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Abstract: Networks are useful to describe the structure of many complex systems. Often,
understanding these systems implies the analysis of multiple interconnected networks simultaneously,
since the system may be modelled by more than one type of interaction. Multiplex networks
are structures capable of describing networks in which the same nodes have different links.
Characterizing the centrality of nodes in multiplex networks is a fundamental task in network
theory. In this paper, we design and discuss a centrality measure for multiplex networks with data,
extending the concept of eigenvector centrality. The essential feature that distinguishes this measure
is that it calculates the centrality in multiplex networks where the layers show different relationships
between nodes and where each layer has a dataset associated with the nodes. The proposed model is
based on an eigenvector centrality for networks with data, which is adapted according to the idea
behind the two-layer approach PageRank. The core of the centrality proposed is the construction
of an irreducible, non-negative and primitive matrix, whose dominant eigenpair provides a node
classification. Several examples show the characteristics and possibilities of the new centrality
illustrating some applications.

Keywords: eigenvector centrality; networks centrality; two-layer approach PageRank; multiplex
networks; biplex networks

1. Introduction

1.1. Literature Review

The identification of the most relevant nodes in complex networks has caught the attention
of researchers because of its theoretical significance [1]. The idea of importance of a vertex in
complex networks is associated with the concept of centrality and it is a basic question in analysing
complex networks.

Recently, it has been accepted that some complex systems can be integrated by multilayer networks
that characterize different interactions [2–4]. Originally, the term multiplex network was applied to
social networks and it indicated that the same person has more than one relationship [5]. Nowadays, it
is a type of multilayer network in which a set of links determines a different layer [6,7].

We understand multiplex networks as a non-linear superposition of complex networks, where
some components interact through a variety of different relationships which are conceptualized as
different layers (see [8] for a formal introduction to the subject of multiplex networks).

Multiplex networks have been applied in wide areas of science, such as transportation
networks [9], social networks [10], financial networks [11] or biological networks [12]. For instance, in a
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transportation network, each layer may represent a different mode of transportation or, in collaboration
networks, the different layers may represent several topics of the collaboration. In this regard, it is
interesting to have the centrality of these multilayer structures [13,14].

In [15], the authors calculate the centrality of multiplex networks based on Multiplex PageRank.
There are other centrality measures that associate a different influence to the links of the layers with the
aim of pondering their contribution to the node centrality [13,14]. Likewise, Ribalta et al. [16] re-define
an intermediation centrality to take into account the structure of multiplex networks, proposing an
algorithm to compute it efficiently.

An extension of the eigenvector centrality to multiple networks is presented in [13] , highlighting
the relationships between the different centrality measures. Their starting question is: How can one
consider all the interactions between the sub-networks assuming that not all of them have the same
importance? Spatocco et al. [17] propose a new framework called TaCMM that can encode specific
dependencies between the subnets of multiplex networks to define semantic-aware centrality measures.

An approach to the classic PageRank based on a two-layer network is presented in [18].
The authors’ proposals draw from the idea that the importance of the nodes is given by two factors:
the topology of the network and the teleportation from one node to another. Following this approach,
Agryzkov et al. [19] design and implement an adaptation of the PageRank algorithm for spatial
networks with data to the two-layer approach PageRank.

1.2. Main Contribution

In the present paper, the main focus is to provide a measure of centrality for multiplex networks
based on the idea behind the eigenvector centrality. The proposed model adapts the eigenvector
centrality for single-layer networks with data [20] and implements the two-layer approach PageRank
concept [18]. The principal feature that distinguishes this measure is that it calculates the centrality in
multiplex networks where the layers have different relationships between nodes and where each layer
has a dataset associated with their nodes. The key of this model is the ease with which we can measure
the impact of the data presented in a network when calculating the nodes’ centrality. The versatility of
the proposed measure allows to work with data from different sources or types (real, virtual, ...) and
evaluate its importance within the network.

