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Abstract: The fast detection of pigs is a crucial aspect for a surveillance environment intended
for the ultimate purpose of the 24 h tracking of individual pigs. Particularly, in a realistic pig
farm environment, one should consider various illumination conditions such as sunlight, but such
consideration has not been reported yet. We propose a fast method to detect pigs under various
illumination conditions by exploiting the complementary information from depth and infrared
images. By applying spatiotemporal interpolation, we first remove the noises caused by sunlight.
Then, we carefully analyze the characteristics of both the depth and infrared information and detect
pigs using only simple image processing techniques. Rather than exploiting highly time-consuming
techniques, such as frequency-, optimization-, or deep learning-based detections, our image
processing-based method can guarantee a fast execution time for the final goal, i.e., intelligent
pig monitoring applications. In the experimental results, pigs could be detected effectively through
the proposed method for both accuracy (i.e., 0.79) and execution time (i.e., 8.71 ms), even with various
illumination conditions.

Keywords: agriculture IT; computer vision; pig detection; depth information; infrared information

1. Introduction

Caring for group-housed pigs is an important issue that can be resolved by detecting or managing
problems early with regards to their health and welfare [1-6]. Especially, it is required to minimize the
potential damage for individual pigs from infectious diseases or other health problem. Because of the
small number of farm workers, however, it is very challenging to care for individual pigs in a large
pig farm.

Recently, several researches have been reported using surveillance techniques for an automatic
pig monitoring system [7—42]. In this study, we focus on pig monitoring systems with a top-view
camera under various illumination conditions in a realistic pig farm environment. The illumination
problem has been considered by either applying image processing techniques that are time-consuming
or by using thermal/depth cameras known to be less sensitive to the illumination problem. Indeed,
we reported results previously for pig detection with Kinect-based depth information [38,39]. The
depth information obtained from low-cost sensors, however, are susceptible to sunlight, and a fast
solution to the illumination problem caused by sunlight has not yet been reported.

In this study, we propose not only a low cost but also a fast method to detect pigs through a
top-view camera under various illumination conditions. First, we exploit the infrared and depth
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information which is concurrently obtained from a low-cost camera, such as Intel RealSense [43]. The
accuracy of the depth information measured from the RealSense camera is degraded significantly
when covering a large area (i.e., pig room). Furthermore, sunlight through a window at daytime
generates many noises on both depth and infrared information. Thus, we integrate both information
complementarily to resolve the low-pixel accuracy and illumination noises such as sunlight. Second,
we apply simple but effective image processing techniques only for satisfying the real-time execution
for pig detection. By decreasing the computational workload of the detection task through the
simple image processing, it allows to complete intermediate-level vision tasks, such as pig tracking,
and high-level vision tasks, such as behavior analysis for pigs.

The rest of the paper is organized as follows: Section 2 describes previous pig detection methods.
Section 3 explains the proposed method to detect pigs under various illumination conditions. The
experimental results for pig detection are presented in Section 4, and Section 5 finally concludes the
proposed method.

2. Background

The contribution of this study is to achieve our ultimate goal of an automatic analysis for pig
behavior during 24 h by individually recognizing each pig through pig detection. The previous
researches performed segmenting touching pigs and tracking individual pigs [41,42], but the most
important task for the ultimate goal of a 24 h pig monitoring is accurate pig detection. For example,
Figure 1 shows various illumination conditions in a realistic pig farm environment. With an infrared
camera, the gray values of pigs located at four corners are generally darker than those of pigs located
at center locations (see Figure la). In addition, the accuracy of the depth information obtained
from a low-cost depth camera decreases quadratically as the distance increases [44]. Thus, we can
apparently confirm the differences between infrared and depth information images. Sunlight through
a window at daytime makes it especially difficult to separate pigs from the neighboring wall and floor
(see Figure 1b) with both infrared and depth information. Clearly, the critical problem in consistently
separating and tracking pigs for the automatic behavior analysis is to precisely detect pigs under
various illumination conditions.

Infrared image Depth image
(b)

Figure 1. Various illumination conditions: (a) At 7 a.m. (for the purpose of explanation, we denote this

kind of image as a low-contrast image) and (b) at 9 a.m. (for the purpose of explanation, we denote
this kind of image as a sunlight image).
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In order to enhance the low-contrast image as shown in Figure 1a or the sunlight image as shown
in Figure 1b, we adopted contrast limited adaptive histogram equalization (CLAHE) [45], which is
one of the most widely used techniques, to enhance the low contrast, as in bio/medical applications
(e.g., CT/MRI imaging). Note that, histogram equalization (HE) [46] is also one of the most employed
techniques for improving image contrast, but it may cause a problem that foreground cannot be
detected because of the excessive change in brightness. Then, we adopted the Otsu algorithm [47] to
detect objects from the gray images based on thresholding.

