together with their
neighboring cells in blocks. The descriptors in the set consider different sizes of image regions and
blocks. Then, each descriptor is characterized by a histogram, seen as perceptual features. In a typical
image recognition system, high-dimensional descriptors are often compared with each other. However,
to apply the HOG to the NR-IQA, such comparison cannot take place since a distortion-free image
and its descriptors are unavailable. Furthermore, the feature vectors in the HOG are designed to
discriminate objects in images. Therefore, in the SEER, to train the SVR model, statistics of descriptors
are employed instead of high-dimensional vectors. To improve the IQA performance, the method
processes luminance and chrominance channels of an image, as well as their high-order derivatives.

The extensive experimental evaluation of the introduced NR measure against the related
state-of-the-art techniques on six popular large-scale IQA benchmark datasets, which contain various
distortion types, demonstrates that the SEER provides the higher quality prediction accuracy than
compared NR models and is consistent with subjective scores. The method was evaluated against
hand-crafted and deep learning NR measures.

The rest of this paper is arranged as follows. Section 1 reviews previous work on NR-IQA and
Section 2 describes the proposed measure. Section 3 presents and discusses the experimental results
obtained for the SEER and the related measures on TID2013 [41], TID2008 [42], CSIQ [43], LIVE [7],
and LIVE In the Wild Image Quality Challenge (LIVE WIQC) [44] datasets. Finally, Section 4 concludes
the paper.
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1. Related Work

In this section, a brief review of previous studies closely related to the introduced work
is presented.

The introduced SEER is based on gradient processing. However, there are many works which
employ other features. For example, Moorthy and Bovik proposed a two-stage framework, in which
distortion type is predicted and then an image is evaluated [21]. Saad et al. trained a probabilistic model
with DTC-based NSS as a single-stage framework [20]. The generalized Gaussian distribution used
for capturing NSS with locally normalized luminance coefficients is employed in Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) [23]. A scheme which combines artifact-specific metrics
and employs a generalized Laplace distribution of the difference of two adjacent pixel values in an
image was introduced by Fang et al. [45]. The measure uses three transductive2 k-nearest neighbor
algorithms to map the metrics into subjective scores. Normalized gradients magnitude and Laplacian
of Gaussian responses were jointly used by Xue et al. [25]. Le et al. [46], in turn, used a histogram of
local binary patterns (LBP) obtained for a gradient map. They also used LBP extracted from texture and
structural maps [38]. A more advanced gradient-based image descriptor, Speeded-Up Robust Features
(SURF), is employed in the measure proposed by Oszust [27]. In that work, the sample mean, standard
deviation, entropy, skewness, kurtosis, and histogram variance for the assessed image, the image
filtered with Prewitt operators, and their SURF features are used. In Optimized filteRing with binAry
desCriptor for bLind imagE quality assessment technique (ORACLE) [47], in turn, a data-driven
filtering based on the appearance of Features From Accelerated Segment Test (FAST) in grayscale
images is proposed. The histograms of Fast Retina Keypoint (FREAK) descriptors for keypoints
detected in filtered images are used to characterize the assessed content. The sample mean, standard
deviation, and histogram variance of raw local patches describing FAST keypoints in images filtered
with the bilaplacian operator in the YCbCr color space are used in stATistics of pixel blocks of local
fEatuRes (RATER) measure [48]. Unlabeled data for learning Gabor features and modeling an image
using the soft-assignment coding with the max pooling are employed in [49]. In another method that
uses a codebook, High Order Statistics Aggregation (HOSA) [28], K-means clustering of normalized
image patches and their description with the low and high order statistics are considered. The HOSA
uses the soft assignment for an image representation and trains the SVR model for the prediction.
Screen content images were assessed by Lu and Li [50] using orientation selectivity mechanism for
extraction of orientation features.

Gradient-based techniques are often employed to provide effective IQA measures [11,24,25,46].
These measures use global distributions of gradient magnitude maps [25], relative gradient orientations
or magnitude [24,39]. For example, in the Oriented Gradients Image Quality Assessment (OG-IQA)
index, in which a correlation structure of image gradient orientations [24] is employed to train
a quality model with AdaBoosting-backpropagation neural network. In that work, histograms of
gradient magnitude, relative gradient orientation, and relative gradient magnitude maps are used
and characterized using the histogram variance. These gradient-based measures do not take into
account local gradient distributions. Such distributions are used in the HOG to provide a feature vector
composed of 1-D histograms of gradient directions of pixels within image regions (cells) [40]. In the
literature, there are FR-IQA measures which compare a reference image with the distorted image,
calculating a distance between corresponding HOG vectors [51] or produce a weight map for the FR
SSIM index [52]. In the technique proposed by Ahn et al. [18], in turn, blurred images are assessed by
comparing HOG vectors approximated by a random sample consensus set (RANSAC).