It is certainly useful to use this centrality in different types of networks. For instance, in social
networks, it is possible to consider different relationships between nodes such as vicinity, member-ship,
coworker-ship, etc. Epidemic spreading in multilayer networks is probably one of the most immediate
applications of multilayer networks. In [21], the new approach allows studying scenarios in which
two or more diseases interact cooperatively or competitively. However, there are other potential
applications such as the improvement in the recommender systems [22,23] or networks of Public
Safety [24,25].

The paper is structured as follows. Section 2 is devoted to describe well-established centrality
models for single-layer networks which constitute the basis for the proposed centrality of multiplex
network. In Section 3, it is possible to show how the proposed measure gives distinct results in
networks with different datasets. A biplex network about jazz musicians born in the firs decades of
the 20th century is constructed and analyzed, obtaining the most relevant nodes. The discussion of the
results are given in Section 4. Finally, in Section 5 some conclusion are presented.

2. Methodology

In this section, the well-established models that constitute the core of the proposed centrality are
described in detail. Later, an algorithm summarizing the required calculations to obtain the measure
for multiplex networks is presented and analysed.
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Let G = (N , E) be a connected graph with the adjacency matrix A =
(
aij
)
, with

aij =

{
1 if (i, j) is a link,
0 otherwise.

2.1. The Eigenvector Centrality for Networks with Data

In [26], Bonacich presented the classical eigenvector centrality which measure the importance of a
node depending on its connections. However, we can consider the possibility that not all the links are
equally relevant. Taking this into account, we argue that the centrality does not only depend on the
quantity of its links, but also on the degree of its adjacent nodes.

Denoting by xi the centrality of the node i, it is possible to measure the importance of each node
with the expression,

xi =
1
λ

n

∑
j=1

aijxj, (1)

where aij are the elements of the adjacency matrix corresponding to the row i, and λ is a constant.
Defining the centrality vector as x = (x1, x2, . . .), the expression (1) can be rewritten as

A · x = λx. (2)

From the expression (2), x is an eigenvector of the adjacency matrix A associated with
the eigenvalue λ. Taking into account that A is non-negative and irreducible and using the
Perron–Frobenius theorem, there exists and eigenvector associated with the maximum eigenvector (in
absolute value) with positive entries. This vector is the eigenvector centrality.

This classical eigenvector centrality only takes into account the topology and the links of the
neighbouring nodes. It does not incorporate any other data of the spatial network.

In [20], Agryzkov et al. present a new centrality measure for networks that takes into account
geo-located data associated with the network. Besides, this measure allows to weight the contribution
of the topology in the final classification.

The main idea of the model is the construction of a data vector v with all the information present
in the network. This vector is normalized v∗ and allows to establish the importance of an edge between
nodes i and j as

wij = v∗(i) + v∗(j).

Repeating the computation for all edges, a weight matrix W for the data is constructed. With the
aim to avoid null elements in the weight matrix W, a basic minimum level of importance is introduced,
denoted by α. A matrix A∗ is constructed summarizing the importance of the topology of the network
and the data present in it.

Algorithm 1 summarizes the model proposed in [20].
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Algorithm 1 (Eigenvector centrality for network with data). Let G = (N , E) be a primary graph with n nodes,
A the adjacency matrix, D the data vector and v0 the balanced vector for data. Let us denote by ◦ the Hadamard
matrix product.

1 The data vector v = D · v0 is constructed.
2 Normalization of v.

v∗ =
1

maxi vi
v.

3 The weight matrix W
wij = v∗(i) + v∗(j)

is constructed.
4 Calculate α using the expression α = min

(
v∗i
)

/10, v∗i 6= 0.
5 Take ε, according to the expression ε < 1

10 α.
6 From A, W, and α, ε construct A∗ as

A∗ = A ◦ (W + αJ) + εJ.

7 Compute the dominant eigenpair of A∗, (λ1, x1).
8 From A and x1 compute the eigenvector centrality for networks with data CVP as

CVP =
1

λ1
[Ax1 + x1] .

Where J is a matrix with 1’s in all its entries. It is relevant to remark, as a special characteristic of
this model, that the data associated with the network allow to quantify and qualify the information
located in their environments.

