
symmetryS S

Article

Analysis of Open Source Operating System Evolution:
A Perspective from Package Dependency
Network Motif

Jing Wang *, Youguo Li, Yusong Tan, Qingbo Wu and Quanyuan Wu

College of Computer, National University of Defense Technology, Changsha 410073, China;
ling08457@163.com (Y.L.); tanyusong@kylinos.cn (Y.T.); wuqingbo@kylinos.cn (Q.W.);
wuquanyuan@126.com (Q.W.)
* Correspondence: wangjing@kylinos.cn

Received: 25 January 2019; Accepted: 21 February 2019; Published: 27 February 2019
����������
�������

Abstract: Complexity of open source operating systems constantly increase on account of their
widespread application. It is increasingly difficult to understand the collaboration between
components in the system. Extant research of open source operating system evolution is mainly
achieved by Lehman’s law, which is conducted by analyzing characteristics such as line of the source
code. Networks, which are utilized to demonstrate relationships among entities, is an adequate
model for exploring cooperation of units that form a software system. Software network has become
a research hotspot in the field of software engineering, leading to a new viewpoint for us to estimate
evolution of open source operating systems. Motif, a connected subgraph that occurs frequently in
a network, is extensively used in other scientific research such as bioscience to detect evolutionary
rules. Thus, this paper constructs software package dependency network of open source software
operating systems and investigates their evolutionary discipline from the perspective of the motif.
Results of our experiments, which took Ubuntu Kylin as a study example, indicate a stable evolution
of motif change as well as discovering structural defect in that system.

Keywords: open source operating system evolution; package dependency network; complex network;
network motif

1. Introduction

The scale and complexity of open source operating systems are growing at an alarming rate with
the rising complexity of application environments and demands of society. Moreover, that growth will
continue as the system improves. The open source code characteristic of open source operating system
determines that it has obvious dynamics and rapid development. Bug correction and addition of new
functions make the operating system software iterate continuously, which results in continued and fast
rise and change in its version number. Huge scale of operating system software, accompanied by the
continuous upgrading of software system complexity, will also complicate software system elements’
interactions, cognition as well as the problems described by software. The combination of various
factors has increased the complexity of open source operating system software beyond developers’
understanding, making them more difficult to comprehend and maintain.

Emergence of complex network theory has caught the attention of researchers in different fields.
Using a network model to describe and characterize large-scale real systems is helpful to analyze the
structural properties, dynamic behavior and evolutionary mechanism of the system. The structure
of many biological systems, such as protein-interacting networks and metabolic networks, and
engineering artifacts of human society such as the Internet and World Wide Web exhibit common
statistical characteristics of “small world” and “scale-free”. Open source operating systems are

Symmetry 2019, 11, 298; doi:10.3390/sym11030298 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/11/3/298?type=check_update&version=1
http://dx.doi.org/10.3390/sym11030298
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 298 2 of 11

comprised of elements of different granularity that interact with each other in various ways. They
can be viewed from the perspective of a network, and the many reusable elements in the system
can be regarded as nodes. The relationships between these nodes constitute a complex network of
dependencies [1,2].

Current evolution of open source operating system is mainly analyzed by Lehman’s law [3].
Specifically, analysis of evolution of open source operating system is conducted by evaluating eight
aspects of their source code including continuing change, increasing complexity, self-regulation,
conservation of organizational stability, conservation of familiarity, continuing growth, declining
quality and feedback system. At present, less attention has been given to the structural characteristics
of open source operating system. However, structural analysis is of great significance in studying the
principles of software evolution, system maintenance and reconstruction. Lacking explicit and direct
support for structural changes, software systems can become complex and difficult to understand,
leading to problems such as poor understandability and predictability in adapting to changing
requirements. The emerging interdisciplinary study of network science and software engineering
represented by complex network research provides a new research idea to study the evolution law
of open source operating system structure from the perspective of network topology. Evolution
rules of the software system in the process of version iteration can be observed according to the
quality of the new version of the software caused by unique structural characteristics. According to
information recording form the process of software evolution, software engineers may obtain a better
understanding of software evolution, thus reducing unnecessary time and cost of manpower and
material resources consumption as well as laying a foundation for better control and prediction of
future software changes [4].