Taking into account the referred works, it can be stated that the effectiveness of the HOG in NR
image quality prediction remains largely uninvestigated, and a promising application of this descriptor
to the NR-IQA is introduced for the first time in this paper.
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2. Proposed NR Measure

In this section, the feasibility of using the HOG for the NR-IQA is investigated. The image
processing steps in the SEER are explained in details in Figure 1, while in Figure 2 the block diagram
of the proposed method is shown. As illustrated, the measure uses the HOG and provides feature
vectors for luminance and chrominance channels of a distorted image, as well as for channels filtered
using two bilaplacian operators. The measure uses differently sized image regions and the way the
regions are combined together in the HOG descriptors. In the SEER, the K HOG features are obtained
for each channel and their histograms are used to train a quality prediction model.

Figure 1. Image processing steps in the SEER.

2.1. Local Gradient Orientations

The HVS is sensitive to variations in local structures [19,39]. Such sensitivity and the resultant
subjective perception of an image are related to local semantic structural information which forms
primitives in V1 [39]. Local distributions of gradients are used in the HOG to characterize an image [40].
Specifically, a 2D image I is convolved with 1-D Prewitt filters in the horizontal (hPh = [1, 0,−1]) and
vertical (hPv = [1, 0,−1]T) directions to obtain gradients. Then, the edge magnitude is calculated as

g =
√

g2
x + g2

y, and its orientation is obtained as θ = arctan(gy/gx). The orientation is then transformed

to [0, 180] degrees range, ensuring that the opposite directions are assigned the same angle. The I is
divided into adjacent, non-overlapping cells of size CC1×C2 and, for each cell, the gradient orientations
are binned into o bins with votes based on their magnitudes. To reduce aliasing, each pixel contributes
to adjacent bins a fraction of its gradient magnitude. To reduce contrast changes, in turn, histograms
for cells are normalized. Since gradient magnitudes carry the information about the described object
in a region, to preserve the information, cells are grouped into overlapping blocks. There are BB1×B2

cells in each block. Then, B1 × B2 cell histograms are concatenated and normalized using L2-norm.
Finally, the obtained features for blocks are concatenated and normalized. This normalization makes
the descriptor invariant against overall image contrast [40]. The division of an image into blocks
and cells is shown in Figure 3. The number of overlapping cells between adjacent blocks is equal to
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AA1×A2 , where A1 × A2 = d[B1 × B2]/2e. The number of dimensions in the resulting feature vector D
is calculated as:

len(D) = oB1B2 · b
M
C1
− B1

B1 − A1
+ 1c · b

N
C2
− B2

B2 − A2
+ 1c, (1)

where M and N denote the height and width of an image, respectively. If A1 is equal to B1, or A2 to B2,
the length of the vector is calculated without the subtraction in the denominator. For an exemplary
image I512×512, the lengths of the feature vectors for the descriptors D(C2×2, B2×2) and D(C4×4, B2×2),
calculated with o = 9, are 2,340,900 and 580,644, respectively. Such high-dimensional feature vectors
are designed for robust object recognition and they cannot be used to train a quality model with the
SVR. Therefore, it is shown in this paper that their histograms are sensitive to image degradation,
consequently leading to the efficient application of the HOG to the NR-IQA.

Figure 2. Block diagram of the method.

Figure 3. Division of an image into blocks and cells in the HOG.



Symmetry 2019, 11, 95 6 of 20

2.2. Feature Extraction

In the introduced NR measure, a distorted RGB image is converted to the YCbCr color space.
The YCbCr color space is specified in ITU-R BT.601 and selected as the preferred format for video
broadcasting with the efficient use of the channel bandwidth [53]. Following the finding that the
image filtering can enhance the image quality prediction of NR-IQA measures [47] and the bilapacian
operator can be used to capture more information about described image regions for the IQA than it
can be achieved with other filters [48], the SEER uses the YCbCr color space and filters color channels of
the assessed image with two bilaplacian kernels ∆2

a and ∆2
b. The bilaplacian is obtained by convolving

two Laplacian kernels. The following kernels are used:

∆1 =

0 1 0
1 −4 1
0 1 0

 , ∆2 =

 1 −2 1
−2 4 −2
1 −2 1

 , ∆3 =

1 0 1
0 −4 0
1 0 1

 , and ∆4 =

−2 1 −2
1 4 1
−2 1 −2

 . (2)

Finally, ∆2
a = ∆1 ∗ ∆3 and ∆2

b = ∆2 ∗ ∆4, where “∗” denotes the convolution. Consequently,
a filtered channel (e.g., ∆2

a(Y)) is obtained using the convolution ∆2
a ∗Y.

