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Abstract: Genetic algorithm (GA), a global search method, has widespread applications in various
fields. One very promising variant model of GA is the island model GA (IMGA) that introduces
the key idea of migration to explore a wider search space. Migration will exchange chromosomes
between islands, resulting in better-quality solutions. However, IMGA takes a long time to solve the
large-scale NP-hard problems. In order to shorten the computation time, modern graphic process unit
(GPU), as highly-parallel architecture, has been widely adopted in order to accelerate the execution
of NP-hard algorithms. However, most previous studies on GPUs are focused on performance only,
because the found solution qualities of the CPU and the GPU implementation of the same method
are exactly the same. Therefore, it is usually previous work that did not report on quality. In this
paper, we investigate how to find a better solution within a reasonable time when parallelizing IMGA
on GPU, and we take the UA-FLP as a study example. Firstly, we propose an efficient approach
of parallel tournament selection operator on GPU to achieve a better solution quality in a shorter
amount of time. Secondly, we focus on how to tune three important parameters of IMGA to obtain
a better solution efficiently, including the number of islands, the number of generations, and the
number of chromosomes. In particular, different parameters have a different impact on solution
quality improvement and execution time increment. We address the challenge of how to trade off
between solution quality and execution time for these parameters. Finally, experiments and statistics
are conducted to help researchers set parameters more efficiently to obtain better solutions when
GPUs are used to accelerate IMGA. It has been observed that the order of influence on solution
quality is: The number of chromosomes, the number of generations, and the number of islands,
which can guide users to obtain better solutions efficiently with moderate increment of execution
time. Furthermore, if we give higher priority on reducing execution time on GPU, the quality of
the best solution can be improved by about 3%, with an acceleration that is 29 times faster than the
CPU counterpart, after applying our suggested parameter settings. However, if we give solution
quality a higher priority, i.e., the GPU execution time is close to the CPU’s, the solution quality can be
improved up to 8%.
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1. Introduction

Many metaheuristic algorithms have been proposed to obtain near-optimal solution in finite time
when solving NP-hard problems [1–5]. Among them is the genetic algorithm (GA), which is one of the
most popular and widely studied algorithms, and is originally proposed by Holland [6] and DeJong [7].
GA is a powerful, domain-independent search technique inspired by Darwinian Theory [8]. As a
global search algorithm, in many years GA has been widely used to help solve many optimization
problems in various fields [9–18].

Several GA variants have also been proposed. One of the most promising variant is the island
model GA (IMGA) [19]. IMGA is a multiple-population coarse-grained model, consisting of several
islands distributed subpopulations for occasional exchanges of individuals. Because of the migration
processes of individuals between the independent islands, this model is more likely to explore different
search regions for better-quality solutions [20,21]. For instance, Juan M. Palomo-Romero et al. [20]
applied IMGA to solve the unequal area facility layout problem (UA-FLP). According to the
experimental results, most of the instances have obtained better solutions in fewer generations when
using IMGA.

UA-FLP is an important and widely studied facility layout problem in industry engineering [22].
A good placement of facilities can reduce up to 50% of total expenses in manufacturing [23].
The problem is also widely used in many fields such as industrial facility design, warehouse
organization, and VLSI placement. Most of the researchers build optimization models with quantitative
performance criteria, such as optimization of material handling cost. UA-FLP was proven to be an
NP-hard combinatorial optimization problem, meaning that when the number of facilities increases,
the calculation time is exponentially increased [24]. More and more metaheuristic algorithms [25–30]
are proposed to solve UA-FLP for finding better near-optimal solutions. Among them, GA is the most
popular algorithm due to its effectiveness in enhancing the opportunity to achieve global optimal
solutions. Lately, the IMGA is proving to be an efficient method to solve UA-FLP, which can obtain
good solutions in a reasonable computational time [20].

Although IMGA is effective in solving many NP-hard problems, it takes a much longer execution
time on CPU when the problem size becomes larger, since the individuals in IMGA should be selected,
evaluated, crossed over, mutated and migrated,. Modern GPUs (Graphics Processing Units) are very
popular and flexible processors in high performance computing, especially when CUDA (compute
unified device architecture) were distributed [31]. The IMGA can take full advantage of the computing
abilities by exploiting coarse and fine grained parallelisms of GPU. However, only a very limited
number of studies have focused on how to reduce the execution time of IMGA on GPU [32–34]. In our
previous work [32], we have proposed two different parallel algorithms for each individual step of
IMGA when solving UA-FLP on GPU. Which parallel algorithm has a better performance for each
step has also been reported. The best performance ratio of our suggested GPU version over the CPU
counterpart can be as high as 84.

Most previous studies about GPUs are focused on performance, because the searched solutions for
the CPU and the GPU implementation of the same method are exactly the same. Therefore, the related
work did not usually report the quality. In practice, when implementing IMGA on GPU, settings of
various parameters have a great influence on both solution quality and execution time. Since there are
many combinations of parameter settings, it is very time consuming to have the best parameter setting.
The easiest way to have a better solution is to let key parameters have large values, e.g., the number
of generations. However, a larger parameter value usually implies a longer execution time, but it
is not for sure that the solution quality will be obviously improved after a parameter is enlarged.
To address the problem in this paper, we investigate how each of the key parameters influence the
solution quality and the execution time when running IMGA on a GPU. The results of the paper
will give us a guideline, by giving a selection order of parameters when users aim at having better
solutions, without significantly increasing the execution time.
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In this paper, we explore how to obtain a better solution within a reasonable time when
parallelizing IMGA on GPU, taking UA-FLP as an example. Firstly, we focus on how to implement the
tournament selection in IMGA on a GPU. The key issue is how random numbers are generated by each
thread at the runtime on a GPU. Since there are more than thousands of threads that are executed in
parallel, the aggregated distribution of all random numbers will influence the actual exploited search
space. Next, we investigate three important parameters closely related to the solution quality and
the execution time in IMGA, including the number of islands, the number of generations (iterations),
and the number of chromosomes. By tuning these parameters separately, the solution quality and the
execution time are both influenced. We address the challenge of how to trade off between solution
quality and execution time for the parameters. In other words, which parameter is the best to improve
the solution quality if the execution time is increased with the same ratio. Experiments are conducted
on our selected data sets. Through analysis, the order of the influence of the three parameters on
solution quality is observed, which can help researchers adjust parameters in IMGA for finding better
qualities on a GPU. Finally we recommend a group of parameters for solving UA-FLP with IMGA on
a GPU. According to the experimental results, if we give higher priority on reducing execution time
on a GPU, the quality of the best solution can be improved by about 3%, with an acceleration that is
29 times faster than the CPU counterpart after applying our suggested parameter settings. If we give
solution quality a higher priority, when the GPU performs almost the same execution time as the CPU,
the solution quality can be improved by up to 8%. This research is very valuable for helping users
set parameters more efficiently when using a GPU to solve UA-FLP with IMGA, in order to get better
solutions in an execution time comparable with that in a CPU. It also helps researchers take advantage
of GPUs to find a more appropriate solution for optimization problems.

