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Abstract: Recently, source code mining has received increasing attention due to the rapid increase
of open-sourced code repositories and the tremendous values implied in this large dataset, which
can help us understand the organization of functions or classes in different software and analyze
the impact of these organized patterns on the software behaviors. Hence, learning an effective
representation model for the functions of source code, from a modern view, is a crucial problem.
Considering the inherent hierarchy of functions, we propose a novel hyperbolic function embedding
(HFE) method, which can learn a distributed and hierarchical representation for each function via the
Poincaré ball model. To achieve this, a function call graph (FCG) is first constructed to model the
call relationship among functions. To verify the underlying geometry of FCG, the Ricci curvature
model is used. Finally, an HFE model is built to learn the representations that can capture the latent
hierarchy of functions in the hyperbolic space, instead of the Euclidean space, which are usually used
in those state-of-the-art methods. Moreover, HFE is more compact in terms of lower dimensionality
than the existing graph embedding methods. Thus, HFE is more effective in terms of computation
and storage. To experimentally evaluate the performance of HFE, two application scenarios, namely,
function classification and link prediction, have been applied. HFE achieves up to 7.6% performance
improvement compared to the chosen state-of-the-art methods, namely, Node2vec and Struc2vec.

Keywords: hyperbolic space; function-call graph; function embedding representation; source
code mining

1. Introduction

There are billions of lines of source code (e.g., GitHub) open to the software community on the
Internet. This source code has tremendous value since the underlying knowledge to write good code by
humans has been encoded implicitly. Recently, source code mining has received increasing interest [1–3],
due to the demand of reducing software developing cost, the growing body of open-source software
repositories, and the rapid advance of machine learning, especially deep learning. The opened-sourced
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code can be regarded as a desired and enormous dataset for training machine learning models,
especially deep neural network models, to learn program organization and behaviors.

Since software corpora share similar statistical properties as natural language corpora [4],
numerous techniques from natural language processing (NLP) have been successfully applied to
analyze and understand the underlying structure of functions, which are the basic element of source
code. Among them, inspired by word2vec [5], various embedding techniques that learn function
representations have received a great deal of attention because the learned features of functions
by embedding into vector space can compactly encode the latent semantic structure. Hence, those
embedding vectors can achieve better performance as pre-trained inputs to machine learning models.

Numerous function/API embedding methods [6–11] have been proposed. Those works shared a
common hypothesis: the learned embedding vector lies in Euclidean space. However, recently works
have shown that hierarchy structures exist in large-scale complex networks, such as social networks,
which can be embedded into hyperbolic space instead of Euclidean space [12,13]. Nickel et al. [14]
proposed a Poincaré embedding (PE) via the Poincaré ball model with hyperbolic distance for symbolic
data. They argued that hyperbolic space can better characterize hierarchical structures, such as trees,
than Euclidean space. The structure of function-call relations is also hierarchical in nature. Hence,
different from the existing works that do not take advantage of the inherent hierarchy structure of
function-call relations, we intend to explore the latent hierarchical structure of function-call relations
in hyperbolic space. Our contributions are listed as follows:

1. We build an FCG model to describe the function-call relations.
2. We use Ricci curvature [15] to estimate the geometric structure of the FCG and identify that the

curvature for most of the edges in the FCG are negative. This phenomenon suggests hyperbolic
space instead of Euclidean space as a natural embedding space for FCG since hyperbolic space
is usually associated with constant negative curvature [16]. Based on this observation, the
original edge weights of the FCG are replaced by Ricci curvatures to form a new graph called
RC-FCG, where the weight of each edge denotes the curvature from one node to the other node.
The modified edge weights encode more information than the original edge weights.

3. Based on the RC-FCG, we propose a Poincaré disk-based hyperbolic function embedding (HFE)
method to learn a hierarchical representation for RC-FCG in hyperbolic space. Our method
achieves up to 7.6% performance improvement (especially in low-dimension situations) compared
with the chosen state-of-the-art embedding methods, namely, Node2vec [17] and Struc2vec [18].