Researchers have conducted extensive empirical studies on the topological properties of a large
number of real networks in different fields. Various network topology models are proposed from
different aspects. Network topology is characterized by the average path length, clustering coefficient
and degree distribution. However, traditional definitions such as clustering coefficient and vertex
degree do not take into account structural characteristics of motifs in the network, which leads to a
deficiency in the study of network topology and evolution rules.

A motif is a connected subgraph with a stable structure in a complex network, which is usually
comprised of three or four nodes, among which there are stable cooperation and dependence relations.
As the basic building block of a complex network, a motif is mainly utilized to analyze and study
structural characteristics and formation mechanism of complex systems from the internal structure
hierarchy. Thus, it is suitable for estimating structural features and evolution rules of complex systems.
Since the theory was put forward, it has attracted wide attention in many fields of scientific research
and has made remarkable achievements. In recent years, motif has been extensively used in research
and development of life sciences, such as protein network, gene transcription network, neuron network,
brain network and so on. The same applies to areas of social science research, such as networking,
scientist collaboration networks, as well as engineering science research, such as the AS-level topology
of the Internet [1,5–7].

The concept of motif was first proposed by [8]. The authors analyzed several kinds of real-world
networks and found that networks with similar functions have the exact same motifs. Later, they
brought up a concept to measure the importance of motif: Z-score [9]. All of [1,6]’s work have pointed
out the significance of motif in the evolution of network topology. Reference [10] studied motif
structure of the world trade network and described the structural characteristics of 13 three-node
motifs and their importance in the network. Xu et al. put foreword a motif-preserving network
representation learning algorithm, seeking to take account of network motif structure features when
representing a network node vector in machine learning technology [2,3,6–8,10–13].

Frequent occurrence of network motif may indicate the patterns fostered by the growth and
evolution of complex networks. To wit, it may be the evolutionary trend of networks. Hence, motif
theory is of great significance in researching the formation mechanism of networks. Once there is a set



Symmetry 2019, 11, 298 3 of 11

of motifs in the software network, their incessant appearance may be an embodiment of commonly
used modules in the software, reflecting a potential schema of cooperation and reuse of the software
elements. However, at present, in the field of software engineering, there is little research on the
software network motif, especially the open source operating system software package network motif,
and it has not yet been applied in the process of version evolution analysis. Therefore, this paper
investigates open source operating system evolution from the perspective of the package dependency
network motif for the sake of discovering potential cooperation and reusing schema in software
development [4,9,14–20]. Specifically, this manuscript makes three main contributions:

1. It establishes software package dependency network for open-source operating system, which
regarding packages as nodes and dependency relationships as edges among nodes.

2. On account of software package dependency network, this paper employs Rand_ESU algorithm
to detect motif structures.

3. This paper takes Ubuntu Kylin Linux as a research object and explores motif evolution of
the system.

The rest of this manuscript are organized as follows. Section 2 describes the establishment of an
open source operating system package dependency network. Section 3 gives a detailed description
of network motif and its detection algorithm. Section 4 presents experimental results of motif
structures through the evolution of Ubuntu Kylin Linux as well as analyzing the internal rules.
Finally, conclusions are provided in Section 5.

2. Package Dependency Network

2.1. Open Source Operating System Package

Current mainstream open source operating system organizes installable software units as
software packages when releasing their distribution version. Releasers also provide corresponding
software package management and distribution systems to manage numerous interdependent software
packages, assisting users to obtain, install, delete or update their requisite software packages.
A package, which is compressed binary archives, contains all the required data to describe its attributes
and requirements referring to the environment in which they will be deployed in order to maintain a
correct function. Namely, it includes program, data and associated configuration files of the published
software, along with metadata describing the name, version and dependencies of that software package.
Metadata accomplishes the following functions:

• They are used to create user accounts on a system.
• They help to set ownership and permissions of related files after installation of the system.
• They provide creation or modification of configuration files that are not actually contained in the

.Rpm or .Deb file, which are two fundamental patterns of released software packages.
• They assist running shell commands as root, which has a super power of the system.
• They specify dependency of the current package.