The paper is organized as follows. Section 2 introduces the related work, including the
introduction to UA-FLP, CUDA GPUs, and parallelization of IMGA for UA-FLP on GPU. In Section 3,
our improved parallel tournament selection on a GPU is described. Experiments and evaluations
about our proposed method and the quality-oriented discussions are illustrated in detail in Section 4.
Finally, conclusions are given in Section 5.

2. Related Work

In this section, the related work is introduced, including the formulation and layout representation
of UA-FLP, the brief introduction to CUDA GPUs, and GPU-based IMGA for solving UA-FLP.

2.1. UA-FLP

UA-FLP is formulated based on some assumptions. If there is a fixed rectangular region with an
area of W(width)× H(height), where facilities or departments should be located, the objective of the
optimization is to minimize the total material handling cost (MFC), which is commonly represented by
the sum of the products of the weighted rectilinear distance, and the material handling flow between
the centroids over all facility pairs. Assuming the number of facilities is p, the cost of moving materials
from facility i to facility j is fij, and the weighted rectilinear distance between facilities i and j is dij,
the general model is formulated by the following Equation (1).

min MFC =
p

∑
i=1

p

∑
j=1,i 6=j

fijdij (1)

The distance dij can be calculated as Euclidean (Equation (2)) or rectilinear (Equation (3)), where
the point defined by x and y is the center of the facility:

dij =
√
(xj − xi)

2 + (yi − yj)
2 (2)

dij =
∣∣xi − xj

∣∣+∣∣yi − yj
∣∣ (3)
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The general model of UA-FLP is not shape constrained, that is, no minimum side length or
maximum aspect ratio is specified for any facility. To ensure the realistic layouts, we imposed a
constraint of maximum allowable aspect ratio (α). If the aspect ratio of one facility is more than α,
this facility is infeasible. Let Wi and Li be the length and width of facility i, the aspect ratio of the
facility is calculated by Equation (4) below:

α =
max(Wi, Li)

min(Wi, Li)
(4)

The most commonly used continuous representation structure for UA-FLP is the flexible bay
structure (FBS), defined by Tong [35]. The layout of the plant is divided into bays of varying widths in
one direction. Each bay allows one or more facilities to be located, and its width is variable, depending
on the facilities it contains. In our UA-FLP, an individual of facility layout with FBS is divided into two
parts that are; (i) the facility sequence composed of n organized facilities bay by bay, from left to right
and from top to bottom, and (ii) bay divisions with n − 1 binary elements, where value of 0 indicates
the facility is placed in the same bay as the previous one, and value of 1 represents the facility is the
last facility in the current bay. Figure 1 shows an example of an individual representing with FBS,
and its FBS codes are presented in Figure 2.
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A CUDA program consists of sequential segments and parallel segments of codes. The sequential
codes run on the host (CPU), and the parallel codes embedded in kernel functions are offloaded to
the device (GPU). When a kernel is invoked, a large number of threads are launched to exploit data
parallelism after thread blocks are distributed to SMs. After a kernel finishes its execution on the
device, the results could be copied from GPU memory to CPU memory. In a CUDA application,
threads running the same instructions on different data are grouped into blocks. One active thread
runs on an SP, and one block is assigned to an SM. The maximal number of threads in a block is
determined by the difference of GPU compute capability. Threads in each block are divided further
into Warps. A Warp contains 32 threads in a block, and it adopts the Single Instruction Multiple data
(SIMD) execution model, meaning all threads within a warp must execute the same instructions at the
instance of any given time. If the threads in a warp are diverged to two paths after a data-dependent
conditional branch, the warp serially executes branch paths one by one, resulting in threads becoming
idle on another path. It is known as branch divergence, and can degrade the performance of the GPU
significantly [37].

There are types of memories residing on a GPU chip, including global memory, shared memory,
constant memory, local memory, and register. Different types of memories are differing in size,
access scope, access time and whether it is read-only or cached. Figure 4 shows the CUDA memory
hierarchy model:
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Global memory, the largest memory (up to several gigabytes) in a GPU, is used for communication
between the host and the device. The access time of global memory is longest, since the latency for
completing a read or a write operation for instance, requires 400–800 clock cycles. Memory coalescing is
a very important mechanism for hiding such memory latency. The host is responsible for the allocation
and deallocation of buffers in the space of the global memory. When a kernel is launched to process,
the device takes over the access rights to the buffer in the global memory, until the kernel execution is
complete. Through the global memory blocks can communicate with each other.

Shared memory is a very fast memory in a GPU, as it only requires two to four cycles if no bank
conflicts exist. It can only be accessed by threads in the same block to communicate with each other.
Shared memory is available for both reading and writing, but it is not cached and the memory space
is limited.