The rest of this paper is organized as follows: Section 2 describes the related works. The HFE
model is discussed in Section 3. Section 4 provides experimental results and analysis. A summary of
all the work of this study, together with the forecast for the further work, are given in Section 5.

2. Related Works

The successful application of a distributed representation [5] in NLP has inspired researchers to
apply a distributed representation to source-code mining because of the naturalness hypothesis [5,19],
which claimed that the statistical properties of source code are similar to those of natural language.
Thus, most of the existing works that learn distributed representation from source code usually
regarded a program as a bag of tokens [9] or a sequence of token [20,21]. Some of the existing works
parsed the program to obtain the corresponding abstract syntax tree (AST) [10], which is suitable for
tree-based neural networks, or extended an AST to a graph [22] for further processing. However, to
the best of our knowledge, none of the existing work intended to learn the distributed representation
from function-call graphs.

According to the underlying neural network models, the existing works can be generally classified
as the following categories: forward neural network [9], recurrent neural network [10], convolutional
neural network [20], auto-encoder [23], graph neural networks [24], etc. To the best of our knowledge,
none of the existing works have ever analyzed the underlying geometric property of source code,
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established the connection between the hyperbolic space and the inherent hierarchy structure of
source code, and applied distributed representation techniques for hyperbolic space, such as Poincaré
embedding, to source code.

Although there were a few works that applied Poincaré embedding to NLP, the inherent
differences between natural language and source code, such as formal syntax and semantics, which
capture the most basic aspect of a program through function and function-call graph, make it difficult
to directly apply the Poincaré embedding technique.

3. Hyperbolic Function Embedding

3.1. Overview

The proposed HFE framework includes three main steps, as shown in Figure 1:

1. Build a function call graph (FCG) from source code. Each node in the FCG denotes a function,
and each edge in the FCG means a function-call relation. FCG can model the way in which a
function is called in a context, i.e., a function-call semantic of code fragments (see Section 3.2 for
more detail).

2. Once the FCG is built, the Ricci curvature will be calculated for each pair of connected functions,
and the calculated curvatures will replace the weight of each edge. The modified FCG is
called RC-FCG. We believe that the Ricci curvature of each edge in the FCG carries much more
information than the original one, and is suitable for hyperbolic space (see Section 3.3 for more
detail).

3. We learn a hyperbolic function embedding via the Poincaré ball model for RC-FCG (see Section 3.4
for more detail).
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3.2. Function Call Graphs

An example of FCG is shown in Figure 2. Formally, FCG = (F, CR) is a graph with a node
set F = { f1, f2, · · · , fn} and an edge set CR = {cr1, cr2, · · · , crm}, where each node fi ∈ F,
i = {1, 2, · · · , n} denotes a function in the source code, and each edge crl ∈ CR, l = {1, 2, · · · , m}
denotes a call relation between two functions. FCG is a weighted graph where wi,j denotes the
call frequency between fi and f j. This call frequency describes the co-occurrence or call context
of two functions, i.e., a call semantic. It is worth to note that for each individual program, the
function-call edges in the FCG is deterministic. However, the proposed HFE method intends to learn
the function-call statistics for all programs instead of an individual one. From the statistical point of
view, each individual function may not be necessary. For example, modern programming frameworks,
such as Android, iOS, and Panda, usually integrate a set of similar functions as a united API, which
can be called in different ways based on the intended usage. Thus, for a large number of programs,
whether a function is called, i.e., whether a function-call edge exists, can be regarded as a probabilistic
distribution, which is the underlying reason that we use the call frequency as the edge weight.
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Figure 2. The illustration of the hierarchical structure of the function call from boost library
(http://www.boost.org/).