To show that the HOG technique provides different feature vectors for YCbCr components,
Figure 4 presents an exemplary distorted image and the visualization of the HOG obtained for a small
square image patch. For the visualization, a grid of rose plots is used. In the grid, each rose expresses
the distribution of gradient orientations within a cell. The length of a petal indicates the contribution of
a given orientation within the cell histogram and displays two times o petals. As presented, the feature
vectors for the descriptor D(C2×2, B2×2) have different shapes for different YCbCr channels. The figure
also contains image patches filtered with two used bilaplacian operators ∆2

a and ∆2
b.

As shown in Figure 4, the differences between descriptors for channels seem to justify the
need for their joint application in order to extract more information about the described image
regions. Furthermore, since the size of a local structure in an image cannot be determined in advance,
the method uses several HOG descriptors with cells and blocks of different sizes. The HOG descriptor
produces high-dimensional features, depending on its focus on a local appearance of objects within
an image. Thus, in this paper, each obtained feature vector is characterized using its histogram h(D).
The histogram is used since it captures distributions of natural images [24]. The values in the feature
vectors for images are in the range [0, 1]. Therefore, the number of bins in the histogram and its
variance is calculated by dividing the range into d intervals and using them for the determination of
bin centers.

To illustrate that the used statistics can characterize the distortion severity of images, they are
computed for two sequences of images distorted with Gaussian blur and Gaussian noise [41]. Here,
the descriptors D(C2×2, B2×2) and D(C4×4, B2×2) are used. For the computation of the histogram,
10 bins are applied. As shown in Figure 5, the histogram responds consistently to the distortion type
and its severity.

In the SEER, for YCbCr channels and channels filtered with two bilaplacian operators,
feature vectors for the HOG descriptors are obtained and concatenated. This can be written as
D = [DY , DCb, DCr , DY

∆2
a
, DCb

∆2
a

, DCr
∆2

a
, DY

∆2
b
, DCb

∆2
b

, DCr
∆2

b
] or Di, where i = 1, . . . , 9. There are nine HOG

descriptors per ith image, with different C and B. Hence, the HOG descriptors for the I can be written
as DI = [DI

1, DI
2, . . . , DI

9]. Finally, the perceptual feature vector is obtained as F = [h(D1
1), h(D1

2),
. . . , h(D2

1), h(D2
2),. . . , h(D9

9)]. The parameters of HOG descriptors used in the SEER are discussed in
details in Section 3.6. Since the distortions affect images across scales [23], the method also processes
an input image which is downsampled by a factor of two to improve the quality prediction. Finally,
the concatenated histograms for an input image and its downscaled version are used to train the SVR
model. The SVR model which maps the vector F into subjective ratings S is obtained using LIBSVM
library [54]. Here, as in many NR techniques [24,46], the radial basis function (RBF) kernel is employed.
Finally, given an input image, the model predicts its quality and provides the objective score Q.
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Figure 4. Influence of the Gaussian blur on HOG descriptors obtained for YCbCr channels of an image.
The D(C2×2, B2×2) descriptor is visualized for the selected image patch.



Symmetry 2019, 11, 95 8 of 20

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) Y, Da (g) ∆2
a(Y), Da (h) ∆2

b(Y), Da

(i) Y, Db (j) ∆2
a(Y), Db (k) ∆2

b(Y), Db

(l) 1 (m) 2 (n) 3 (o) 4 (p) 5

(r) Y, Da (s) ∆2
a(Y), Da (t) ∆2

b(Y), Da

(u) Y, Db (v) ∆2
a(Y), Db (w) ∆2

b(Y), Db

Figure 5. Influence of distortions on features used in the SEER for exemplary images distorted
with: Gaussian blur (a–e); and Gaussian noise (l–p). The images are ordered by the distortion
severity (from left to right). Below distorted images, the histograms for two descriptors are shown:
D(C2×2, B2×2) denoted by Da (f–h,r–t); and D(C4×4, B2×2) denoted by Db (i–k,u–w). Colors are
assigned to distorted images.
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3. Experimental Results and Discussion