Figure 2 shows the results of Otsu after CLAHE. From the infrared images, it is difficult to
detect the dark pig from the low-contrast image (see the red box shown in Figure 2a) or the possible
boundary lines between the pig and the neighboring wall and floor from the sunlight image (see the
red box shown in Figure 2b). The illumination problems with infrared images may be solved by
using depth images. From depth images, however, it is difficult to detect the pig completely, owing
to the inaccurate pixel values of the depth images (see the green area shown in Figure 2, and we call
this problem the “missing pig-pixel problem” for the purpose of explanation). If we can exploit this
complementary information from infrared and depth images, we can detect pigs more accurately
under various illumination conditions.

Otsu image of infrared

(b)

Figure 2. The difficulties of pig detection under various illumination conditions: (a) the results of
Otsu [47] after contrast limited adaptive histogram equalization (CLAHE) [45] with a low-contrast
image and (b) the results of Otsu [47] after CLAHE [45] with a sunlight image.

We summarize some of the previous approaches used for pig monitoring as shown in Table 1.
Even if online monitoring applications are required to satisfy the real-time requirements, the processing
speed was not described or the real-time requirements were not satisfied in many previous studies.
Furthermore, some of the methods considered the illumination problem by applying time-consuming
image processing techniques (i.e., “management of various illumination = Yes” shown in Table 1),
whereas some others did not (i.e., “management of various illumination = No” shown in Table 1). Also,
some of the methods tried to avoid the illumination problem by using thermal/depth cameras that were
known to be less sensitive to the illumination problem. However, none of the previous methods have
reported the results of pig detection with sunlight images (i.e., “management of sunlight = No” shown
in Table 1). For example, we try to extend the previous research of detecting standing pigs [38,39]
in order to additionally detect lying pigs with sunlight images, which is very difficult to solve with
only depth information. In addition to pig detection, some studies for detecting objects have been
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reported by using data modalities (i.e., multi-sensor fusion) through various information [48-52]. For
example, References [48] and [49] proposed an object detection method by using both color and infrared
information. In Reference [50], the fusion information between grayscale and thermal information was
employed for foreground detection. As another example of data modality, Reference [52] proposed a
background subtraction method for detecting moving objects by using color and depth information.

Table 1. Some of the pig detection results (published during 2009-2018).

Management

Data Type Data Size Pileetf: ction of Va.rim.ls No. of Pigs in EX;;‘::’“ Reference
gorithm Illumination a Pen (seconds)
(Sunlight)
Not Specified Thresholding No (No) Not Specified ~ Not Specified [7]
720 x 540 CMA-ES Yes (No) 12 0.220 [8]
768 x 576 Wavelet Yes (No) Not Specified 1.000 [9]
768 x 576 GMM Yes (No) Not Specified 0.500 [10]
150 x 113 Texture Yes (No) Not Specified 0.250 [11]
640 x 480 Learning Yes (No) 9 Not Specified [12]
720 x 576 Thresholding (Otsu) No (No) 10 Not Specified [13]
1280 x 720 Thresholding No (No) 7-13 Not Specified [14]
Not Specified GMM Yes (No) 3 Not Specified [15]
352 x 288 ANN No (No) Not Specified 0.236 [16]
640 x 480 Thresholding (Otsu) No (No) 22-23 Not Specified [17]
Gray/Color 640 x 480 Thresholding (Otsu) No (No) 22 Not Specified [18]
Not Specified Thresholding (Otsu) No (No) 17-20 Not Specified [19]
574 x 567 Color No (No) 9 Not Specified [20]
256 x 256 GMM/Thresholding Yes (No) Not Specified Not Specified [21]
1760 x 1840 %fii;g’;? Yes(No) ~ NotSpecified  NotSpecified  [22]
1280 x 720 C;frbezlhzlafggl Yes (No) 23 0971 (23]
Not Specified Thresholding (Otsu) No (No) 2-12 Not Specified [24]
320 x 240 Thresholding (Otsu) No (No) Not Specified Not Specified [25]
512 x 424 Thresholding (Otsu) Yes (No) Not Specified Not Specified [26]
1440 x 1440 Thresholding Yes (No) Not Specified 1.606 [27]
960 x 540 Deep Learning No (No) 1 Not Specified [28]
2560 x 1440 Deep Learning No (No) 4 Not Specified [29]
Not Specified Depth Thresholding No (No) 1 Not Specified [30]
640 x 480 Depth Thresholding No (No) Not Specified ~ Not Specified [31]
512 x 424 Depth Thresholding No (No) 1 Not Specified [32]
512 x 424 Thresholding (Otsu) No (No) Not Specified Not Specified [33]
Depth 512 x 424 Depth Thresholding No (No) 1 Not Specified [34]
1294 x 964 Depth Thresholding No (No) 1 Not Specified [35]
512 x 424 GMM No (No) 19 0.142 [36]
512 x 424 Deep Learning Yes (No) 1 0.050 [37]
512 x 424 Depth Thresholding No (No) 22 0.056 [38]
512 x 424 Depth Thresholding No (No) 13 0.002 [39]
Gray + Depth 1280 x 720 I“fra;ejs;;r?epth Yes (Yes) 9 0.008 Pl\r/?e}zﬁiedd