The main processes are listed as follows:

Step 1. The software tool Doxygen (http://www.stack.nl/~{}dimitri/doxygen/) is used to extract
functions from source code. In this step, the name space is used to uniquely identify each
function. Each function can be encoded by a hash function for tightening storage and fast
search. Additionally, the other parts of the code, such as variable definition or assignment,
can be mitted.

Step 2. A sub-gragh is constructed for each function and the associated functions called inside. Then,
the sub-graghs are merged into a larger graph called FCG. As mentioned before, the weight
for each edge is the call frequency for two functions. We believe FCG can catch the call
semantic relationship between functions.

Step 3. Certain high-frequency functions, such as the set functions and the type-obtaining functions,
are deleted to balance the global frequency of the whole graph.

3.3. FCG, Ricci Curvature, and Hyperbolic Space

In this section, we will analyze the fundamental property of the FCG from a geometric perspective,
i.e., using Ricci curvature to determine the topological characteristics of the FCG. Ricci curvature can
be an indicator to analyze the geometrical property of the FCG, which motivates us to adopt the Ricci
curvature to replace the weights of the FCG and form a new graph called RC-FCG.

3.3.1. FCG and Ricci Curvature

We used the Ricci curvature to analyze the intrinsic geometric property of the FCG. The Ricci
curvature [25] is a geometric local measure that can reflect intrinsic geometric property. This intrinsic
attribute is fundamentally different from the other network metrics, such as degree, clustering
coefficient, and betweenness centrality.

In this paper, we use the coarse Ricci curvature [15] to model the intrinsic geometric property of
the FCG. Coarse Ricci curvature considers a metric space (d, F) and a probability distribution m fi

on
F, defined for each node fi. The Ricci curvature κ

(
fi, f j

)
for a pair of nodes fi, f j ∈ F is obtained by

comparing the Wasserstein distance from m fi
to m f j

and the distance d
(

fi, f j
)
.

In the FCG, the probability distribution m fi
for each function node fi ∈ F can be defined through

Equation (1):

m fi

(
f j
)
=


w fi , f j

d fi
, if f j ∼ fi;

0, otherwise
(1)

http://www.boost.org/
http://www.stack.nl/~{}dimitri/doxygen/
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where fi ∼ f j represents nodes fi and f j are neighbors, w fi
, f j

indicating the weight of the edge
connecting fi and f j, and d fi

represents the sum of the shortest distances from node fi to all of its
neighboing nodes.

The Wasserstein distance from m fi
to m f j

, denoted by W
(

m fi
, m f j

)
, is the minimum average

traveling distance that can be achieved by Equation (2) [25–27]:

W
(

m fi
, m f j

)
= inf

ξ
∑

f ′i , f ′i∼ fi

∑
f ′j , f ′j∼ f j

d( f ′i , f ′j )ξ( f ′i , f ′j ) (2)

where d
(

f ′i , f ′j
)

is the length of the shortest path between f ′i and f ′j , and ξ( f ′i , f ′j ) represents the mass

moving from f ′i and f ′j . It is worth noting that ξ can be regarded as a transition matrix. The Wasserstein
distance can be transformed to a linear programming (LP) problem via Kantorovich duality and
computed effectively through linear programming (LP). For more information, one can refer to [28,29].

The coarse Ricci curvature κ
(

fi, f j
)

for two functions in the FCG can be calculated by the
Wasserstein distance from m fi

to m f j
and distance d

(
fi, f j

)
, as shown in Equation (3):

κ
(

fi, f j
)
= 1−

W
(

m fi
, m f j

)
d
(

fi, f j
) (3)

Using Equation (3), we can re-calculate weights of FCG according to Ricci curvature, as shown in
Equation (4):

w fi , f j
= normalized

(
κ
(

fi, f j
))

(4)

Since the Ricci curvature can be negative, we normalized it from 0 to 1.