Constant memory is a read-only and cached memory. A CPU can read and write data in constant
memory, but a GPU thread only can read data in it. The constant memory is as fast as the shared
memory, unless cache misses occur. Texture memory is similar to constant memory, which is also
cached and read-only, but it has a larger memory space and its access latency depends on whether
cache misses occur.
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Local memory is used to save large automatic variables for each thread. It is as slow as global
memory and not cached. Registers, the fastest memories, are also for automatic variables of each
thread, but the number of 32-bit registers is limited.

2.3. Parallelizaiton of IMGA for UA-FLP on a GPU

There are only a few projects studying how to parallelize IMGA on GPUs. N. Melab and
E. G. Talbi [33] proposed three different schemes to build efficient IMGA on GPUs. According to
the experimental results, GPU-based IMGA can accelerate the search process speed, especially for
large-scale optimization problems. Steffen and Dietmar [34] studied two models for evolutionary
algorithms, including island model genetic algorithm, and discussed the implementation and
performance under different parallel architectures such as CPU clusters and GPUs. Cheng-Chieh
Li et al. [39] took the advantage of GPUs to parallelize IMGA, where they replace the mutation operator
by simulated annealing when solving the travelling salesman problem (TSP).

In the latest literature, we first proposed how to use GPUs to parallelize the IMGA for solving
UA-FLP [32]. The structure of our parallel IMGA on a GPU is illustrated in Figure 5. There are N islands,
organized as a ring topology, and on each of them there are n individuals. Each individual of the
population is represented with a chromosome that corresponds with a facility layout. Each individual
has a fitness value that represents the quality of the solution, where the fitness value is calculated by
Equation (1). FBS is used to encode a chromosome, consisting of a facility sequence and a bay division.
Each island is assigned to one block on a GPU. The information about all individuals is stored in
global memory. Each thread performs the procedures of IMGA, including initialization, evaluation,
selection, crossover, mutation, and migration. Regarding the selection, important data are stored in
shared memory in order to increase the access speed. In addition, migration is carried out through
global memory, where threads in different blocks can communicate with each other efficiently using
memory coalescing.FOR PEER REVIEW  7 of 22 
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In our previous implementation, we proposed various parallel algorithms for each step of IMGA
when solving UA-FLP. Experiments were conducted to compare the performances between different
parallel versions and the CPU version. According to the experimental results, the performance
improvement ratio of applying the basic parallelization methods for main steps of IMGA over the CPU
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version is more than 20 at best. Furthermore, applying our suggested parallel methods to implement
IMGA on a GPU, the best performance improvement ratio over the CPU version can be as high as 84.
That is, our GPU version provides much higher performance than both the conventional GPU version
and the CPU version.

The previous literatures discuss how to use a GPU to accelerate IMGA in order to reduce the
execution time, and thus improve the system performance. Since both CPU and GPU versions adopt the
same IMGA algorithm, the solutions will be the same. Consequently, solution quality was not usually
discussed in the reports. Nevertheless, when executing IMGA on a GPU, different parameter settings
will result in different solution qualities and execution times. Especially for large-scale optimization
problems, adjusting parameter values usually leads to a much longer execution time, so even if the
solution quality will improve or not, is uncertain. In addition, each parameter has its own impact
on solution quality and execution time. For some parameters, increasing its value will improve the
best solution a little, but the execution time might grow exponentially. By contrast, increasing another
parameter value might improve the best solution significantly, but the execution time only becomes
longer polynomially. Therefore, if a user wants to find a better solution on a GPU, but they do not want
a longer execution time, it is crucial to give them a guideline on how to adjust individual parameters.
Instead of only performance tuning, we focus in this paper on how to adjust parameters efficiently, in
order to have a better solution at a lower cost of increment of execution time when solving UA-FLP
with IMGA on a GPU.

In IMGA, selection is one of the most time-consuming and quality-influencing operations.
The parallelisms of the two most common selection methods on a GPU have been discussed in our
previous work [32]. In the following sections, we firstly proposed an effective method of generating
random seeds for the tournament method on a GPU, which can ensure us how to find a better quality
of solution, within a shorter execution time. We then focused on how to tune the relevant parameters
to have a better solution quality, after trading off between solution quality and execution time when
GPUs are used to accelerate IMGA. The results will help researchers set parameters in a more efficient
and effective way to ensure better quality solutions, without increasing execution time too much.

3. Improvement of Parallel Tournament Selection

In the tournament selection, each iteration has pairs of individuals from the population, which have
to be randomly selected for fitness value comparisons. The winning individuals are determined after a
series of selections and comparisons. Random numbers can be generated with the CUDA library and a
random seed is required to initialize the pseudorandom number generator. The execution time of the
tournament method on a GPU varies depending on how the random seeds are generated. In addition,
the random seed generation method also influences the final solution quality. Three methods of random
seed generation are proposed and discussed in this section. The random seed can be generated by the
following methods. (1) The system clock is used to generate only one random seed. (2) The system
clock is used to generate one random seed for each comparison. (3) Thread IDs are used to generate
only one random seed. Experiments are conducted in order to compare these methods.

3.1. Generate Random Seed Once with the System Clock

In this method, the system clock is used to generate a random seed. Since the random seed is
generated only once during the whole tournament selection, there is only one set of random numbers
for every thread to perform selection and comparison. In order to get two different positions to
compare, threads use their IDs to have different starting offset. As a result, the second random number
acquired by the first thread will be the same as the first random number acquired by the second
thread. This method will significantly narrow down the search space explored during the tournament,
resulting in a worse solution quality of IMGA.

The example is shown in Figure 6, assuming that there is a four-round tournament selection,
and the number of thread is four. Thread 1, 2, 3 and 4 will conduct tournament selection separately
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on the sets of (9, 121, 32, 18), (121, 32, 18, 1) and (32, 18, 1, 136), (18, 1, 136, 6). Among the four
rounds of selection, there are 9 repeated comparisons. If the number of rounds in a tournament is M,
which are conducted by T threads, there will be T(T−1)

2 + (M− 1)(T − 1) non-repeated comparisons

and (T−2)(T−1)(M−1)
2 repeated comparisons. Obviously, the larger the values of M and T are, the more

the number of repeated comparisons, resulting in a poor quality of solution. The kernel Algorithm 1
shows the pseudocode of generating the random seed with the system clock only once to parallelize
the tournament selection.
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Algorithm 1: Generate Random Seed Once

Data:
round: number of tournaments that are conducted
population: number of chromosomes that are in an island

Input:
survive; fitness

Function:
clock(): access the system time from GPU
rand_initiate(): initiate the state of random number generator
rand_generate(): generate a random number

Result:
Chromosomes are randomly picked, and conduct a series of tournament.