2.2. Software Package Dependency Network

Open source operating systems contain divers’ typical data types, such as classes, functions,
and software packages. Interaction of these internal structural units is a reflection of the dependency
relationship. Structural units that complete basic tasks are constantly reused and they need to cooperate
with each other to complete their own tasks as well as the functions of the whole software system.
The purpose of software design and development is to establish an optimal or better dependency
structure. Therefore, this paper constructs the open source operating system as a network model,
taking software packages as the smallest structural unit for research, abstracting software packages as
nodes, and dependencies between software packages as edges.



Symmetry 2019, 11, 298 4 of 11

This paper defines an open source software package dependency network as G = (V, E), which is
an unweighed directed graph. Concretely, V is a set of vertices; each vertex depicts a software package.
E, edges set, denotes a collection of dependent relationship among software packages. An edge
combines two dependent packages together. When there is a dependent relationship between vi and
vj, such as vj depends on vi, there is an edge pointing from vi to vj. In the physical sense, package
represented by vj is derived from package shown by vi. Edges in an open source software package
dependency network are directed. Furthermore, the path between vertices in the network is fixed.
That is to say, by removing of some edges, the relationships illustrated by those edges in the system
become nonexistent, which may lead to failure of compilation and running.

The following Algorithm 1 is used by this paper to extract open source software package
dependency network.

Algorithm 1 Framework of extracting package dependency network.

1: for i = 1 to n do

2: initialize all vertices, vi ← package names
3: end for
4: for i = 1 to n do

5: for j = 1 to i− 1, i− 1 to n do

6: scan the dependencies list of vi
7: add an edge when dependency exit between vi and vj
8: end for
9: end for

10: delete redundant edges
11: store the graph as a table
12: visualization

In this paper, six versions of Ubuntu Kylin operating system software dependency network are
portrayed in our experiments. As a Chinese distribution of Ubuntu, distributor released their first
distribution by 2013. From then on, six stable versions were produced. Thus, experiments of extracting
package dependency network is conducted from official versions of 13–18. However, as time goes
by, quantity and variety of installed software packages differ from one user to another on account
of their own using habits. Therefore, all of our experiments are accomplished by using the original
version of the system, videlicet, the original released version. Figure 1 summarizes holistic structures
of six operating system software package dependency networks. Gpephi, which is an open-source
tool, was utilized to realize visualization of all networks. All networks in Figure 1 are demonstrated in
modularity and each color represents a unique module. Nodes inside a module are highly connected
with each other while there are few connections among modules.



Symmetry 2019, 11, 298 5 of 11

(a) 13.10 (b) 14.10

(c) 15.10 (d) 16.10

(e) 17.10 (f) 18.10

Figure 1. Software package dependency network of Ubuntu Kylin from version 13.10 to 18.10.

3. Network Motif and Its Detection

Although the structure of a complex network is complicated and changeable, the primary pattern
and process of forming a network have certain rules. In recent years, researchers in the field of
complexity science have analyzed many real systems and found that the emergence of multiple
relationships in a network is not random. These structures form typical connection modes in a network,
namely certain connections between structure units in a network repeatedly appear. Furthermore,
these connection methods occur with disparate frequencies in different networks. That is to say,
different categories of networks acquire distinct types of representative connection mode. In 2002,
Reference [8] named this connected mode, which appears more often in real networks compared to in
the random networks, as network motif. Network motif which can reveal the design principle of a
complex network structure is considered as the fundamental building block of network.



Symmetry 2019, 11, 298 6 of 11

3.1. Definition of Network Motif

The so-called network motif is a kind of repeated connected subgraph pattern in a network, and
these subgraph patterns must satisfy the following conditions:

1. The frequency of occurrence in the input network graph is significantly higher than that in a
series of random network graphs generated from the input network and having the same degree
sequence with it.

2. The probability that the frequency of the subgraph in the random network corresponding to the
input network is greater than the frequency of its occurrence in the input network is very small.

3. The frequency of such connected subgraphs in the input network is not less than a certain lower
limit value. Here, subgraphs of the same type refer to all isomorphic subgraphs.

A connected graph is a graph in which nodes can reach each other. Theoretically, there are at
most two kinds of relations between two nodes in a directed network, while three nodes can form
13 different connections. The connected subgraph of two nodes and three nodes are shown in Figure 2.