3.3.2. RC-FCG and Hyperbolic Space

Figure 3 intuitively illustrates the relation between curvature and space, where positive, zero, and
negative curvatures correspond to spherical, Euclidean, and hyperbolic spaces, respectively. Intuitively,
the correspondence between Ricci curvature and the geometry space can be illustrated as follows.
In Figure 3a–c, p is a point on the corresponding manifold M in spherical, Euclidean, and hyperbolic
spaces, respectively. At point p, two orthogonal tangent vectors Tx and V intersect with M at points
x′ and y, respectively. At point y, a tangent vector that is orthogonal to V intersects with M at point
y′. If the length of the tangent vector V′ that connects x′ and y′, and is orthogonal to Tx and y, y′,
is shorter than V, the corresponding manifold is related to spherical space, as shown in Figure 3a.
Otherwise, if the length of the tangent vector V′ is larger than V, the corresponding manifold is related
to hyperbolic space, as shown in Figure 3c. Otherwise, the corresponding manifold is related to
Euclidean space, as shown in Figure 3b. In the discrete cases, the Ricci curvature of each edge in a
square lattice graph is equal to zero, the Ricci curvature of each edge in a tree or hierarchy structure is
negative except the ones connecting leaf nodes, and the Ricci curvature of each edge in a complete
graph is positive.

Figure 4 shows the distribution of Ricci curvature of a generated FCG with 34,987 edges in total,
where 23,241 edges have negative Ricci curvature. The proportion is about 2/3. This result suggests
that hyperbolic space is the underlying geometry of the FCG. Thus, it may be a good choice to model
the FCG in hyperbolic space.
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3.4. Learning HFE via the Poincaré Ball Model

3.4.1. Hyperbolic Space and the Poincaré Ball Model

Since the function-call relations in source code are organized in a hierarchical way and the
distribution of negative Ricci curvature of the FCG is dominating, as illustrated in Figure 4, it inspires
us to design a representation for the RC-FCG in hyperbolic space, which can be used to model
hierarchical structures. Since the RC-FCG is hierarchical in nature, it is straightforward to learn a
representation for the RC-FCG in hyperbolic space in order to preserve hierarchical structures.

There are several important models of hyperbolic space: the Klein model, the hyperboloid model,
the Poincaré ball model, and the Poincaré half space model [30]. Inspired by Poincaré embedding, we
use the Poincaré ball model for the convenience of gradient-based optimization.

3.4.2. Hyperbolic Distance for the Poincaré Ball Model

Formally, let Bd =
{

x ∈ Rd|‖x‖ < 1
}

with ‖.‖ as the Euclidean norm be the open d-dimensional

unit ball. The Poincaré ball model corresponds to the Riemannian manifold
(
Bd, gx

)
. The Riemannian

metric tensor defined on Bd can be written as follows:

gx =

(
2

1− ‖x‖2

)2

gE (5)
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where x ∈ Bd and gE is the Euclidean metric tensor. Under Bd, the hyperbolic distance for Poincaré
ball can be defined as follows.

dh(u, v) = arcosh

1 + 2
‖u− v‖(

1− ‖u‖2
)(

1− ‖v‖2
)
 u, v ∈ Bd (6)

where arcosh(u) = ln
(

u +
√

u2 − 1
)

is the inverse hyperbolic cosine function. The dh(u, v) in
hyperbolic space is able to discover the underlying hierarchy structure according to the representation
coordination of functions in the Poincaré ball model. Based on Equation (6), the hyperbolic distance
will exponentially increase along with the vector’s norm approximating 1. From a visual view, the
origin of the Poincaré ball can be regarded as the root of a tree, the branches or leaves of which extend
toward the boundaries of the Poincaré ball, where the hyperbolic distance grows exponentially. Thus,
the potential hierarchies of the RC− FCG are captured. The visualization analysis will be presented in
Section 4.3.