Parallel:
1: tseed = clock()
2: offset = threadId
3: rand_initiate(tseed, offset, state)
4: winner = 0
5: for i = 1 to i = round do
6: rival = rand_generate(state) mod population
7: if fitness[blockId][rival] < fitness[blockId][winner] do
8: winner = rival
9: end
10: end
11: survive[blockId][threadId] = winner

3.2. Generate a Random Seed during Each Round of Comparisons

Because generating the random seed only once can explore a relatively smaller search space in
the tournament selection, we can generate random seeds during each round of comparisons to explore
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a larger search space. There is an example shown in Figure 7. In the same round of comparisons,
each thread will have the same random seed, but each round of comparison has its random seed,
resulting in a new sequence of random numbers for each round of comparison. This way, each
thread has different random numbers in each round of the comparisons for the tournament selection.
For example, Thread 1 will get the random number set of (9, 8, 68), Thread 2 gets (121, 16, 47), Thread
3 gets (32, 91, 76), Thread 4 gets (18, 0, 23), and Thread 5 gets (1, 54, 92). Algorithm 2 shows the
pseudocode of generating random seeds for each round of comparison. With this strategy, there are
almost no repeated comparisons, but this method will bring additional cost of the execution time
caused by regenerating random seeds.
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Algorithm 2: Generate a Random Seed during Each Round of Comparison

Data:
round: number of tournaments that are conducted
population: number of chromosomes that are in an island

Input:
survive; fitness

Function:
clock(): access system time from GPU
rand_initiate(): initiate the state of random number generator
rand_generate(): generate a random number using the state of generator

Result:
Chromosomes are randomly picked, and conduct a series of tournament.

Parallel:
1: offset = threadId
2: winner = 0
3: for i = 1 to i = round do
4: tseed = clock()
5: rand_initiate(tseed, offset, state)
6: rival = rand_generate(state) mod population
7: if fitness[blockId][rival] < fitness[blockId][winner] do
8: winner = rival
9: end
10: end
11: survive[blockId][threadId] = winner

3.3. Our Improved Strategy

In order to avoid repeated comparisons resulting in the worse quality of solution, and to avoid
spending much time on updating random seeds for each round of comparisons, we propose a new
strategy to implement the parallel tournament selection. At first, a group of random seeds are generated
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at the same time with parameters including thread ID, block ID and the system clock. Therefore, each
round of comparison will have a different random seed to generate a different sequence of random
numbers. Then, the threads perform the comparisons based on the random numbers during each
round. Adopting this method, threads can obtain different sequences of random numbers, without
regenerating the random seed. For example, as shown in Figure 8, M random seeds are randomly
generated by each thread with its thread ID, block ID and the system clock. Based on the M random
seeds, M sequences of random numbers are produced for M rounds. Using this method, the random
seeds are generated only once, but there are no repeated comparisons for most of the time. The solution
quality provided by our improved strategy is much better than that of the method that uses the system
clock to generate the random seed only once. In addition, our solution quality is almost the same as
that produced by the method that generates one random seed for each round of comparisons, but
our method can significantly reduce the execution time caused by frequently updating random seeds.
Algorithm 3 shows the pseudocode of our improved strategy.FOR PEER REVIEW  11 of 22 
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Algorithm 3: Our Improved Strategy

Data:
round: number of tournaments that are conducted
population: number of chromosomes that are in an island

Input:
survive; fitness

Function:
clock(): access system time from GPU
rand_initiate(): initiate the state of random number generator
rand_generate(): generate a random number using the state of generator

Result:
Chromosomes are randomly picked, and conduct a series of tournament.

Parallel:
1: tseed = clock() + blockId * population + threadId
2: offset = 0
3: rand_initiate(tseed, offset, state)
4: winner = 0
5: for i = 1 to i = round do
6: rival = rand_generate(state) mod population
7: if fitness[blockId][rival] < fitness[blockId][winner] do
8: winner = rival
9: end
10: end
11: survive[blockId][threadId] = winner
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4. Performance Evaluations

4.1. Tested Platform

We adopted NVIDIA GeForce GTX 980 to evaluate our GPU version of IMGA for UA-FLP.
The GTX980 is featuring Maxwell microarchitecture, which can improve graphics capabilities, simplify
programming, and have better energy efficiency. GTX980 has 2048 CUDA cores distributed over
16 SMs with a clock frequency of 1126 MHz [40]. The CUDA cores can access to global memory with a
size of 4096 Mbytes and memory bus width of 256-bit. Total amount of shared memory per block is
49,152 bytes, and total number of registers available per block is 65,536.

The workstation mainly consists of one Intel Xeon CPU E5-2609 v3 with 16 GB memory and one
GTX980 with 4 GB memory. Detailed configurations are shown in Table 1.

Table 1. Configuration of our workstation.

Intel Xeon CPU E5-2609 v3 GTX 980

Number of Cores 6 Number of GPUs 1
Number of Threads 6 Thread Processors 2048

Clock Speed 1.9 GHz Clock Speed 1127 MHz
Memory Size 16 GB Memory Size 4 GB
Memory Type DDR4 Memory Type GDDR5

According to our previous work [32], by increasing the number of facilities, the GPU gains
larger speed-up compared to CPU, the same conclusions are also reported in related paper [36],
meaning GPUs can provide very high performance improvements for solving large-scale facility layout
problems. Therefore, we select the larger data set of facilities for the experiments. The problem data
sets are shown in Table 2, which illustrates the detailed information about data sets including name,
number of facilities, facility size, aspect ratio, and distance measure.