To the best of our knowledge, this is the first report on detecting pigs in real time by exploiting

the complementary information (i.e., without any time-consuming techniques, such as frequency-,
optimization-, or deep learning-based detections) with sunlight images obtained from a low-cost
camera. That is, we propose a fast pig detection method with a reasonable accuracy with the ultimate
goal of achieving a “complete” real-time vision application from low-level vision tasks to intermediate-
and high-level vision tasks by carefully balancing the tradeoffs between the computational workload
and detection accuracy as well as exploiting both depth and infrared information.

3. Proposed Method

As in Reference [39], detecting pigs in a pen can be achieved by analyzing the depth information
between the background and foreground (e.g., the floor, wall, and pigs) because the depth information
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is less sensitive to various illuminations. However, it is challenging to precisely detect the pigs by
analyzing depth information because the depth information obtained from the low-cost camera is
measured inaccurately. That is, pigs such as lying pigs cannot be detected according to a certain
threshold that is obtained from the inaccurate depth information. Meanwhile, infrared information
has the advantage of accurate pixel values, so that the pigs can be detected from the background by
using simple image processing techniques. If some of pigs are located at the four corners of the pen,
however, the pigs cannot be detected accurately because the gray values at the corners are darker
than those of the center. Furthermore, if sunlight appears in the pig pen during daytime, many noises
seriously affect both the depth and infrared information due to the sunlight and, thus, make it difficult
to detect the pigs accurately. Thus, it is required to exploit the complementary information from both
the depth and infrared images under the low-contrast and sunlight environment.

In this study, we propose a fast pig detection method, which is denoted as ‘FastPigDetect
under various illumination conditions by using the advantages of both depth (i.e., less sensitive

7

to illumination) and infrared (i.e., more accurate pixel values) information. First, the region of interest
(ROI) is set to exclude unnecessary regions, such as a feeder or another pig pen. Then, we remove not
only noises generated by the sunlight at daytime but also other noises according to the environment of
the pen by using spatiotemporal interpolation on both depth and infrared information. In the next
step, the neighboring background (i.e., the floor and wall) is segmented from the pigs by analyzing
the depth information, and the contrast of the infrared information is improved with a contrast
enhancement technique to “roughly” detect pigs. Finally, the pigs in the pen can be “precisely” detected
by integrating both the depth and infrared information with simple image processing techniques. With
the advantages of the two information, the pigs can be detected effectively in the low-contrast as well
as the sunlight environment. Figure 3 shows the overall procedure for the pig detection under various
illumination conditions.
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Figure 3. The overall procedure of the proposed method.

We define some terminologies described in the proposed method for increased readability. Table 2
describes the terminologies for each procedure of the pig detection method.

Table 2. Definitions of the key terminologies of the proposed method.

Category Definition Description
Dinput Depth input image
Dinterpolate Depth background image through modeling during 24 h videos
Depth Dypackground Depth interpolated image through spatiotemporal interpolation
Diocalize Depth image where pigs are localized through threshold
Diro Depth image where pigs are localized through background
localize subtraction and Otsu
Linput Infrared input image
Linterpolate Infrared interpolated image with spatiotemporal interpolation
Infrared b . . . h
I Infrared image where the contrast is coordinated by histogram
contrast equalization
Tiocatize Infrared image where pigs are localized by Otsu algorithm
Depth + DI Intersection image between Dj,.41i2. and Ijpegrize
Infrared DI, Intersection image between DI; and D/jyc4ize
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3.1. Removing Noises and Localizing Pigs

3.1.1. Procedure with Depth Information

In Section 3.1.1, we localize the pigs in the pig pen by removing noises from the depth information.
From Djypyt, we first set the ROI to exclude the unnecessary regions (i.e., a feeder or another pen).
Then, we apply 4 x 4 window spatiotemporal interpolation [39] as a preprocessing step for removing
noises (i.e., undefined pixels) that may occur, such as those caused by sunlight at daytime. Note that
because the noises generated from intense sunlight are similar to the large moving noises described in
Reference [39], the spatiotemporal interpolation technique is iteratively conducted until the noises that
are removed. For understanding the locations of each pig, the pixel frequencies from both foreground
(i.e., the pigs) and background (i.e., the floor and wall) are calculated through histogram analysis using
Dinterpotate- We note that the background area is larger than that of each pig in the pen. Accordingly,
the most frequent pixel can be selected as the background pixel used to segment the depth image into
the background and the foreground, i.e., the pixel used to separate the foreground and background
from each other. By setting the most frequent pixel to the threshold for background segmentation,
the roughly localized pigs in Djy4iz. can be obtained by using the threshold. However, the depth
values of the wall may be the same as those of the pigs in accordance with their size, so that the floor
can be relatively removed, but the wall cannot be removed using the threshold.