3.4.3. Loss Function and Optimization

For a set of functions F = { fi}n
i=1, to train the corresponding HFE vectors Θ = {θi}n

i=1, where
θi ∈ Bd, a loss function L(Θ) is proposed, as shown in Equation (7), which is inspired by word2vec [5]:

L(Θ) = ∑
fi , f j∈CR

log
e
−d(θ f i ,θ f j

)

∑ f ′j∈N( fi)
e
−d(θ f i ,θ f ′j

)
(7)

where N( fi) =
{

f j
∣∣( fi, f j

)
/∈ CR

}
∪ { fi} is the set of negative samples for fi, θ fi

represents an
embedding vector corresponding to function fi in Bd, and d(θ fi

, θ f j
) denotes the hyperbolic distance

between the two embedding vectors θ fi
and θ f j

. From Equation (7), it can be inferred that, to minimize
the loss function, the hyperbolic distance between a pair of connected functions in the FCG is forced to
be reduced, while the hyperbolic distance between any disconnected functions is forced to be enlarged.
Therefore, the loss function L(Θ) can help HFE preserve the edge information of the FCG.

In hyperbolic space, parameters are learned via stochastic Riemannian optimization methods,
such as RSGD [31,32]. In particular, let TθB denote the tangent space of a point θ ∈ Bd. Furthermore,
let ∇R ∈ TθB and ∇E denote the Riemannian gradient and Euclidean gradient of L(Θ), respectively.
The parameters in RSGD can be updated based on Equation (8):

θt+1 = Rθt(−η∇RL(θt)) (8)

where Rθt means retraction onto B at θt, η is the learning rate at step t. In practice, the Riemannian
gradient ∇R can be derived from the Euclidean gradient ∇E. Specifically, the Euclidean gradient is
as follows:

∇E =
∂L(θ f i)

∂d(θ fi
, θ f j

)

∂d(θ fi
, θ f j

)

∂θ fi

(9)

where L(θ fi
) is the part of the total loss L(Θ) that relates to function fi, as shown in Equation (10):

L
(

θ fi

)
= ∑

fi∼ f j

log
e
−d(θ f i ,θ f j

)

∑ f ′j∈N( fi)
e
−d(θ fi

,θ f ′j
)

(10)

Based on Equation (10), it can easily derive the first partial derivative in Equation (9), and based
on Equation (6), we can also compute the second partial derivate in Equation (9). Combining with
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Equation (5), we can derive the correspondence between the Riemannian gradient and the Euclidean
gradient [33], as shown in Equation (11):

∇R =
(1− ‖θt‖2)

2

4
∇E (11)

Furthermore, in order to map the learned embeddings into the Poincaré ball model, the following
mapping operations are adopted:

map(θ) =

{
θ/‖θ‖ − δ, if ‖θ‖ ≥ 1
θ, otherwise

(12)

where δ is a small constant, set as 10−7. In a word, the update for a single embedding is of the form as
shown in Equation (13):

θt+1 ← map(θt − ηt
(1− ‖θt‖2)

2

4
∇E) (13)

4. Experiments and Analysis

In this section, we evaluate the performance of the HFE for two application scenarios: function
clustering and link (i.e., function-call relation) prediction.

4.1. Dataset and Baseline

4.1.1. Dataset

The experiments datasets are the top 10 C++ open-sourced software collected from Github.
A program parser tool named Doxygen has been applied to those source codes to extract the functions
and their call relations. Using method mentioned in the Section 3.1, the corresponding FCG and
RC-FCG are built. Once the RC-FCG is built, it will be fed into the HFE model to learn an HFE vector
for each individual function. Since the RC-FCG consists of a random forest, instead of a tree, it is
desirable to merge the forest into a connected graph. To achieve this, a virtual root node is introduced
as the virtual parent node of all the root nodes of the trees in the forest. Note that the introduced
virtual node is also the center of the Poincaré ball model. Additionally, the isolated functions, which
do not to connect other functions in the RC-FCG, are removed from the connected graph. In total, the
final RC-FCG has 16,170 vertices (functions) and 248,118 edges (function-call relations).