Table 2. The problem data sets.

No. Problem
Data Set

Number of
Facilities

Facility Size Common Shape
Constraint

Distance
MeasureWidth Length

1 F40 40 45.00 45.00 α = 1000 Rectilinear
2 F60 60 45.00 45.00 α = 1000 Rectilinear
3 F80 80 45.00 45.00 α = 1000 Rectilinear
4 F100 100 45.00 45.00 α = 1000 Rectilinear
5 F120 120 45.00 45.00 α = 1000 Rectilinear

In the IMGA, the three most important parameters that have a high impact on both solution
quality and execution time, are the number of islands, the number of generations (the number of
iterations), and the subpopulation size per island (the number of chromosomes per island). Each one of
the parameters have a different effectiveness on improving solution quality and impacts on lengthening
execution time. We will analyze every parameter via a series of experiments to understand how much
the solution quality can be improved at the cost of increasing an execution time unit. Based on the
analysis result, we could give users a guideline on the selection ordering of parameters for tuning
the solution quality and execution time. Moreover, we will find a parameter setting that can obtain a
better solution without increasing the execution time significantly when using a GPU to implement
IMGA for solving UA-FLP.

According to the hardware features of the GPU, the settings of the IMGA parameters on the GPU
in our evaluation are listed in Table 3. In accordance with the previous work [20], the baseline of
the parameter settings of the IMGA is: 16 islands, 128 iterations, and 128 chromosomes per island.
The reason why we choose 2k as the value of each parameter is mainly dependent on the hardware
characteristics of the GPU.
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Table 3. Settings of the IMGA parameters on GPU in our evaluations.

Parameter Value

Total population size per island (n) 32, 64, 128, 256, 512,1024
Number of islands (N) 16, 32, 64, 128, 256
Cycle generations (c) 64, 128, 256, 512, 1024, 2048, 4096, 8192

Migration rate (m) 5
Migration frequency (g) 15

Crossover probability (pc) 0.7
Mutation probability (pm) 0.01

4.2. Evalutions of Parallel Tournament Selection

In Section 3, we have introduced three methods of generating random seeds in the tournament
selection. The first method generates a random seed only once using the system clock, and the second
method is to generate a random seed for each round of comparisons. In the third method, each thread
generates different random seeds based on its thread ID, block ID and the system clock at one time.

To evaluate the three methods above three, we use data sets with different numbers of facilities,
as shown in Table 2. The values of three main parameters for IMGA are set as follows. The number of
chromosomes is 128, the number of iterations is 128, and the number of islands is 16. Each data set is
tested five times to calculate the average execution time and to have the best solution. Method 1 is
adopted as the base of comparison. We use Quality Improvement Ratio and Normalized Execution
Time to compare the three methods, which are defined by Equation (5) and Equation (6):

Quality Improvement Ratio =
Solution Quality of Method 1
Solution Quality of Method X

(X = 2, 3) (5)

Normalized Execution Time =
Execution Time of Method X
Execution Time of Method 1

(X = 2, 3) (6)

The comparison of Quality Improvement Ratio is illustrated in Figure 9. According to Figure 9,
the quality obtained by Method 2 or Method 3 is increased by about 10% compared to that by Method 1.
The qualities provided by Methods 2 and 3 are almost the same for all cases, which implies that our
improved method can guarantee the obtainment of a better-quality solution. Figure 10 shows the
comparison of Normalized Execution Time. The execution time taken by Method 3 is the shortest
one, and almost the same as that of Method 1. Method 2 takes about 1.5 to 4 times longer execution
time than that of Method 1, and performance degradation becomes worse as the number of facilities
decreases. This indicates that the smaller the number of facilities, the more execution time the selection
operation takes. In short, according to the experimental results our improved method can provide the
best-quality solution and take the shortest execution time, which provides the best implementation of
the tournament selection on a GPU.
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4.3. Evaluations of Quality Improvement

This part of the experiments, focuses on how to use IMGA on GPU to achieve better quality
within a shorter amount of time, taking UA-FLP as an example. In the experiment, we tuned three
parameters: The number of islands (ns), the number of iterations (ni), and the number of chromosomes
(nc), to discuss the solution quality and the execution time to find a combination of good parameter
setting. The parameters of the CPU version are set to the values used in the literature [18,41] and
they are: 16 islands, 128 iterations, and 128 chromosomes per island, which will be the baseline
version for comparison. Each of the benchmarks, listed in Table 2, are executed ten times to have the
average execution time and the best-quality solution. In the following evaluations, solution quality and
execution time are normalized to the baseline version. We define three kinds of criteria to discuss how
each of the three parameters influences solution quality and execution time. They are: Normalized
solution quality (NQ), normalized execution time (NT), and normalized solution quality/execution
time ratio (QTR). The three formulas are defined by Equations (7)–(9), as shown below:

NQ =
solution quality on CPU
solution quality on GPU

(7)

NT =
execution time on GPU
execution time on CPU

(8)

QTR = log
NQ
NT

(9)

NQ indicates how many percentages the solution quality a GPU version can provide, and NT
indicates how many percentages the execution time a GPU version will increase. QTR is the ratio of
NQ and NT, indicating how much the cost of execution time increment will be for a better solution.
A larger QTR implies a more cost-effective GPU version. In the following three subsections, we will use
the above criteria to analyze three key parameters: the number of islands, the number of chromosomes
per island, and the number of iterations.