3.1. Datasets and Protocol

In this work, to evaluate an NR metric, six publicly available large IQA datasets were used:
TID2013 [41], TID2008 [42], CSIQ [43], LIVE [7], LIVE WIQC [44], and the Waterloo Exploration
Database (WE) [55]. The first four datasets are typically selected to evaluate recently introduced
measures [34,56,57], while the WE dataset, similar to the Group MAD Competition [58,59], is tied
with a novel evaluation methodology. The LIVE WIQC dataset contains subjective scores collected in
an uncontrolled manner using the Amazon Mechanical Turk. However, it contains images captured
with a mobile camera and can be used for the evaluation of NR measures using real images.
The TID2013 dataset is the largest and the most demanding public IQA benchmark. It consists of
3000 distorted images and covers 24 image distortion types. The other datasets contain only half
(TID2008) or less than one-third of the number of the images in TID2013 (CSIQ and LIVE). The LIVE
dataset contains popular distortions, such as JPEG compression, JPEG2000 compression, Gaussian
blur, white noise, or simulated fast fading Rayleigh channel. It is worth noticing that some distortion
types in TID2013 can be regarded as multiple, e.g., lossy compression of noisy images. Interestingly,
most existing general-purpose NR measures are designed to provide an acceptable performance on
the LIVE [32]. As shown in Section 3.3, some of them experience a drop in the performance on datasets
that contain more diverse distortions. The datasets contain high-quality images, their distorted images,
and related subjective scores. The subjective scores obtained in tests with human subjects are denoted
as mean opinion scores (MOS) or differential MOS (DMOS). The WE dataset contains images distorted
with JPEG compression, JPEG2000 compression, white Gaussian noise, and Gaussian blur. However,
it does not contain subjective scores. The datasets are characterized in Table 1.

Table 1. Image quality assessment datasets.

Dataset Ref. Images Dist. Images Dist. Types Score Type Dist. Types in an Image

TID2013 25 3000 24 MOS 1, 2
TID2008 25 1700 17 MOS 1
CSIQ 30 866 6 DMOS 1
LIVE 29 779 5 DMOS 1
LIVE WIQC NA 1162 NA MOS NA, multiple
WE 4744 94,880 4 None 1

To measure the consistency of the prediction results provided by an IQA measure with subjective
ratings, the following four indices were considered [60]: the Spearman’s Rank Correlation Coefficient
(SRCC), Kendall Rank order Correlation Coefficient (KRCC), Pearson linear Correlation Coefficient
(PCC), and Root Mean Square Error (RMSE). PCC and RMSE were calculated after a nonlinear mapping
between the vectors of objective and subjective scores, Qp and S (MOS or DMOS), respectively. For the

mapping, the following function was used [60]: Qp = β1

(
1
2 −

1
1+exp(β2(Q−β3))

)
+ β4Q + β5, where

β = [β1, β2, . . . , β5] are parameters of the fitted regression model, Q is the objective score, and Qp is
the fitted score.

The evaluation protocol associated with the WE dataset requires: the calculation of
pristine/distorted image discriminability test (D-test), listwise ranking consistency test (L-test),
and pairwise preference consistency test (P-test) [55]. The D-test uses predictions of a model to
classify distorted and pristine images. Larger values of D denote better separability. The L-test,
in turn, adopts the average SRCC to quantify the ranking consistency among distorted images. Finally,
the P-test compares preference predictions of IQA models on pairs of images whose quality is clearly
discriminable [55], dividing the number of image pairs with correctly predicted concordance by the
number of image pairs. The values obtained in tests lie in [0, 1].
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3.2. Model Training

The proposed method should be trained to obtain the SVR model used for the quality prediction.
Therefore, a typical protocol used for the validation of NR techniques was adopted, in which each image
dataset was divided into disjoint training and testing subsets, i.e., distorted images of 80% reference
images were used in training and the remaining 20% of images were used for testing [28,32,46]. Then,
to avoid bias and fairly compare a measure with other measures, the performance of each method was
reported in terms of the median values of SRCC, KRCC, PCC, and RMSE over 100 training-testing
iterations [61].