4.1.2. Baselines

Two state-of-the-art embedding models, namely, Node2vec [17] and Struct2vec [18], are selected
as baselines for evaluating the HFE’s performance. Node2vec designed a two-order random walk with
two parameters to control the tradeoff between depth first search (DFS) and breadth first search (BFS).
In our contrastive experiments, the parameters of Node2vec are set to prefer BFS, while the parameters
of Struc2vec are set to the default values.

In the experiments, Riemannian gradient descent of HFE is used to update the parameters with
the initial learning rate being 0.1, the final learning rate being 0.0001, and the training epoch being 10.

4.2. Performance Comparison and Analysis

4.2.1. Clustering

One prominent advantage of HFE is its capability to simultaneously capture function similarity
and function hierarchy information in a continuous vector space. To illustrate these experiments have
been conducted to cluster the functions via the k-means clustering algorithm based on the vectors
learned through the HFE and Node2vec, respectively. Since the distance metric among distributed
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vectors usually reflects the semantic similarity among them, it is likely that functions with semantic
and/or similar hierarchy levels may appear in the same cluster.

In order to evaluate the effect of clustering, we adopt three representative criteria: (1) Compactness
(CP), which is defined as the average distance from a data point of a cluster to the cluster center;
(2) degree of separation (SP), which denotes the average distance between any two- cluster center;
and (3) silhouette coefficient (SC), which evaluates the clustering performance through the ratio of CP
to SP. A good cluster result should satisfy the following criteria: (1) SC approaching 1 asynchronously,
(2) smaller CP, (3) larger SP, and (4) an appropriate value of k.

Figure 5 shows the performance trend of the above three metrics along with the variation of k, in
a low embedding dimension (d = 2). From Figure 5a, it can be observed that the SC of HFE is higher
than that of Node2vec when k is larger than 120. From Figure 5c, it can be concluded that the SP of
HFE is much higher than that of Node2vec. However, from Figure 5b, it can be revealed that the CP of
Node2vec is better instead. This is because HFE needs to consider not only semantic similarity, but also
hierarchical similarity. For example, semantically similar functions may appear in different hierarchical
levels, which denote a larger distance than the case without considering hierarchy information. This
phenomenon is consistent with the fact that the hyperbolic space is usually larger than the Euclidean
space, which implies that both inter-cluster distance and intra-cluster distance are larger in hyperbolic
space. Moreover, along with the increment of the cluster number, the inter-cluster distance and
intra-cluster distance associated with HFE significantly increase and decrease, respectively, while
those two distances associated with Node2vec only show small variation. This reflects that HFE is
much more sensitive to the variation of the cluster number. The underlying reason may lie in that
HFE can take advantage of the hierarchy information embedded in the larger hyperbolic space to
cluster functions more precisely and accurately. Thus, HFE is better than Node2vec when the cluster
number k is larger than 120, as shown in Figure 5a. The similar phenomenon can also be found in
traffic networks [33].

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 14 

 

been conducted to cluster the functions via the k-means clustering algorithm based on the vectors 
learned through the HFE and Node2vec, respectively. Since the distance metric among distributed 
vectors usually reflects the semantic similarity among them, it is likely that functions with semantic 
and/or similar hierarchy levels may appear in the same cluster.  

In order to evaluate the effect of clustering, we adopt three representative criteria: (1) 
Compactness (CP), which is defined as the average distance from a data point of a cluster to the 
cluster center; (2) degree of separation (SP), which denotes the average distance between any two- 
cluster center; and (3) silhouette coefficient (SC), which evaluates the clustering performance through 
the ratio of CP to SP. A good cluster result should satisfy the following criteria: (1) SC approaching 1 
asynchronously, (2) smaller CP, (3) larger SP, and (4) an appropriate value of k.  