Based on the Agryzkov et al. [20] model some small modifications are introduced in order to
design and implement the centrality measure for multiplex networks.

First, the definition of the parameter α has been modified slightly, reducing the value of the basic
minimum level of importance of data in the global network. Now, α is calculated as

α = min (v∗i ) /10, v∗i 6= 0.

Specifically, the weight matrix W is now defined as

wij = v∗(i) + v∗(j) + α.

The introduction of the basic minimum level of importance associated with the edges in matrix
W is because of the own centrality, where the importance of a node is given by the influence of its
neighbours. It can be said that a node with no data is always influenced by the global dataset of the
whole network, even if the nodes are not directly connected to it.

Consequently, the definition of the matrix A∗ is now

A∗ = A ◦W + εJ.

In the step 8 of Algorithm 1, the centrality of the nodes is calculated from A and x1 by
the expression

CVP =
1

λ1
[Ax1 + x1] , (3)

which is different from the classic eigenvector centrality model computed using the expression (1).
In (1), the centrality of a node is only determined by the influence of the nodes to which it is connected.
However, in the eigenvector centrality with data, the term x1 is added in the expression (3), which
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represents the importance of the node itself due to the data associated with it. This is a small variant that
is introduced with respect to the classic eigenvector centrality, which aims to evaluate the importance
of data associated with a particular node.

Figure 1 shows a schematic representation of the eigenvector centrality model proposed in [20]
for networks with data taking into account the modifications proposed.

Figure 1. Eigenvector centrality modified for networks with data.

2.2. The Two-Layer Approach Pagerank

A two-layer approach PageRank was propose by Pedroche et al. in [18]. The key is to consider
the PageRank model as a process divided into two parts: one related to the topology of the network
and the other related to the probability of jumping between two nodes in the network, following a
criterion that there is the same probability among all of them.

In [18], the authors realize that the classification obtained by the PageRank graph G can be
understood as the stationary distribution of a Markov chain that occurs in a two-layer network

l1, a physical layer: the network G.
l2, a teleportation layer: the network given by the personalized vector.

Within this framework, a block matrix MA is constructed, where each diagonal block is associated
with every layer. Hence, MA can be constructed as

MA =

(
αPA (1− α)I
αI (1− α)evT

)
∈ R2n×2n. (4)

where MA defines a two-layer Markov chain.
Remark that matrix PA is a probability matrix defined as

PA = pij =

{
1
cj

if aij 6= 0,

0 otherwise,
1 ≤ i, j ≤ n,

where cj is the sum of the j-th column of the adjacency matrix A.
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Since MA is irreducible and primitive, Pedroche et al. [18] defined the two-layer approach PageRank
of an adjacency matrix A as the vector

π̂A = πu + πd ∈ Rn,

where there is a unique normalized and positive eigenvector of matrix MA given by
[
πT

u πT
d
]T ∈ R2n.

The idea of separating the centrality based on the PageRank concept into two layers, differentiating
the topological part of the network from the concept of personalization vector, can be extrapolated to
multilayer networks, as the authors demonstrate in [18].

2.3. Adapting the Two-Layer Pagerank Approach for Eigenvector Centrality

In this section, a modification of the eigenvector centrality described in Section 2.1 is presented.
It is based into the two-layer approach PageRank technique described in Section 2.2. A 2× 2 block
matrix is used to distinguish the topology and the teleportation layer. But some previous reasoning
are required to understand the similarity of both models.

The idea of the combination of a physical layer and a teleportation layer in PageRank measure,
differentiating the topological part of the network from the idea of jumping in a random way from one
node to other, can be applied in this case in a similar way. Thus, let us consider a first layer related to
the quantity of data from the topology of the network and a second layer where a residual importance
of the data is considered globally in the network, regardless of where they are located. The first layer
may be called topological data while the second one may be called residual data.