4.3.1. Influence of the Number of Islands

Firstly, we only tune the number of islands, and the rest of the parameters are unchanged. That is,
the number of chromosomes per island and the number of iterations are both set to 128, but the number
of islands per island varies in the range of 16, 32, 64, 128 and 256. We discuss how the parameter
value of the number of islands influences solution quality and execution time. The NQ, NT and QTR
are shown in Figures 11–13. It can be concluded that as the number of islands increases, the longer
execution time is required. When the number of islands is less than or equal to 128, the quality
of solution is improving when the number of islands increases, as shown in Figure 11. However,
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when the number of islands is greater than 128, the quality becomes worse, as shown in Figure 11,
and the execution time becomes even longer, as shown in Figure 12. Moreover, the values of the QTR
become smaller and smaller when there are more islands, especially when we use more than 64 islands,
as shown in Figure 13, indicating that it is not cost-effective to pursue a high-quality solution using
more than 64 island. In summary, the best case is 16 islands.
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4.3.2. Influence of the Number of Iterations

In this part, the number of islands and the number of chromosomes are set to 16 and 128,
respectively. The values of the number of iterations to be evaluated include 64, 128, 256, 512, 1024,
2048, 4096 and 8192. The results of the experiments for NT, NQ and QTR are shown in Figures 14–16.
The quality is improved gradually when the number of iterations is enlarged, as shown in Figure 14.
Basically, when the number of iterations reaches 128, the improvement of solution quality is similar
to that provided by CPU. On the other hand, the speedup of the execution time obtained by GPU
over CPU becomes much larger when we increase the problem size, as shown in Figure 15. The same
conclusion is consistent to that reported in the related work [36]. In general, the execution time is
lengthened linearly with the increased number of iterations. According to Figure 16, the value of
QTR decreases linearly, as the number of iterations increases. In particular, when there are more than
2048 iterations, the QTR becomes negative, indicating the performance is worse than the CPU version.
In accordance with the experimental results, when the number of iteration is equal to or larger than
128, a better performance can be achieved.
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4.3.4. Effect of Combining Suggested Parameter Settings

According to the above experiments, we suggest the following combination of parameter settings
when using the GPU to execute IMGA: The number of islands is 16, the number of iterations is 128,
and the number of chromosomes per island is 256. With these suggested parameter settings, the values
of NQ, NT and QTR for each benchmark are shown in Table 4.

Table 4. NQ, NT and QTR for each benchmark with recommended parameter settings.

Benchmark NQ NT QTR

40 1.0097 0.2390 2.0788
60 1.0266 0.0752 3.7712
80 1.0020 0.0518 4.2739
100 1.0332 0.0410 4.6543
120 1.0316 0.0350 4.8822

All values of NQ are greater than 1, as shown in Table 4, meaning that the solution quality after
using our recommended parameter settings, GPU always can provide better solutions CPU for each
benchmark. Comparing with the CPU baseline version, by using the GPU version with our proposed
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parameter settings, the quality of solution can be improved by 3%, and the execution speed is 29 times
faster than the CPU version. Meanwhile, as the number of facilities increases, the value of QTR also
increases gradually. This indicates that the larger the number of facilities, the higher the cost effective
to have a better solution using a GPU. That is, compared with the CPU counterpart, the GPU can not
only improve the solution quality, but also shorten the execution time significantly.

In addition, we have conducted another experiment in order to realize how much the
improvement of solution quality can be provided by GPU, when GPU and CPU are given almost the
same execution time. We have conducted many experiments, and found that the execution times of
GPU and CPU are very close when the number of chromosomes per islands, the number of iterations,
and the number of islands are 128, 4096 and 16, respectively. Under the above parameter setting,
the quality of solution can be greatly improved by the GPU version. We use the percentage of quality
improvement (PQI) to represent how much the improvement of the solution quality the GPU version
can provide, and it is defined in Equation (10) below, where QCPU and QGPU are the best solution
qualities that CPU and GPU can provide, respectively. Figure 18 shows the PQI for the data sets.
As shown in Figure 20, the solution qualities of all the benchmarks are significantly improved. As the
number of facilities increases, the quality gets better. When the number of facilities is 120, the quality
improvement based on PQI can be up to 8%.

PQI =
QCPU −QGPU

QCPU
(10)
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5. Conclusions

The island model is a popular and efficient method to implement the genetic algorithm on a
parallel architecture. In recent work, the IMGA is applied to solve UA-FLP, which can improve the
solution quality for most of the problem data sets. However, the amount of calculation will become
larger and larger with the increase in the size of the problem, because UA-FLP is an NP-hard problem.
Moreover, the execution time is getting longer and longer even though metaheuristic approaches are
used to solve UA-FLP. Modern GPUs, highly-parallel computing processors, can manipulate large
amounts of data efficiently by embedded many cores. So far, almost all research on using GPUs
to execute IMGA investigates how to reduce the execution time. For the researchers who work on
practical problems, finding a solution of higher quality is definitely the key concern.

In this paper, we study how to achieve better qualities in a more cost-effective way when using
GPU to accelerate IMGA for solving large-scale problems. We take UA-FLP as an example in this study.
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Firstly, we addressed the problem of how random seed generation on GPU influences the solution
quality. Random seeds can be generated based on two different methods: (1) Generate only one seed
with the system clock, or (2) generate one seed with the system clock for each round of comparisons.
The first method suffers from the problem of repeated comparisons, which limits the search space
explored significantly. The second method can provide a better solution at the cost of much longer
execution time. Therefore, we proposed an efficient method to generate only one random seed with
the multiple parameters: Thread ID, block ID and the system clock. Consequently, each thread can
have a unique sequence of random numbers in each round. According to the experimental results, our
method can provide a solution as good as that provided by the first method, and an execution time as
short as that of the second method.

Next, we addressed the challenge of how to trade off between solution quality and execution time
when we set parameters. Three important parameters of IMGA are investigated, including the number
of islands, the number of generations, and the number of chromosomes per island. According to
the experimental results, to have a better solution at the low cost of execution time, the order of
influence on solution quality is: The number of chromosomes per island, the number of generations,
and then the number of islands. Moreover, when executing IMGA on a GPU for solving UA-FLP,
we also recommend a set of parameter settings to find a more cost-effective solution based on a series
of experiments. The recommended values of the three parameters are: 16 islands, 128 generations,
and 256 chromosomes per island. With the above parameter setting, the quality of solution on GPU is
improved by about 3% over the CPU baseline version. In addition, the GPU version is 29 times faster
than the CPU baseline. Furthermore, if we let GPU and CPU spend almost the same execution time,
the quality improvement by GPU can be up to 8%.