(a) 2-nodes motif structure

(b) 3-nodes motif structure

Figure 2. Motif structures with two and three nodes

3.2. Detection Algorithm of Network Motif

Detection of a motif in a network includes two parts: the first one is statistic of subgraph in
a random network, which is generated with the same scale and connection methods of the input
network. The second part is the processing of graph isomorphism. General procedure to detect a motif
is as follows:

1. Label the nodes in the input network and generate a random network set.
2. Search the labeled graph by traversal subgraph, and sample the subgraph according to a certain

sampling method.
3. Make isomorphic judgment and classification on the sampled subgraph. Record the frequency of

the corresponding subgraphs and obtain the set of subgraphs.
4. According to the frequency of each kind of subgraph, the appropriate significant judgement

indicator is calculated to determine whether it is a motif.

3.2.1. Significant Judgment Method

According to previous description about motif and its detection, it is known that a motif is a
series of connected subgraph in a real network that satisfies certain conditions, which are significant
judgment indicators. A significant judgment method of motifs is a statistical method. Frequency of all
kinds of possible subgraphs in the input network as well as a random network is counted to calculate
a reasonable index value, and then make a corresponding judgment according to the index value.
Z-score [9], P-value [9] and frequency of a motif [9] are three indicators utilized to determine a motif.



Symmetry 2019, 11, 298 7 of 11

For a given subgraph V with n nodes, when regarding its frequency of occurrence in the actual
network as n(V), the total time of occurrence of all subgraphs with n nodes as N, the frequency of
occurrence of subgraph V is:

f (V) =
n(V)

N
(1)

Once the subgraph is a motif of a network, its frequency is identified as frequency of a motif.
Significance level, which is represented by Z-score, refers to the quantitative extent to which the

frequency of subgraphs in the real network is higher than that of a group of random networks. It is
a necessary indicator to determine whether a subgraph is a motif. Z-score can be acquired through
following equation.

Z-score =
Nreal − 〈Nrand〉

std(〈Nrand〉)
(2)

〈Nrand〉 =
∑n

i=1 Ni−rand
n

(3)

std(〈Nrand〉) =

√√√√ n

∑
i=1

(Ni−rand − 〈Nrand〉)2

n− 1
(4)

where Nreal represents the number of time the subgraph appears in the real network; Ni−rand is the
time of the subgraph appearing in the ith randomized network; 〈Nrand〉 demonstrates the average
occurrence of a subgraph in n random networks; and std(〈Nrand〉) is the standard variance of a subgraph
occurrence in n random networks.

P-value represents the probability that a subgraph is not significant. When the probability of a
subgraph appearing in a real network smaller than that in a random network is less than a threshold.
In this condition, this subgraph meets the judging criteria. Definition of P-value is as follows:

P-value = ∑n
i=1 Pi

n
(5)

If the number of occurrence of subgraphs in the ith random network is greater than or equal to
that of the actual network, then Pi equals to 1, otherwise it will be set to 0.

In summary, a candidate subgraph cam be identified as a motif when it satisfies following conditions:

1. P-value ≤ P
2. Z-score ≥ D
3. f(V) > U

P, D and U illustrate three threshold values, accordingly. The exact value used by [8], respectively,
were 0.01, 2, and 4. The number of random networks they selected was 1000.

3.2.2. Detection Algorithm

Two classical approaches are utilized to discover network motif, ESA [16] and Rand_ESU [16],
which are on the basis of edge sampling and vertex sampling, respectively. As Rand_ESU makes
up ESA’s defect of sampling bias, the probability of each subgraph node being accessed is the same.
Hence, this paper employs Rand_ESU algorithm to explore software package dependency network’s
motif. Detailed steps of this algorithm are described at Algorithms 2 and 3.



Symmetry 2019, 11, 298 8 of 11

Algorithm 2 Framework of Enumerate Subgraphs: Rand_ESU.

Input: A Graph G = (V, E) and an integer 1 ≤ k ≤ |V|
Output: All size-k subgraph in G

1: for each vertex v ∈ V do

2: VExtension ← {u ∈ N({v}) : u > v}
3: with probability pd call ExtendSubgraphs({v}, VExtension, v)
4: end for
5: return

Algorithm 3 Framework of Extend Subgraphs: ExtendSubgraphs.