In order to resolve the problem, we conduct the background modeling for producing Dyackground
and apply the frame difference between Dygckground and Diypy for removing the wall.  Before
modeling Dygckground, it is necessary to realize the characteristic of depth information. The depth
information is likely to be measured inaccurately according to the distance between the sensor and
the pigs/background. For example, even if the size of the pig located at the corner in the pen is the
same with the size of the pig located at the center, the depth values of each pig are subtly different
because the pig in the corner is farther away from the sensor than the pig in the center. In case of
the background, depth values at any locations of the background may be also obtained differently
according to the distance from the camera. Thus, the background modeling is required to calibrate the
depth values at any location, which are then used to conduct background subtraction for calibrating
the depth values of each pig and the background.

For modeling the background of the pig pen, we exploit all depth information videos recorded
during a 24 h period. First, the floor and other parts (i.e., the wall and pigs) for every frame are
respectively divided by using the threshold for background segmentation that is selected by histogram
analysis. Because the depth values of the wall among other parts may be the same as with those of
the pigs, the pigs and the wall are considered to be in the same category. Here, we define the floor
and the other parts as the floor background and the other background, respectively. In the next step,
the floor background and the other background are independently updated with the depth values of
the floor and the other parts during the 24 h videos. After updating each background, the depth values
of the other background are overlapped to the not updated regions of the floor background because
the depth values of the floor are only updated from D;;;,,; through the threshold.

Every Diuterpolate 1S applied with frame difference using the modeled Dy, ckgrouna and by applying
histogram equalization and Otsu algorithm [47] on the image, a D/},.41i,., Where the pigs are localized
with removing the wall, can be obtained. Applying the two localized images, Dj,cq1ize and D/j,¢giize,
to the infrared images allows for the robust detection of the pigs in the sunlight and low-contrast
conditions. Figure 4 shows the results of localization for the pigs through the depth information in
low-contrast and sunlight conditions, respectively. The missing pig-pixel problem could be solved
effectively (compare the green areas shown in Figures 2 and 4).
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Figure 4. The localization of the pigs with a low contrast (at 7 a.m.) and a sunlight image (at 9 a.m.).
Djocatize and D/jyaiz. are generated through the threshold from a histogram analysis about the depth
values and background subtraction using modeled Dyckground, respectively.

3.1.2. Procedure with Infrared Information

In fact, the pigs in the pen can be detected using characteristics of the infrared information I, t,
such as accurate pixel values. However, there is a problem in that pigs may not be detected in various
illumination conditions such as sunlight and low contrast in Ij;;;. In other words, because the infrared
image is affected by various illuminations, the localized images obtained from the depth information,
Dijocatize and D1yyeq1i5., should be exploited for accurately detecting the pigs.

In the same way as the depth images, the ROI of I, is set in order to exclude the unnecessary region
in the pen, and then the 4 x 4 spatiotemporal interpolation technique is performed for removing noises
such as sunlight. Note that the spatiotemporal interpolation technique is performed only once, as the
pixel values in I, are not correctly interpolated, owing to the characteristic sensitivity to illumination
conditions. Then, the histogram equalization (HE) [46] is performed to resolve the low contrast of Liyerpolates
which makes the contrast in Iiserporare consistent. Through the procedure of HE, the Otsu algorithm is
applied to roughly localize the pigs in Icontrast- Figure 5 shows the results of the localization of the pigs in
Iiocatize gained from Ieoptrast at low-contrast and sunlight conditions. However, the pigs in Ij;.4i; cannot be
accurately detected because the contrast of all pixels in the floor, wall, and sunlight are also coordinated
consistently by applying HE. That is, even though all the pigs in the pen can be confirmed, the noises are
not totally removed. These noises can be removed by exploiting the complementary information from the
infrared images (i.e., ljycq1ize) and depth images (i.e., Djogrize and D/jgeg1i5.) simultaneously.

Liocatize at low-contrast condition

luuntrust llncalize

Figure 5. The localization of the pigs in the infrared information at low-contrast and sunlight conditions.
The bold box indicates the noises detected by histogram equalization (HE) in I},¢,j;,.. Although the pigs
can be identified at low-contrast and sunlight conditions, some pigs are unidentified by the detected
background because all of the pixels in e poiate are consistently coordinated by HE.
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3.2. Detecting Pigs Using both Depth and Infrared Information

In order to detect only the pigs, DI is produced by conducting an intersection operation between
Diocatize and Ijycq1ie where HE and the Otsu algorithm are applied. Figure 6 shows the result after
an intersection operation to detect the pigs by removing the noises generated from the floor, wall,
and sunlight.

Roughly detected pigs at low-contrast condition

alin.