3.3. Performance on Individual Datasets

The performance of the presented NR measure was compared with those of the related
state-of-the-art techniques. The following NR measures were considered: (i) HOSA [28]; (ii) BPRI [32];
(iii) BRISQUE [24]; (iv) IL-NIQE [31]; (v) SISBLIM [62]; (vi) OG-IQA [24]; (vii) GWH-GLBP [46];
and (viii) RATER [48]. Among NR measures, which, to some extent, are similar to the SEER,
the RATER, HOSA, and IL-NIQE assess color images, while the OG-IQA incorporates image
gradients. The GWH-GLBP and SISBLIM are designed for the evaluation of images with multiple
distortions. The RATER and BPRI are recently introduced general-purpose measures. However, due to
distortion-specific steps in BPRI, its range of applicability is larger than those of distortion-specific
measures, but it seems to be confined to several distortion types. As reported by Zhang et al.,
the IL-NIQE is superior to the BLIINDS2, DIIVINE, CORNIA, NIQE, BRISQUE, and QAC [31].
The HOSA, in turn, is reported to outperform the GM-LOG, BRISQUE, or IL-NIQE [28].

The experimental evaluation was conducted on five IQA datasets using the protocol shown
in Section 3.1. For the fair comparison, the parameters of all learning-based techniques were
obtained aiming at their best performance [25,31]. The methods were run using publicly available
implementations. For the SVR, the popular LIBSVM library was used [54]. The parameters of
AdaBoosting BP neural network in the OG-IQA were also determined. The methods that do not
require training (BPRI, IL-NIQE, and SISBLIM) were evaluated using the defined testing subsets of
images in datasets. The SEER was run with o = 36 and d = 30 (see Section 3.6).

Table 2 summarizes the results on IQA datasets, where the best result for each performance index
is written in bold. The table also contains average values for SRCC, KRCC, and PCC. The RMSE was
not averaged due to the different range of values in the benchmarks.

As demonstrated, the introduced NR measure outperformed the state-of-the-art measures
on four IQA benchmarks, i.e., the TID2013, TID2008, CSIQ, and LIVE. In the case of the LIVE
WIQC dataset, the RATER and BRISQUE were slightly better than SEER, which was the third-best
measure. Remarkably, the proposed measure had the highest average performance across the datasets,
which confirms its usability.

To determine whether the relative performance differences between the measures are statistically
significant, the Wilcoxon rank-sum test was used. The test measures the equivalence of the median
values of independent samples with a 5% significance level. Here, the null hypothesis assumes that
the SRCC values of compared metrics are drawn from a population with equal medians. The results
are shown in Table 3, where the symbols “−1”, “0” and “1” denote that the IQA measure in the
column was statistically better with a confidence greater than 95%, indistinguishable, or worse than the
SEER on a given IQA dataset, respectively. The findings are consistent with conclusions drawn from
the previous experiments, i.e., the SEER was statistically better than other measures on the TID2013,
TID2008, and LIVE. Taking into account the results for the CSIQ, the SEER was on pair with the RATER,
as well as on pair with the RATER and BRISQUE for the LIVE WIQC.
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Table 2. Performance evaluation on individual datasets.

HOSA BPRI BRISQUE IL-NIQE SISBLIM OG-IQA GWH-GLBP RATER SEER

TID2013, 3000 images

SRCC 0.7132 0.2222 0.5551 0.5126 0.3212 0.4855 0.4835 0.8269 0.8362
KRCC 0.5392 0.1527 0.3988 0.3631 0.2253 0.3473 0.3483 0.6411 0.6571
PCC 0.7823 0.4660 0.6486 0.6307 0.4920 0.6228 0.6448 0.8409 0.8588
RMSE 0.7734 1.0946 0.9422 0.9679 1.0734 0.9712 0.9470 0.6703 0.6327

TID2008, 1700 images

SRCC 0.7732 0.1825 0.6066 0.1510 0.2427 0.5802 0.5208 0.8257 0.8444
KRCC 0.5935 0.1291 0.4423 0.1005 0.1705 0.4191 0.3716 0.6496 0.6767
PCC 0.8136 0.4747 0.6759 0.1984 0.4567 0.6666 0.6540 0.8362 0.8704
RMSE 0.7732 1.1801 0.9831 1.3157 1.1930 1.0024 1.0178 0.7361 0.6599

CSIQ, 866 images

SRCC 0.8290 0.5679 0.8608 0.8683 0.6946 0.7689 0.7693 0.8983 0.9037
KRCC 0.6400 0.4238 0.6801 0.6852 0.5125 0.5759 0.5858 0.7240 0.7374
PCC 0.8473 0.7250 0.8851 0.8860 0.7044 0.8064 0.8158 0.9211 0.9218
RMSE 0.1433 0.1781 0.1250 0.1254 0.1901 0.1589 0.1577 0.1024 0.0997