Input: A Graph G = (V, E) and an integer 1 ≤ k ≤ |V|
Output: Size-k subgraph in G

1: if |VSubgrpah| = k then

2: output G[VSubgrpah]
3: end if
4: while VExtension 6= NULL do

5: remove and arbitrarily choose vertex ω from VExtension
6: V

′
Extension ← VExtension

⋃{u ∈ Ngxcl(ω, VSubgrpah) : u > v}
7: with probability pd call ExtendSubgraphs(VSubgrpah

⋃{ω}, V
′
Extension, v)

8: end while
9: return

4. Results

For software reuse, developers often use the same design patterns, software artifacts, and
subsystems that describe relationships between three or four objects to construct software systems
with different functions. Therefore, we can study the local and global structural characteristics of a
software system as well as the growth and evolution rules of the software system by investigating
motifs with three or four nodes in a software network. In this paper, Rand_ESU algorithm is selected
to perform motif detection of above six package dependency network of Ubuntu Kylin obtained in
the previous section. This algorithm is quick and has the ability to detect more types of motifs. It is
appropriate for detecting motifs of networks with diverse sizes. It was found that, despite the unique
value of significant indicators, all six versions of Ubuntu Kylin operating system share the same motif
structure. Figure 3 presents motif structures of all the dependency networks. Tables 1–6 give the
detailed information about their value of three significant judgment indicators.

(a) 6 (b) 38 (c) 46 (d) 166

Figure 3. Motif structure of Ubuntu Kylin software package dependency network from version 13.10
to 18.10. The number of each motif is given by detection algorithm. Here, this paper uses them directly.

Table 1. Motif of version 13.10 software package dependency network.

ID Frequency Average Frequency Standard Deviation Z-Score p-Value

6 92.815% 92.344% 0.00023674 19.86 0
38 1.2974% 0.76752% 0.00028327 18.705 0
46 0.017378% 0.00043124% 6.66 × 10−6 25.445 0

166 0.0045094% 0.0018502% 3.2985 × 10−6 8.0619 0



Symmetry 2019, 11, 298 9 of 11

Table 2. Motif of version 14.10 software package dependency network.

ID Frequency Average Frequency Standard Deviation Z-Score p-Value

6 94.142% 93.705% 0.00021961 19.902 0
38 1.1316% 0.65306% 0.00025559 18.723 0
46 0.01449% 0.0003343% 5.8019 × 10−6 24.397 0

166 0.0022178% 0.0011312% 2.0729 × 10−6 5.242 0

Table 3. Motif of version 15.10 software package dependency network.

ID Frequency Average Frequency Standard Deviation Z-Score p-Value

6 93.846% 93.384% 0.00021671 21.36 0
38 1.1809% 0.66908% 0.00025403 20.149 0
46 0.014658% 0.00011946% 1.4697 × 10−6 98.921 0

166 0.0028834% 0.0011805% 2.1485 × 10−6 7.9264 0

Table 4. Motif of version 16.10 software package dependency network.

ID Frequency Average Frequency Standard Deviation Z-Score p-Value

6 93.729% 93.259% 0.00015969 29.414 0
38 1.0851% 0.5749% 0.00018688 27.299 0
46 0.019033% 0.00017485% 1.9217 × 10−6 98.132 0

166 0.0022191% 0.00084671% 1.9515 × 10−6 7.0327 0

Table 5. Motif of version 17.10 software package dependency network.

ID Frequency Average Frequency Standard Deviation Z-Score p-Value

6 93.911% 93.466% 0.000169969 26.2 0
38 1.0488% 0.56156% 0.00017915 27.198 0
46 0.018577% 0.0033692% 6.1828 × 10−5 2.4597 0

166 0.0019555% 0.00073805% 1.5201 × 10−6 8.0085 0

Table 6. Motif of version 18.10 software package dependency network.