Diocatize

Figure 6. The result of the intersection operation between Dz, and Ij,cq1ize to detect the pigs.

Nevertheless, there is a problem in that the wall and floor are still detected in DI;: first, the wall
is not removed in not only Ij,.4i,. with HE and Otsu algorithm but also in Dj,4i,e; second, the center
of the floor is also detected, largely because of all of the coordinated contrast pixels caused by HE.
For only detecting pigs from the wall and floor, D/;yiiz, i-€., the frame difference image between
Dinput and Dygckground, is used. Because the wall in D/jycgyiz, is mostly removed through background
subtraction and the pigs are roughly localized in the image, it is able to detect the pigs by performing
an intersection between DIy and D/,.41i2., Where most of the wall and floor are removed in DI,. Given
DI, the post-processing using some image processing techniques is performed to accurately detect
the pigs. In order to remove the noise remaining in DI, an erosion operation is conducted to remove
and minimize small noises that are adjacent to the objects or generated from the intersection operation
in DI,. Then, all of the objects are labeled through connected component analysis (CCA), where each
area of the objects is calculated, along with whether the objects should be removed or not according to
their sizes. After removing the noises according their sizes, the pigs can be precisely detected by using
a dilation operation to recover the shapes of the pigs. Figure 7 shows that the pigs are finally detected
by applying the proposed method through Dyt and Iy, in various illumination conditions.
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{ Detecting pigs at low-contrast condition }

Detection of pigs

Y

I Detecting pigs at sunlight condition }

D' 1ocatize DI, Detection of pigs

Figure 7. The detection result of all pigs by using depth information and infrared information.

At last, the proposed method is described in Algorithm 1 as follows.

Algorithm 1. Pig detection algorithm under various illumination conditions

Input: Depth and infrared images

Output: Detected pig image

Step 1: Removing noises and localizing pigs with depth and infrared information individually
Procedure with depth information:

Generate Dyckground from modeling background during 24 h videos;
Dinterpolate = SpatTemplntp (Dinput>;

threshold = HistAnalysis<Dim,polm);

for y = 0 to height:

for x = 0 to width:

if Dinterpolate(X, y) > threshold:

Digcatize(x, y) = 255;

else:

Dlocalize(x' y) =0;

Dtiocatize = B&ZCkgTOM?’ZdSMbi’VﬂCt (Dinterpolatw Dbackgraund>;

D/iocatize = Ots”(D/localize);

Procedure with infrared information:;

Iinterpolate = SpatTemplIntp (Iinput>;

Lecontrast = HistEqualizution<Imterp01gte>;

Locatize = Otsu(lcontrust)}

Step 2: Detecting pigs with depth and infrared information collectively
DL = InterSECt(Ilocalizw Dlocalize);

DI, = Intersect(DIy, Dljyeatize);

Erode DI, to remove and minimize noises;

Conduct CCA to the minute noises in DIy;

Dilate DI, to recover shapes of the pigs;

4. Experimental Results

4.1. Experimental Setup and Resources for the Experiment

The following experimental setup was used to conduct our pig detection method: Intel Core
i7-7700K 4.20 GHz (Intel, Santa Clara, CA, USA), NVIDIA GeForce GTX1080 Ti 11 GB VRAM (NVIDIA,
Santa Clara, CA, USA), 32 GB RAM, Ubuntu 16.04.2 LTS (Canonical Ltd, London, UK), and OpenCV
3.4 [53] for image processing. We installed an Intel RealSense low-cost camera (D435 model, Intel,



Symmetry 2019, 11, 266 11 of 20

Santa Clara, CA, USA) [43] on a ceiling at a height of 3.2 mina 2.0m x 4.9 m pig pen located in
Chungbuk National University, Korea.

In the pig pen, a total of nine pigs (Duroc x Landrace x Yorkshire) were raised, with an average
initial body weight (BW) of 92.5 £ 5.9 kg. We simultaneously obtained infrared and depth videos from
the installed camera, which had a resolution of 1,280 x 720 and 30 frames per second (FPS). Figure 8
displays the whole monitoring setup with the camera in the pig pen.

We used the depth and infrared images obtained from the camera during a 24 h period. Because
it was extremely difficult to create the ground-truth image 24 h videos (i.e., 2,592,000 frames were
obtained from 24 h videos of 30 FPS), our method for detecting the pigs was applied to three frames per
ten minutes (i.e., total of 432 frames) selected from each video. Meanwhile, as explained in Section 2,
various illumination conditions in the depth and infrared videos were confirmed, such as low contrast
and sunlight. In particular, the illumination issues of low-contrast and sunlight conditions were
evidently found when the pigs were located at the corners in the pen or when sunlight appeared at
the specific time (08:00-10:00 a.m.). Thus, we detected the pigs while considering the issues for the
illumination conditions.