In the future, we will further discuss how to improve solution qualities of different NP-hard
problems on GPUs when IMGA is adopted. We believe that our parallelization strategy can provide
an elegant and cost effective way of solving these problems on a desktop computer simply equipped
with a graphic card, instead of relying on the large computational grid.

Author Contributions: Conceptualization, X.S., P.C. and C.-C.W.; Data curation, X.S. and P.C.; Formal
analysis, X.S., P.C., and C.-C.W.; Funding acquisition, X.S., and C.-C.W.; Investigation, X.S., P.C., and C.-C.W.;
Methodology, X.S., P.C., and C.-C.W.; Project administration, C.-C.W.; Resources, X.S.; Software, X.S., P.C.,
and C.-C.W.; Supervision, C.-C.W.; Validation, X.S. and C.-C.W.; Writing—original draft, X.S., C.-C.W., and L.-R.C.;
Writing—review & editing, X.S., C.-C.W., and L.-R.C.

Funding: This research is supported by Ministry of Science and Technology, Taiwan (grant no. MOST
106-2221-E-018-010), and Beijing Municipal Commission of Education (grant no. KM201811417010).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, M.J.; Hu, M.H.; Ku, M.Y. A solution to the unequal area facilities layout problem by genetic algorithm.
Comput. Ind. 2005, 56, 207–220. [CrossRef]

2. Scholz, D.; Petrick, A.; Domschke, W. STaTS: A slicing tree and tabu search based heuristic for the unequal
area facility layout problem. Eur. J. Oper. Res. 2009, 197, 166–178. [CrossRef]

3. Wong, K.Y. Solving facility layout problems using Flexible Bay Structure representation and Ant System
algorithm. Expert Syst. Appl. 2010, 37, 5523–5527. [CrossRef]

4. Kulturel-Konak, S.; Konak, A. Unequal area flexible bay facility layout using ant colony optimisation. Int. J.
Prod. Res. 2011, 49, 1877–1902. [CrossRef]

5. Xiao, Y.J.; Zheng, Y.; Zhang, L.M.; Kuo, Y.H. A combined zone-LP and simulated annealing algorithm for
unequal-area facility layout problem. Adv. Prod. Eng. Manage. 2016, 11, 259. [CrossRef]

6. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology,
Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975.

7. Kenneth, A.D.J. An analysis of the behavior of a class of genetic adaptive systems. Ph.D. Thesis, University
of Michigan, Ann Arbor, MI, USA, 1975.

http://dx.doi.org/10.1016/j.compind.2004.06.003
http://dx.doi.org/10.1016/j.ejor.2008.06.028
http://dx.doi.org/10.1016/j.eswa.2009.12.080
http://dx.doi.org/10.1080/00207541003614371
http://dx.doi.org/10.14743/apem2016.4.225


Symmetry 2019, 11, 318 20 of 21

8. Darwin, C. The Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the
Struggle for Life; with a Foreward by George Gaylord Simpson; Collier Books: New York, NY, USA, 1962.

9. Khuda Bux, N.; Lu, M.; Wang, J.; Hussain, S.; Aljeroudi, Y. Efficient association rules hiding using genetic
algorithms. Symmetry 2018, 10, 576. [CrossRef]

10. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1989, 3, 95–99.
[CrossRef]

11. Ijjina, E.P.; Chalavadi, K.M. Human action recognition using genetic algorithms and convolutional neural
networks. Pattern Recognit. 2016, 59, 199–212. [CrossRef]

12. Montazeri, A.; West, C.; Monk, S.D.; Taylor, C.J. Dynamic modelling and parameter estimation of a hydraulic
robot manipulator using a multi-objective genetic algorithm. Int. J. Control 2017, 90, 661–683. [CrossRef]

13. Shin, H.; Joo, C.; Koo, J. Optimal rehabilitation model for water pipeline systems with genetic algorithm.
Procedia Eng. 2016, 154, 384–390. [CrossRef]

14. Deng, Q.; Gong, G.; Gong, X.; Zhang, L.; Liu, W.; Ren, Q. A bee evolutionary guiding nondominated sorting
genetic Algorithm II for multiobjective flexible Job-shop scheduling. Comput. Intell. Neurosci. 2017, 2017.
[CrossRef] [PubMed]

15. Alshamsi, A.; Diabat, A. a genetic algorithm for reverse logistics network design: A case study from the
GCC. J. Clean. Prod. 2017, 151, 652–669. [CrossRef]

16. RazaviAlavi, S.; AbouRizk, S. Site layout and construction plan optimization using an integrated genetic
algorithm simulation framework. J. Comput. Civil Eng. 2017, 31, 04017011. [CrossRef]

17. Szénási, S.; Vámossy, Z. Implementation of a distributed genetic algorithm for parameter optimization in a
cell nuclei detection project. Acta Polytech. Hung. 2013, 10, 59–86.

18. Szénási, S.; Felde, I. Configuring genetic algorithm to solve the inverse heat conduction problem.
In Proceedings of the 2017 IEEE 15th International Symposium on Applied Machine Intelligence and
Informatics (SAMI 2017), Herlany, Slovakia, 26–28 January 2017.

19. Pospichal, P.; Jaros, J.; Schwarz, J. Parallel Genetic Algorithm on the CUDA Architecture. In Applications of
Evolutionary Computation; Springer: Berlin, Germany, 2010; pp. 442–451.

20. Palomo-Romero, J.M.; Salas-Morera, L.; García-Hernández, L. An island model genetic algorithm for unequal
area facility layout problems. Expert Syst. Appl. 2017, 68, 151–162. [CrossRef]

21. Starkweather, T.; Mcdaniel, S.; Whitley, D.; Mathias, K.; Whitley, D.; Dept, M.E. A comparison of genetic
sequencing operators. In Proceedings of the Fourth International Conference on Genetic Algorithms,
San Diego, CA, USA, 7–11 July 1991; pp. 69–76.