Figure 5 shows the performance trend of the above three metrics along with the variation of k, 
in a low embedding dimension (d = 2). From Figure 5a, it can be observed that the SC of HFE is higher 
than that of Node2vec when k is larger than 120. From Figure 5c, it can be concluded that the SP of 
HFE is much higher than that of Node2vec. However, from Figure 5b, it can be revealed that the CP 
of Node2vec is better instead. This is because HFE needs to consider not only semantic similarity, but 
also hierarchical similarity. For example, semantically similar functions may appear in different 
hierarchical levels, which denote a larger distance than the case without considering hierarchy 
information. This phenomenon is consistent with the fact that the hyperbolic space is usually larger 
than the Euclidean space, which implies that both inter-cluster distance and intra-cluster distance are 
larger in hyperbolic space. Moreover, along with the increment of the cluster number, the inter-
cluster distance and intra-cluster distance associated with HFE significantly increase and decrease, 
respectively, while those two distances associated with Node2vec only show small variation. This 
reflects that HFE is much more sensitive to the variation of the cluster number. The underlying reason 
may lie in that HFE can take advantage of the hierarchy information embedded in the larger 
hyperbolic space to cluster functions more precisely and accurately. Thus, HFE is better than 
Node2vec when the cluster number k is larger than 120, as shown in Figure 5a. The similar 
phenomenon can also be found in traffic networks [33].  

   

(a) (b) (c) 

Figure 5. The variations of the three clustering performance metrics along with the variations of k. (a) 
SC; (b) CP; (c). SP. 

To intuitively apprehend the hierarchy property, both the embedding vectors generated from 
HFE and Node2vec are visualized by adopting different colors and symbols to denote different 
clusters, as shown in Figure 6a,c respectively. In Figure 6a, the distribution of HFE is visualized 
through the Poincaré disk model, which reveals a prominent hierarchical structure from the FCG 
virtual root in the disk center to the FCG leaves around the disk boundary. However, the distribution 
of Node2vec shown in Figure 6c does not reveal the hierarchical structure.  

To illustrate that HFE captures semantic similarity, we extract a subtree with 50 functions and 
78 edges, and embed the tree through HFE (shown in Figure 6b) and Node2vec (shown in Figure 6d), 
respectively. From these figures it can be concluded that both HFE and Node2vec reveal semantic 

Figure 5. The variations of the three clustering performance metrics along with the variations of k.
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To intuitively apprehend the hierarchy property, both the embedding vectors generated from HFE
and Node2vec are visualized by adopting different colors and symbols to denote different clusters,
as shown in Figure 6a,c respectively. In Figure 6a, the distribution of HFE is visualized through the
Poincaré disk model, which reveals a prominent hierarchical structure from the FCG virtual root in
the disk center to the FCG leaves around the disk boundary. However, the distribution of Node2vec
shown in Figure 6c does not reveal the hierarchical structure.

To illustrate that HFE captures semantic similarity, we extract a subtree with 50 functions and
78 edges, and embed the tree through HFE (shown in Figure 6b) and Node2vec (shown in Figure 6d),
respectively. From these figures it can be concluded that both HFE and Node2vec reveal semantic
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similarity because similar functions are closer to each other. However, HFE also shows a hierarchical
structure, which is not learned by Node2vec in Euclidean space.
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4.2.2. Link Prediction

In the link prediction scenarios, the goal is to predict whether a function-call relation exists
between two function nodes. This application scenario can reveal whether the HFE learn the structural
information implied in the function-call relations. We randomly hide 10% of edges in the original
RC-FCG as positive ground truth, then use the rest of the edges to train models, such as Struc2vec,
Node2vec, and HFE. After training, we obtain the representation vectors for all functions and then use
logistic regression to predict the probability of edge existence for a given function node pair. The test
set consists of positive samples and negative samples with equal number. The former includes the
hidden 10% vertex pairs mentioned above in the original RC-FCG, while the latter is made up of
randomly chosen disconnected vertex pairs.