Q Intel RealSense camera
S

AR
\
/:l \

a )
/

\\

N,

v
RN

’ % ™ 32m
\

/ « x>
A— OB w\{( - \//
/ ~ &)/ Y (T
I/Q\( \jv ) Y ~\ (J I\ " v

e ) )
S e/ \‘\;( )

< 49m :

Figure 8. The experimental setup with a RealSense low-cost camera.
4.2. Detection of Pigs under Various Illumination Conditions

Initially, we modeled Dy,ckground as an independent procedure for conducting the frame difference
between Dyckground and Dinterpolate- To remove and minimize the noises caused by the illumination
conditions in the depth and infrared information, a spatiotemporal interpolation technique was applied
to the 1296 frames extracted from each video. Note that because the spatiotemporal interpolation
technique was interpolated from three frames to one frame, 1296 frames were needed to detect the
pigs in 432 frames. In the Diyterpotate a0 Linterpolate derived from the interpolation technique, simple
image processing techniques were conducted to each domain.

In the case of the procedure of depth information, a histogram analysis was performed to gain
Diocatize from Diyterpolate- Here, the frequency of the depth value corresponding to the background
converged to 53, and the threshold for segmenting the background was defined as 53. Dj,;i;, Was
then derived by binarizing Djpterpolate, using the threshold defined through histogram analysis. In the
second step, the frame difference between Dyckground and Dingerporate Was carried out to derive D/jocqize,
where the Otsu algorithm was applied to D/jyci.- Note that because the parameter for localizing
the pigs may be changed continuously according to the inaccurate depth values, the Otsu algorithm
should be used to automatically determine the parameter for every image. In the case of the procedure
of infrared information, I.ontrast could be obtained by applying HE to localize the pigs with Linterpolate-
Similar to the procedure of the depth information, the Otsu algorithm was used to define the parameter
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for segmenting the background so that Ij,..i,., where the pigs were localized, was obtained from
ILeontrast with the Otsu algorithm. With the attributes from these procedures, DI; and DI, were obtained
by intersecting among these localized images, where the noises resulted in the illumination conditions
were removed. Finally, a morphology operation and CCA were conducted to DI as the post-processing
steps for refining the detected pigs. As the size of each noise calculated by CCA was less than 100,
the noises were simply removed with the threshold defined as 100. After that, a dilation operation was
conducted three times to sufficiently recover the shape of the pigs, and as a result, all of the pigs in the
pen could be accurately detected. Figure 9 illustrates the detected pigs by using the proposed method
from the 24 h recorded videos. In Figure 9, only one detection result per hour is displayed because of
the large number of the frames in the 24 h videos.

0a.m. lam. 2am. 3am. 4am. 5a.m.

Figure 9. The results of pig detection under various illumination conditions.

4.3. Evaluation of Detection Performance

For evaluating the performance of detecting the pigs from the proposed method, we compared
the detection result of the proposed method with those of state-of-the-art deep learning-based methods,
including YOLO9000 [54] (i.e., a bounding box-based object detection method) and DeepLab [55]
(i.e., a pixel-level semantic segmentation method). In particular, YOLO9000 was selected among many
bounding box-based object detectors because it is known to be very fast and reasonably accurate
(due to its “you only look once”). DeepLab was also selected among many pixel-level semantic
segmentors because it is known to be fast and accurate (due to its “Atrous convolution”). Because
YOLO9000 is a bounding box-based object detector and DeepLab is a pixel-level semantic segmentor,
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YOLO9000 is expected to be faster but less accurate than DeepLab. Note that because the depth
information was inaccurate as described in Section 2, we only used the infrared information for
training and testing the data (i.e., detecting the pigs) with the deep learning-based methods. Before
executing the deep learning-based methods, we realized that it was hard to generate the ground-truth
images, and that the ground-truth was not enough to train for deep leaning-based methods. Thus, we
generated 2592 ground-truth data through data augmentation by flipping the input data vertically
and horizontally. Note that the input image resolution could be increased to detect more objects [56].
However, the dataset for training and testing both YOLO and DeepLab was composed of the same
resolution as the data which was used in the proposed method for fair comparison.

In the case of YOLO9000, we produced a model through the training data, which was composed
of 2592 infrared frames. We defined the hyperparameters that were utilized in YOLO9000 for training
as follows: 0.001 for learning rate, 0.0005 for decay, default anchor parameter, 0.9 for momentum, leaky
ReLU as the activation function, and 10,000 for the epoch. In the case of DeepLab, we also produced
a model through the training data, which was composed of the same dataset as YOLO. In addition,
we defined the hyperparameters that were also utilized in DeepLab for training as follows: 0.006 for
learning rate, 0.0005 for decay, 0.9 for momentum, ReLU as the activation function, and 30,000 for the
epoch. In the training step of each method, a pretrained model through ResNet with COCO dataset
was exploited. We then used 432 test frames, consisting of sunlight and low-contrast conditions in
the pen, as well as normal conditions. From the test step from each method, YOLO9000 generated
bounding boxes on the pigs and DeepLab conducted semantic segmentation between foreground
(i.e., pigs) and background (i.e., floor and wall). However, both of the methods could not detect some
pigs located at the corner or in the area of sunlight, as compared to the proposed method. Figure 10
shows the results of the detected pigs for each method in the various illumination conditions.