LIVE, 779 images

SRCC 0.9408 0.8826 0.9391 0.8993 0.0956 0.9159 0.8731 0.9422 0.9512
KRCC 0.7922 0.7211 0.7923 0.7200 0.0596 0.7638 0.6919 0.7987 0.8140
PCC 0.9415 0.8808 0.9427 0.9061 0.1924 0.9195 0.8918 0.9428 0.9534
RMSE 9.1579 13.002 8.9522 11.567 26.777 10.801 12.326 8.9412 8.2862

LIVE WIQC, 1162 images

SRCC 0.5481 0.1700 0.6049 0.1917 0.4280 0.4702 0.5459 0.6033 0.6016
KRCC 0.3734 0.1140 0.4276 0.1289 0.2942 0.3223 0.3863 0.4277 0.4241
PCC 0.5853 0.2969 0.6422 0.1930 0.5038 0.5134 0.5918 0.6285 0.6293
RMSE 16.376 19.289 15.494 19.730 17.349 17.245 16.306 15.748 15.856

Overall direct

SRCC 0.8141 0.4638 0.7404 0.6078 0.3385 0.6876 0.6617 0.8733 0.8839
KRCC 0.6412 0.3567 0.5784 0.4672 0.2420 0.5265 0.4994 0.7034 0.7213
PCC 0.8462 0.6366 0.7881 0.6553 0.4614 0.7538 0.7516 0.8853 0.9011

Overall weighted

SRCC 0.7382 0.3135 0.6496 0.4622 0.3396 0.5820 0.5750 0.8122 0.8215
KRCC 0.5637 0.2316 0.4864 0.3416 0.2395 0.4293 0.4225 0.6359 0.6510
PCC 0.7829 0.5147 0.7116 0.5231 0.4792 0.6678 0.6840 0.8268 0.8430

Table 3. SRCC-based statistical significance tests.

Dataset HOSA BPRI BRISQUE IL-NIQE SISBLIM OG-IQA GWH-GLBP RATER

TID2013 1 1 1 1 1 1 1 1
TID2008 1 1 1 1 1 1 1 1
CSIQ 1 1 1 1 1 1 1 0
LIVE 1 1 1 1 1 1 1 1
LIVE WIQC 1 1 0 1 1 1 1 0

The measures were evaluated using the methodology associated with the WE database [55]. Here,
the BRISQUE and HOSA were compared with the SEER. Since the IL-NIQE is reported to provide
superior performance using this methodology [55], it is also added to the comparison. The results
reported for BRISQUE, HOSA, and IL-NIQE in [55] are presented in Table 4. The SEER, as other
techniques, was trained on LIVE dataset. Interestingly, the IL-NIQE, which is much less correlated with
subjective scores on LIVE than other measures, yielded encouraging L and P values. This may indicate
that the relationship between distortion types, their levels, and used tests in the used methodology
may require further attention, leading to its possible improvement. For example, the P values of the
measures whose performances on the databases with subjective scores were significantly different seem
to be close to its upper limit. Furthermore, the assumption that image quality degrades monotonically
with the distortion levels may not be true for all distortion types and content of images, which may
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influence the results of the L-test [55]. However, it can be seen that all measures provided acceptable
performance in the tests on the WE database.

Table 4. Evaluation of measures on WE Database [55].

D-test L-test P-test

BRISQUE [24] 0.9204 0.9772 0.9930
IL-NIQE [31] 0.9084 0.9926 0.9927
HOSA [28] 0.9175 0.9647 0.9983
SEER 0.8547 0.9466 0.9895

The comparative evaluation of the SEER with state-of-the-art NR methods that use DNN or other
neural networks (NN) architectures was based on published results. Due to the large complexity of
the models, and the unavailability of learning source codes for some of them, such comparison is
very popular. Consequently, many papers report the performance of measures on the basis of results
obtained in 10 random training–testing splits on only one or two IQA benchmarks. Furthermore,
the coherent comparison of DNN-based methods is often impeded by the exclusion of some distortion
types, which can make the use of the largest IQA datasets, such as the TID2013 or TID2008, superfluous.
Table 5 contains the comparison of published median values of SRCC and PCC for NN-based NR
methods with those obtained for the SEER in 10 training–testing splits. Other performance indices,
i.e., KRCC and RMSE, are seldom reported in the referenced works. The results for the TID2008 are
not presented since the referenced works were not evaluated on this dataset. As reported, the SEER
clearly outperformed other measures on the most demanding datasets, such as the TID2013 or CSIQ.
The NN-based measures were better than the SEER on the LIVE dataset. The worse results of the
compared models on the datasets that contain considerably more distortions can be attributed to the
lack of a sufficient number of training samples or imperfections of used architectures [36,57]. It can
be concluded that the introduced hand-crafted NR measure is highly competitive to the recently
introduced techniques based on DNN or NN architectures.
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Table 5. Performance comparison between the SEER and NR measures which use NN architectures.