The accuracy results are shown in Figure 7, which shows that HFE outperforms all the baselines.
Specifically, when the space dimension is eight dimensions (i.e., low dimension), HFE improves
2.5% and 4.7% in terms of accuracy compared with Struc2vec and Node2vec, respectively. When the
space dimension is 208 dimensions (i.e., high dimension), HFE improves 6.2% and 7.6% in terms of
accuracy compared with Struc2vec and Node2vec, respectively, as shown in Table 1. Furthermore,
it can be observed from Figure 7 that HFE can achieve a better performance with a low-dimension
space (eight dimensions) representation than all baseline methods with a high-dimension space
(208 dimensions). This observation reflects that HFE can learn the function-call relations better even
with smaller space dimension, i.e., HFE can learn a more compact representation without performance
loss. The underlying reason may lie in that the volume in hyperbolic space grows exponentially, while
the volume of Euclidean space expands only polynomially. Thus, the learned representation embedded
in hyperbolic space may have higher capacity that those in Euclidean space [34,35].
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Table 1. The accuracy of three models varying with dimension.

Model

RC-FCG

Accuracy

8-dim 2018-dim

Node2vec 0.7047 0.7131
Struc2vec 0.7269 0.7271

HFE 0.7519 0.7891

4.3. Visualization

In this section, we visualize an example to illustrate the way by which HFE learn the function-call
hierarchical structure. We extract a subtree, named the phone numbers tree (PNT), as shown in
Figure 8a, from the entire FCG. In Figure 8b, the learned HFE corresponding to the PNT subtree
is visualized in the Poincaré disk. It is worthy to note that, to compare the PNT subtree and the
corresponding HFE, the same number and the same color are used to identify the same function and
the same function-call path from the root to the leaf in both Figure 8a,b, respectively. For example,
paths 1->2->23->37 in both Figure 8a,b is green. Notably, in Figure 8b, the hierarchy is reflected by the
concentric circles.
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Figure 8. The PNT subtree and the visualization of the corresponding two-dimensional HFE.
(a) A subtree of PNT; (b) The project of Poincaré disk of above subtree of PNT.

Considering the path 1→ 2→ 23→ 37 in the PNT, node 1 represents function testVoip(),
which is designed to check whether a phone number is valid. Nodes 2, 23, and 37 denote functions
checkNumbersValidAndCorrecttype(),isValidNumber(),andisValidNumberForRegion(),respectively.
Figure 8b shows that nodes 1, 2, 23, and 37 lie on different concentric circles from the root (center) to the
margin (leaf). Moreover, node 2 lies on the concentric circle other than nodes 20–22. The underlying
reason may lie in that node 2 has a larger subtree, which usually corresponds to smaller curvature.
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Hence, in Figure 8b, node 2 should be farther from the root than nodes 20–22, even though those four
nodes are at the same level in the PNT tree. From this example, we can see that HFE indeed learns the
hierarchical structure of the FCG.

5. Conclusions and Future Works

In this paper, we propose a novel hyperbolic function embedding method, which can learn a
distributed and hierarchical representation for each function via the Poincaré ball model. The proposed
method builds a function-call graph to model the function-call relations or function-call context for
each function. Within the FCG, the function’s semantic is encoded in the neighborhood of a node. We
also use the Ricci curvature to describe the intrinsic geometry of the FCG. We find that the negative
Ricci curvature of the edges in the FCG is dominant, which motivates us to represent functions in
a hyperbolic instead of Euclidean space. We also build an RC-FCG by replacing the edge weight in
the FCG with the corresponding Ricci curvature. The RC-FCG encodes richer topologic information
than the FCG. Finally, an HFE model is built to learn a representation of the RC-FCG. The HFE can
capture the latent hierarchy of functions in the hyperbolic space, which is very important to learn
a representation model for function analysis since functions in source code are naturally organized
in a hierarchical way. Experiments show that HFE achieves up to 7.6% performance improvement
compared to the chosen state-of-the-art graph embedding methods. In the future, we will further
explore the geometric property of the RC-FCG because we believe that the intrinsic geometry encoded
via Ricci curvature of the RC-FCG is critical, which needs further theoretical explanation.
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