820 822 233

Infrared frame Depth frame YOI.09000 Deepl.ab Proposed
(a)

Infrared frame Depth frame YOIL.O9000 Deepl.ab Proposed
(b)

Figure 10. The results of each method for pig detection: (a) the results with a low-contrast image and
(b) the results with a sunlight image.

In the experimental results for detecting the pigs through the proposed method and the deep
learning-based methods, we calculated the pig detection accuracy for comparing the performance of
each method. We calculated the precision, recall, and the detection accuracy (denoted as ACC) as the
intersection-over-union [57] for each method using the following equations:

.. TP
Precision = m, 1)
TP
Recall = ———— 2
Ot = TP ¥ EN’ @
TP
ACC 3)

~ TPLFEN + FP’
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where true positive (I'P) means a pixel on the pig predicted as the pig, false positive (FP) means a pixel
on the background predicted as the pig, and false negative (FN) means a pixel on the pig predicted as
the background, respectively. As shown in Figure 10, for example, we represented the false detected
pixels for pigs (i.e., FP as false pig and FN as false background) as the red and green colors, respectively,
from the results of each detection method. In the experimental results, the precision of each method
was respectively measured as 0.79 (YOLO9000 method), 0.91 (DeepLab method), and 0.92 (proposed
method). Also, the recall of each method was derived as 0.64 (YOLO9000 method), 0.88 (DeepLab
method), and 0.86 (proposed method). Lastly, the detection accuracy (i.e., ACC) was measured as
0.54 (YOLO9000 method), 0.79 (DeepLab method), and 0.79 (proposed method), as shown in Table 3.
By carefully fusing the depth and infrared information, the proposed method could also provide a
higher accuracy than the deep learning-based methods.

Table 3. A comparison of the average performance.

Method Accuracy Execution Real-Time Accuracy
etho Precision Recall ACC Time (ACCRealTime)
YOLO [54] 0.79 0.64 0.54 14.65 ms 0.80
DeepLab [55] 0.91 0.88 0.79 264.83 ms Undefined
FastPigDetect 0.92 0.86 0.79 8.71 ms 0.95
(Proposed)

In addition, the execution time for each method was measured in order to verify the real-time
requirements on pig detection. As shown in Table 3, YOLO9000 could provide faster results than
DeepLab. By applying simple but effective image processing techniques without any time-consuming
techniques, the proposed method could provide much faster results than YOLO9000. Note that the
deep learning-based methods have a huge number of weights to be computed and thus required
tens or hundreds of milliseconds to detect the pigs from one image, even with a powerful GPU.
On the contrary, the execution time of the proposed method was measured with a single CPU core.
If we parallelize the simple pixel-level operations of the proposed method, then we can improve the
execution speed of the proposed method further.

For real-time video stream applications such as 24 h pig monitoring or autonomous driving [58],
we need to maximize the accuracy while satisfying the real-time constraint. Generally, there is a
tradeoff between accuracy and the computational resources required. That is, a higher accuracy
requires more computational resources, whereas less computational resources drive a lower accuracy.
Thus, the tradeoff between accuracy (i.e., ACC) and processing speed (i.e., FPS) should be analyzed
for the 24 h pig monitoring application. Similar cases have been analyzed by the video compression
community to control the power consumption of an embedded computer and to maximize the
compressed video quality [59,60]. For the purpose of explanation, we define “real-time accuracy’
(denoted as ACCRreatime) as follows.

To derive the collective (i.e., ACC vs FPS) performance of a method X, we first represent the
performance of method X in the two-dimensional domain of FPS (i.e., x axis) and ACC (i.e., y axis) as
shown in Figure 11a:

7

Performance = (Xpps, Xacc), where0 < Xacc < 1. 4)

Then, we assume two hypotheses: first, the upper limit of X 4cc with an unlimited computational
resource (i.e., Xpps= 0) is 1 (see the black point at (0, 1) shown in Figure 11a); second, each
computational step of method X contributes to the accuracy equally. In addition, the real-time
criterion for a video stream application such as 24 h pig monitoring is set to 30 FPS (see the dashed
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line shown in Figure 11a). For the detection accuracy of method X at 30 FPS, we estimate the real-time
accuracy of method X by using the two points (0, 1) and (Xgps, Xacc) by using Equation (5) and (6):

X/ acc if X'acc 20,
ACC ime = i
RealTime { undefined otherwise. ®
30 30
Where X/ acc = %.XACC + (1 — Xrps ) . 6)