BIECON PQR [36] PQR [36] PQR [36] I-wise IQAMSCN RIQA MEON DeepIQA P-wise CNN SEER[34] (S CNN) (ResNet50) (AlexNet) CNN [57] [63] +FT [64] [65] [35] [33] [66]

TID2013, 3000 images

SRCC 0.717 0.692 0.740 0.574 0.800 - 0.780 0.808 0.761 - - 0.868
PCC 0.762 0.750 0.798 0.669 0.802 - - - - - - 0.872

CSIQ, 866 images

SRCC 0.815 0.908 0.873 0.871 0.812 - - - - - - 0.901
PCC 0.823 0.927 0.901 0.896 0.791 - - - - - - 0.920

LIVE, 779 images

SRCC 0.958 0.964 0.965 0.955 0.963 0.953 0.981 - - 0.960 0.956 0.937
PCC 0.960 0.966 0.971 0.964 0.964 0.957 - - - 0.972 0.953 0.941

Note: The comparison is based on published median values of SRCC and PCC over 10 training-testing iterations.
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3.4. Performance across Datasets

To verify whether the proposed measure is independent of a dataset, a cross-dataset validation
was performed. The NR measures were trained on one IQA dataset and tested on the remaining
datasets. In the experiment, the learning-based measures were compared on four datasets. The results,
in terms of SRCC, reported in Table 6, reveal that the SEER maintained acceptable generalization
capability across the datasets. The best results were with bold type. In general, it achieved the best
average SRCC.

Table 6. Cross-dataset performance of learning-based NR measures in terms of SRCC.

Testing HOSA BRISQUE OG-IQA GWH-GLBP RATER SEER

Training on TID2013

TID2008 0.839 0.752 0.580 0.936 0.927 0.953
CSIQ 0.610 0.622 0.581 0.307 0.684 0.687
LIVE 0.837 0.811 0.848 0.514 0.788 0.836

Training on TID2008

TID2013 0.772 0.656 0.507 0.807 0.753 0.816
CSIQ 0.607 0.595 0.475 0.316 0.648 0.672
LIVE 0.824 0.835 0.797 0.489 0.750 0.818

Training on CSIQ

TID2013 0.534 0.414 0.335 0.139 0.430 0.446
TID2008 0.485 0.501 0.322 0.165 0.488 0.449
LIVE 0.904 0.689 0.830 0.533 0.858 0.928

Training on LIVE

TID2013 0.468 0.360 0.315 0.310 0.360 0.400
TID2008 0.410 0.317 0.255 0.304 0.319 0.395
CSIQ 0.584 0.597 0.583 0.478 0.678 0.755

Average

- 0.656 0.596 0.536 0.441 0.640 0.680

3.5. Computational Complexity

The computational complexity of a given method was analyzed in terms of the average time
taken to assess an image (512× 384) from the TID2013 dataset. The experiments were performed on
a 3.3 GHz Intel Core CPU with 16 GB RAM system running on Microsoft Windows 7 64 bit. For all
compared methods, their Matlab implementations were used. As demonstrated in Table 7, the SEER is
of moderate complexity. It was faster than IL-NIQE and slower than RATER and HOSA, which also
process color images. The execution time of the SEER strongly depends on its parameters. However,
unlike other measures, the SEER can be easily run in parallel, since, for the assessed color image,
the nine used HOG descriptors were executed for 18 resulting images, including YCbCr color channels,
their filtered images, and downsampled images. A simultaneous run of the computation of the HOG
for these images using an efficient native implementation (e.g., C++) with a GPU code of the HOG
could shorten the execution time of the method up to 162 times.

Table 7. Average run-time.

NR Measure Run-Time (in Seconds)

HOSA 0.440
BPRI 0.997
BRISQUE 0.049
IL-NIQE 8.200
SISBLIM 2.200
OG-IQA 3.770
GWH-GLBP 0.064
RATER 0.168
SEER, o = 36 2.322
SEER, o = 9 1.121
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3.6. Metric Configuration and Contribution of Features

In the SEER, as explained in Section 2.2, an evaluated image is characterized using the histogram
of K HOG descriptors. Since the HOG can be used with different parameters, their choice and the
resulting IQA performance of the introduced measure requires investigation. SRCC was used as the
quality index, taking into account that the remaining criteria similarly indicate the performance of
the method.