ID Frequency Average Frequency Standard Deviation Z-Score p-Value

6 93.271% 92.815% 0.00015638 29.166 0
38 1.0802% 0.57927% 0.00018556 26.995 0
46 0.018186% 3.8517 × 10−5% 7.6252 × 10−7 237.99 0

166 0.0024383% 0.0009276% 2.1076 × 10−6 7.16709 0

As can be observed in the above six tables, motifs in the software package dependency networks
of Ubuntu Kylin operating system have been relatively stable during version evolution process.
Each version has four network motifs of the same type. Except version 17.10, four motifs of other
versions seem to be of similar importance. It can be discovered from these motifs that the internal
connection of the module also presents the phenomenon of preferred choice. Stable evolution of
motifs demonstrates a robustness and stability of Ubuntu Kylin operating system evolution. However,
through the estimation of motif mining, it is revealed that connected subgraphs with ring topology
exist with a relatively higher proportion of 50%. Even the Z-score of these motifs in some versions are
very high. It can be seen from the above description that the larger Z-score is, the more important the
motif is in the network. Since ring structure in a network predicts a lower stability of the network, for
the sake of improving system complexity and readability, loops should be prevented. Thus, developers
must pay attention to the software packages that generate loops in the distribution. Figure 4 depicts
the number of bidirectional edges in the evolution of Ubuntu Kylin operating system.



Symmetry 2019, 11, 298 10 of 11

Figure 4. Evolution trend of bidirectional edges.

It can be seen from the above figure that the bidirectional edges of the ring structure tend to
decrease in the process of version evolution. However, there are still 15 pairs of edges that go both
ways. Therefore, system developers must further decompose the dependencies of these software
packages, which are unstable factors in the software structure. Table 7 lists part of packages that
interdependent with each other.

Table 7. Packages that are interdependent with each other.

ID Source Package Target Package

1 gconf-service gconf-service-backed
2 grub-pc grub-gfxpayload-lists
3 libc6 libgcc1
4 perl-module perl
5 python3-update-manager python3-distupgrade

5. Conclusions

The traditional software structure measurement method has difficulty describing and measuring
the change of the whole structure of a large software system. This paper describes the software
architecture of open source operating system based on network architecture and explores its motif
architecture. The stability of motif reflects the microstructure stability of the entire structure of the
software system. Studying the stability of motif is helpful to understand the stability of the software
network and its influencing factors. It provides strong support for testing the defects of structural
design and ensuring the reliability of the system. Through experiments, the authors discovered that
the software package dependency network motif of open source operating system is relatively stable in
the process of version evolution. However, connected subgraphs with ring topology appear in higher
proportion in the motif structure. System developers must further decompose the dependencies of
these software packages to eliminate instability in the software structure.

Author Contributions: Conceptualization, J.W. and Q.W. (Qingbo Wu); methodology, J.W.; software, J.W. and
Y.L.; validation, J.W. and Y.T.; formal analysis, J.W., Y.T., and Q.W. (Qingbo Wu); investigation, J.W, Y.T., and Q.W.
(Qingbo Wu); resources, Y.L.; data curation, Y.L.; writing—original draft preparation, J.W.; writing—review and
editing, Y.T. and Q.W. (Qingbo Wu); supervision, Q.W. (Quanyuan Wu); project administration, Q.W. (Qingbo Wu);
and funding acquisition, Y.T.

Funding: This work was funded by the National Natural Science Foundation of China under grant No. 61872444
and the National Key Research and Development Program of China under grant No. 2018YFB1003602.

Acknowledgments: We would like to thank Ji Wang for his kindly advice regarding this manuscript as well as
the anonymous reviewers for their constructive suggestions on improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2019, 11, 298 11 of 11

References

1. Barabási, A.L. The network takeover. Nat. Phys. 2012, 8, 14–16. [CrossRef]
2. Luciano, F.; Rodrigues, A.; Travieso, G.; Boas, V.P.R. Characterization of complex networks: A survey of

measurements. Adv. Phys. 2007, 56, 167–173.
3. Chauhan, M.A. A Survey of Open Source Software Evolution Studies. In Procedings of the 17th Asia Pacific

Software Engineering Conference, Sydney, Australia, 30 November–3 December 2010; Volume 4, pp. 163–173.
4. Breivold, H.P.; Crnkovic, I.; Larsson, M. A systematic reviwe of software architecture evolution research.