For example, we can represent the performance of three methods (i.e., A, B, and C) in the
two-dimensional domain of FPS and ACC, as shown in Figure 11a, as Apps < 30 and Brps > 30,
Alacc < Aacc and B/ gcc > Bacc. However, the real-time accuracy of method C is undefined because
C’acc < 0. It means that method C cannot satisfy the real-time requirement due to the relatively low
accuracy in terms of its resource consumption. Figure 11b shows the possible area where ACCreuiTime
can be defined. That is, the real-time accuracies of the proposed and YOLO9000 methods could be
defined sufficiently, whereas the DeepLab method could be defined marginally with the very low
real-time accuracy on our experimental setup. Especially, the precise detection of the pigs using
DeepLab was very difficult in low-contrast and sunlight environments, and the huge computational
workload required for semantic segmentation was also burdened for real-time pig detection. On the
contrary, the proposed method (i.e., FastPigDetect) could provide a reasonable accuracy with much
less computational workload. As described in Section 1, it is necessary to establish a complete and
automatic monitoring application in real-time for our final goal involving both intermediate- and
high-level vision tasks. That is, detecting pigs should be performed as fast as possible by considering
the further procedures of both intermediate- and high-level vision tasks. With less time-consuming
techniques, it is able to establish a real-time monitoring application for pig involving both intermediate-
and high-level vision tasks.

Although the FastPigDetect method could detect the pigs in real time by applying simple image
processing through data modality between infrared and depth information, it is necessary to develop
a parameter-optimized pig detection method. It means that the generalization for other modality
images or other pig room data may be impossible with the current proposed method because the
parameter of the proposed method by using both depth and infrared information were optimized for
our experimental pig room only. In fact, the contribution of the proposed method is to detect the pigs in
real time from various illumination conditions including intense sunlight in a pig room. It is important
to develop a general pig detection algorithm whose parameters are determined automatically for
commercial products. However, other parameters for the Rol setting or morphological operation
(e.g., dilation/erosion) should be optimized according to the structure of a pig room (e.g., shape of
floor/wall or size of a pig room) or the camera installation environment (e.g., installation height).
Even though the generalization capability is out of scope of this study, the capability is required for
commercial products, and it will be an interesting future work.

Furthermore, our proposed method exploited both infrared and depth information, but the deep
learning-based methods only used infrared information. In the previous study [39], the YOLO model
trained with depth information was used to detect only standing pigs in a pig room. When training
the YOLO model with only depth information, however, the detection performance for standing and
lying pigs through YOLO was not acceptable. Since detecting lying pigs was much more difficult
than standing pig detection due to inaccurate depth values, for accomplishing our goal in this study,
we conducted training and testing with YOLO by only using infrared information. As shown in
Figure 1, the infrared information has more accurate pixel values than depth information. However,
multimodal learning has several research issues. Thus, we will explore how the pig detection accuracy
through the deep learning-based method is improved by using depth information as an additional
channel with infrared information, as well as fine-tuning the deep learning architecture.
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Figure 11. A comparison of each method by using various performance metrics: (a) the illustration
of the real-time accuracy in the two-dimensional domain of processing speed (i.e., FPS) and accuracy
(i.e., ACC) and (b) the comparison of the real-time accuracy between the proposed method and deep
learning-based methods. The shadow area shows the range of ACC of which the ACCRreyTine can
be defined.

5. Conclusions

In a surveillance environment on a realistic pig farm, fast pig detection is important to efficiently
manage the pigs for their health care. Nevertheless, there is a problem that pigs could not be accurately
detected because of various illumination conditions in a realistic pig farm. With an infrared camera,
for example, the gray values of pigs located at the four corners are generally darker than those of pigs
located at center locations. In particular, sunlight through a window at daytime makes it difficult to
separate pigs from the neighboring wall and floor.
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In this study, we concentrated on detecting pigs in real time under various illumination conditions
to analyze the behaviors of individual pigs with the final goal of the consistent monitoring during
24 h. In other words, we proposed a pig detection method at daytime and nighttime with less
time-consuming techniques. As an initial step for preprocessing, a spatiotemporal interpolation
technique was applied to remove the noise caused by sunlight. Then, we detected pigs by carefully
fusing the depth and infrared information and applying image processing techniques. In particular,
we applied simple but effective image processing techniques only (i.e., without any time-consuming
techniques, such as frequency- or optimization- or deep learning-based detections) with both previous
and current frame information in order to make the final goal of intelligent pig monitoring run in
real time.

Based on the experimental results for 432 video frames (including 3888 pigs) over 24 h,
we confirmed that all 3888 pigs could be detected correctly (while the accuracy with ground-truth
was 0.79) in real time (i.e., 114 FPS). Compared with the state-of-the-art deep learning-based methods,
the proposed method could detect pigs more accurately and more quickly. We will extend this study
to develop a real-time tracking system for individual pigs over 24 h for the management of individual
pigs as the final goal.
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