Figure 6a contains SRCC values obtained for the SEER with only one HOG descriptor, using
the protocol introduced in the previous section, on the TID2013 dataset. TID2013 was used due
to its size and the number of image distortions. In the experiment, the performance of the SEER
with many different HOG parameters was investigated. The presented HOG descriptors were run
with o = 36 and d = 30. In the IQA, a detailed description of a pixel neighborhood is needed,
confirmed by various NR approaches using LBP in which a pixel is characterized by its 8 neighbors.
Therefore, HOG configurations with smaller pixel areas were taken into account to determine the
IQA performance of the SEER with them. The nine HOG descriptors presented in Figure 6a were
selected to be used jointly. In the case of single application of the descriptor D(C1×1, B1×1), the method
resembles approaches in which statistics for a gradient map, among other features, are used for
the quality prediction (e.g., [27]). To show that such joint application of the HOG descriptors is
beneficial, Figure 6b reports the performance of the method with 1, 2, . . . , 9 HOG descriptors. Since the
presentation of all possible combinations of these descriptors is unfeasible, the performance is reported
for the descriptors added in the order presented in Figure 6a. Interestingly, the SEER with only
two HOG descriptors delivered promising performance, outperforming the state-of-the-art measures
evaluated in the previous section. It can be assumed that an application of dimensionality reduction or
feature selection techniques, which would indicate the most influential descriptors or their statistics,
may provide better results. However, these techniques can also deepen the dataset-dependency.
Therefore, in this study, the selected K = 9 HOG descriptors were used in the SEER.

In the proposed method, the descriptors D(C1×3, B1×3), D(C3×1, B3×1), D(C1×1, B1×1) and
D(C2×2, B1×1) contributed the most to its performance (see Figure 6a). Apart from the size of the cell
and the arrangement of cells in the block, the computation of the feature vector F in the SEER requires
two additional parameters, o and d. Therefore, the performance of the measure was evaluated taking
into account their variability. The results in terms of SRCC on the TID2013 are shown in Figure 6c.
They reveal that these two parameters almost did not affect the performance of the SEER. In other
experiments with the method, o = 36 and d = 30 are used.

Since the measure uses YcbCr color space and filtered images, Table 8 presents their contribution
to its performance in terms of SRCC on the TID2013. As reported, color channels contributed similarly.
However, the channels filtered using the bilaplacian operators carry the most information that can be
used for the quality prediction. As reported, the channels alone could not provide satisfactory SRCC
performance, which confirms their complementary relationship and justifies their joint application in
the SEER.

Table 8. Contribution of YCbCr channels with filtering to the performance of the SEER on the TID2013
in terms of SRCC.

Described Images SRCC

Y 0.717
Cb 0.728
Cr 0.729
Y, Cb, Cr 0.727
∆2

a(Y, Cb, Cr) 0.788
∆2

b(Y, Cb, Cr) 0.808
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(a)

(b)

(c)

Figure 6. Influence of parameters of the SEER on its performance: (a) sizes of cells and their arrangement
in blocks in the HOG descriptor; (b) the number of used descriptors added in the precedence shown in
(a); and (c) the number of orientation bins o and intervals d, respectively.

4. Conclusions

In this work, a novel NR-IQA technique has been presented. The introduced SEER incorporates
the distribution of local intensity gradients. The histogram of a set of these descriptors, obtained
for YCbCr channels of a distorted image, as well as its channels filtered with bilaplacian operators,
are used as perceptual features to train an SVR model for the image quality prediction. It has been
shown that the use of a descriptor, which takes into account different sizes of described image regions
and their mutual relationship, is beneficial to the IQA, as obtained feature vectors respond consistently
to the distortion type and its severity. Furthermore, it has been demonstrated that, to deliver superior
performance, the information extracted from YCbCr channels in the bilaplacian domain should be
employed. The introduced technique was evaluated and compared with the state-of-the-art NR
hand-crafted and NN-based measures on six IQA datasets. The experimental results demonstrate
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that overall the SEER outperforms the compared NR measures in terms of prediction accuracy and
generalization capability.

The future work on the SEER will focus on an application of a keypoint detector that indicates
image regions for the description [27,67]. Another promising direction of research is to train a deep
learning model using features provided by the SEER, similar to the work in [35].

The Matlab code of the proposed approach is publicly available at http://marosz.kia.prz.edu.pl/
SEER.html.
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