22. Meller, R.D.; Gau, K.Y. The facility layout problem: Recent and emerging trends and perspectives.
J. Manuf. Syst. 1996, 15, 351–366. [CrossRef]

23. Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning; John Wiley &Sons: New York,
NY, USA, 2010.

24. Garey, M.R.; Johnson, D.S.; Stockmeyer, L. Some simplified NP-complete graph problems. Theor. Comput. Sci.
1976, 1, 237–267. [CrossRef]

25. Hasda, R.K.; Bhattacharjya, R.K.; Bennis, F. Modified genetic algorithms for solving facility layout problems.
Int. J. Interact. Des. Manuf. 2017, 11, 713–725. [CrossRef]

26. Leno, I.J.; Sankar, S.S.; Ponnambalam, S.G. An elitist strategy genetic algorithm using simulated annealing
algorithm as local search for facility layout design. Int. J. Adv. Manuf. Tech. 2016, 84, 787–799.

27. Paes, F.G.; Pessoa, A.A.; Vidal, T. A hybrid genetic algorithm with decomposition phases for the unequal
area facility layout problem. Eur. J. Oper. Res. 2017, 256, 742–756. [CrossRef]

28. Derakhshan, A.A.; Wong, K.Y.; Tiwari, M.K. Unequal-area stochastic facility layout problems: Solutions
using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic
algorithm. Int. J. Prod. Res. 2016, 54, 799–823. [CrossRef]

29. García-Hernández, L.; Pierreval, H.; Salas-Morera, L.; Arauzo-Azofra, A. Handling qualitative aspects
in unequal area facility layout problem: An interactive genetic algorithm. Appl. Soft Comput. 2013, 13,
1718–1727. [CrossRef]

30. Gonçalves, J.F.; Resende, M.G. A biased random-key genetic algorithm for the unequal area facility layout
problem. Eur. J. Oper. Res. 2015, 246, 86–107. [CrossRef]

31. Szénási, S. Segmentation of colon tissue sample images using multiple graphics accelerators.
Comput. Biol. Med. 2014, 51, 93–103. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/sym10110576
http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1016/j.patcog.2016.01.012
http://dx.doi.org/10.1080/00207179.2016.1230231
http://dx.doi.org/10.1016/j.proeng.2016.07.497
http://dx.doi.org/10.1155/2017/5232518
http://www.ncbi.nlm.nih.gov/pubmed/28458687
http://dx.doi.org/10.1016/j.jclepro.2017.02.096
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000653
http://dx.doi.org/10.1016/j.eswa.2016.10.004
http://dx.doi.org/10.1016/0278-6125(96)84198-7
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1007/s12008-016-0362-z
http://dx.doi.org/10.1016/j.ejor.2016.07.022
http://dx.doi.org/10.1080/00207543.2015.1070217
http://dx.doi.org/10.1016/j.asoc.2013.01.003
http://dx.doi.org/10.1016/j.ejor.2015.04.029
http://dx.doi.org/10.1016/j.compbiomed.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/24893331


Symmetry 2019, 11, 318 21 of 21

32. Sun, X.; Lai, L.F.; Chou, P.; Chen, L.R.; Wu, C.C. On GPU implementation of the island model genetic
algorithm for solving the unequal area facility layout problem. Appl. Sci. 2018, 8, 1604. [CrossRef]

33. Melab, N.; Talbi, E.G. GPU-based island model for evolutionary algorithms. In Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, Porland, OR, USA, 7–11 July 2010.

34. Limmer, S.; Fey, D. Comparison of common parallel architectures for the execution of the island model and
the global parallelization of evolutionary algorithms. Concur. Comput. Pract. Exp. 2016, 29, e3797. [CrossRef]

35. Tong, X. SECOT: A sequential Construction Technique for Facility Design. Ph.D. Thesis, University of
Pittsburg, Pittsburgh, PA, USA, 1991.

36. Bonelli, F.; Tuttafesta, M.; Colonna, G.; Cutrone, L.; Pascazio, G. An MPI-CUDA approach for hypersonic
flows with detailed state-to-state air kinetics using a GPU cluster. Comput. Phys. Commun. 2017, 219, 178–195.
[CrossRef]

37. Han, T.D.; Abdelrahman, T.S. Reducing branch divergence in GPU programs. In Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Processing Units, Newport Beach, CA, USA,
5 March 2011.

38. Jachym, M.; Lavernhe, S.; Euzenat, C.; Tournier, C. Effective NC machining simulation with OptiX ray
tracing engine. Vis. Comput. 2018, 1–8. [CrossRef]

39. Li, C.C.; Lin, C.H.; Liu, J.C. Parallel genetic algorithms on the graphics processing units using island model
and simulated annealing. Adv. Mech. Eng. 2017, 9, 1687814017707413. [CrossRef]

40. NVIDIA. Whitepaper NVIDIA GeForce GTX 980. 2014. Available online: http://international.download.
nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF (accessed on
11 August 2018).

41. Whitley, D.; Rana, S.; Heckendorn, R. B. Island model genetic algorithms and linearly separable problems.
In AISB International Workshop on Evolutionary Computing; Springer: Berlin, Germany, 1997.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/app8091604
http://dx.doi.org/10.1002/cpe.3797
http://dx.doi.org/10.1016/j.cpc.2017.05.019
http://dx.doi.org/10.1007/s00371-018-1497-7
http://dx.doi.org/10.1177/1687814017707413
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	UA-FLP 
	Introduction to GPU and CUDA 
	Parallelizaiton of IMGA for UA-FLP on a GPU 

	Improvement of Parallel Tournament Selection 
	Generate Random Seed Once with the System Clock 
	Generate a Random Seed during Each Round of Comparisons 
	Our Improved Strategy 

	Performance Evaluations 
	Tested Platform 
	Evalutions of Parallel Tournament Selection 
	Evaluations of Quality Improvement 
	Influence of the Number of Islands 
	Influence of the Number of Iterations 
	Influence of the Number of Chromosomes Per Island 
	Effect of Combining Suggested Parameter Settings 


	Conclusions 
	References