Inf. Softw. Technol. 2012, 54, 16–40. [CrossRef]
5. Milo, R.; Shen-Orr, R.; Itzkovitz, S. Network Motifs: Simple Building Blocks of Complex Networks. Science

2002, 298, 824–827. [CrossRef] [PubMed]
6. Barabási, A.L.; Oltvai, Z.N. Network biology: Understanding the cells functional organization. Nature 2004,

5, 101–113. [CrossRef] [PubMed]
7. Xu, L.; Huang, L.; Wang, C. Motif-Preserving Network Representation Learning. J. Front. Comput. Sci. Technol.

2019, 0, 1–11.
8. Shen-Orr, S.S.; Milo, R. Network motifs in the transcripthinal regulation network of Escherichia coli.

Nat. Genertics 2002, 298, 64–68. [CrossRef] [PubMed]
9. Milo, R.; Itzkovitsz, S.; Kashtan, N. Superfamilies of evolved and designed networks. Science 2004, 303,

1538–1524. [CrossRef] [PubMed]
10. Benson, A.R.; Gleich, D.F.; Leskovec, J. Higher-order organization of complex networks. Science 2016, 353,

163–166. [CrossRef] [PubMed]
11. Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [PubMed]
12. Suartini, T.; Garlaschelli, D. Tradic motifs and dyadic self-organization in the World Trade Network.

In Proceedings of the International Workshop on Self-Organizing Systems, Delft, The Netherlands, 15–16
March 2012; Volume 56, pp. 24–35.

13. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications.
Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2017, 40, 52–74.

14. Garlaschelli, D.; Ruzzenenti, F.; Basosi, R. Complex networks and symmetry I: A review. Symmetry 2010, 2,
1683–1709. [CrossRef]

15. Ball, F.; Geyer-Schulz, A. How symmetric are real-world graphs? A large-scale study. Symmetry 2018, 10, 29.
[CrossRef]

16. Kashtan, N.; Itzkovitsz, S.; Milo, R. Topological generalization of network motifs. Phys. Rev. E 2004, 70,
031909. [CrossRef] [PubMed]

17. Martin, D.H.; Cordy, J.R. On the maintenance complexity of makefiles. In Proceedings of the 7th International
Workshop on Emerging Trends in Software Metrics, Austin, TX, USA, 14–22 May 2016; Volume 53, pp. 14–22.

18. Kumar, L.; Misra, S.; Ratha, S.K. An empirical analysis of the effectiveness of software metrics and fault
prediction model for identifying faulty classes. Comput. Stand. Interfaces 2017, 53, 1–32. [CrossRef]

19. Jaafar, F.; Lozano, A.; Guhneuc, Y.; Mens, K. Analyzing software evolution and quality by extracting
Asynchrony change patterns. J. Syst. Softw. 2017, 131, 311–322. [CrossRef]

20. Rodríguez, M.A. Graphicality conditions for general scale-free complex networks and their application to
visibility graphs. Phys. Rev. E 2016, 94, 012314. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nphys2188
http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://dx.doi.org/10.1126/science.298.5594.824
http://www.ncbi.nlm.nih.gov/pubmed/12399590
http://dx.doi.org/10.1038/nrg1272
http://www.ncbi.nlm.nih.gov/pubmed/14735121
http://dx.doi.org/10.1038/ng881
http://www.ncbi.nlm.nih.gov/pubmed/11967538
http://dx.doi.org/10.1126/science.1089167
http://www.ncbi.nlm.nih.gov/pubmed/15001784
http://dx.doi.org/10.1126/science.aad9029
http://www.ncbi.nlm.nih.gov/pubmed/27387949
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.3390/sym2031683
http://dx.doi.org/10.3390/sym10010029
http://dx.doi.org/10.1103/PhysRevE.70.031909
http://www.ncbi.nlm.nih.gov/pubmed/15524551
http://dx.doi.org/10.1016/j.csi.2017.02.003
http://dx.doi.org/10.1016/j.jss.2017.05.047
http://dx.doi.org/10.1103/PhysRevE.94.012314
http://www.ncbi.nlm.nih.gov/pubmed/27575155
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Package Dependency Network
	Open Source Operating System Package
	Software Package Dependency Network

	Network Motif and Its Detection
	Definition of Network Motif
	Detection Algorithm of Network Motif
	Significant Judgment Method
	Detection Algorithm


	Results
	Conclusions
	References