The key of this model lies in the construction of the matrix M given by

M =

(
A ◦W I

I εJ

)
∈ R2n×2n. (5)

The first diagonal block of M is related to the topological data layer and may be expressed by the
Hadamard product A ◦W, where A is the adjacency matrix and W is the weight matrix constructed
from the quantity and location of data in the network. This block clearly reflects the influence of data
regarding the topology of the network. The second diagonal block is related to the residual data layer
and is expressed by the product εJ that summarizes the influence of a residual data value at a global
network scale. In this second block, we introduce the basic minimum level of importance in the definition
of the weight matrix W. This is in accordance with the idea of teleportation, considering equally likely
the jump from one node to another, in a random way.

In Figure 2, a schematic representation of the eigenvector centrality model [20] is presented taking
into account the two-layer approach PageRank.

Note that M is irreducible since any node has a path to any other node, and this is independent
of whether A is irreducible or not. Besides, M is also non-negative and primitive (since it is known
that an irreducible nonnegative matrix with a nonzero diagonal element is primitive [27]). Therefore,
the eigenvector centrality corresponding to M is well defined in the sense that the dominant eigenvalue
is unique and we can find an associated eigenvector with all its entries positive.

Consequently, because of the good spectral characteristics of M, the eigenpar (λ1, π̂M) is obtained,
where λ1 is the dominant eigenvalue and [

πT
u πT

d

]T
∈ R2n,

is the unique positive eigenvector of matrix M given by (5). Therefore,

x = πu + πd ∈ Rn,

is the vector used to calculate the centrality.
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This centrality, that adapts the two-layer approach for PageRank to the eigenvector centrality for
networks with data, is denoted as CVP2f and may be calculated by the expression

CVP2 f =
1

λ1
[Ax + x] . (6)

Figure 2. Eigenvector centrality following the two-layer approach PageRank.

2.4. The Eigenvector Centrality for Multiplex Networks with Data

Taking as a reference the model described in Figure 2, it is possible to extend the centrality measure
to the case of multiplex networks, where all the layers have the same nodes and the differences are in
the relationships among them.

Let us consider a multiplex network M = (N , E ,S) with layers S = (l1, l2, . . . , lk). Then,
an eigenvector centrality is defined by associating to each layer li a two-layer approach as it was
described in Section 2.2. Moreover, the transition between these layers must be allowed.

To begin with, a biplex networks M = (N , E ,S) with two-layer S = (l1, l2) and adjacency
matrices A1, A2 ∈ Rn×n are considered. We write the following elements for every layer li, (for
i = 1, 2): Di data matrix, v0i balanced vector, Wi weight matrix, and αi, εi parameters associated with
the data vector.

It is possible to construct the 4n× 4n matrix MBI as

MBI =
1
2


A1 ◦W1 I I 0

I A2 ◦W2 0 I
I 0 εJ1 εJ2

0 I εJ1 εJ2

 . (7)

The spectral characteristics of M are inherited by the fact that MBI is built non-negative, irreducible
and primitive. Therefore, there exists a unique dominant eigenvalue and an eigenvector associated
with it with all its elements positive. That is, the eigenvector

π̂BI = (πu1 , πu2 , πd1 , πd2) ∈ R4n (8)
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is associated with the dominant eigenvalue λ1. This vector is the basis to obtain the classification
vector. Therefore, a unique vector is obtained

x =
1
2
(πu1 + πu2 + πd1 + πd2) ∈ Rn, (9)

with all its elements positive.
Regarding to the calculation of the centrality, we do not have a single adjacency matrix as in

the case of monoplex networks, since there is an adjacency matrix for each layer of the network.
It is reasonable to think about constructing a global adjacency matrix of the network that reflects the
connections between nodes in all the layers of the network. We can call this general matrix as global
adjacency matrix and denote it by AG. This matrix is defined as

AG = AG(i, j) =

{
1 if nodes i and j are linked in any layer (l1, l2) ,
0 otherwise.

(10)

Therefore, if this centrality is denoted as CVPBI, it can be calculated by the expression

CVPBI =
1

λ1
[AGx + x] ,

where AG is the global adjacency matrix given by (10).
The following algorithm summarizes the steps required to calculate the CVPBI centrality.

Algorithm 2 (Eigenvector centrality for biplex networks). LetM = (N , E ,S), with layers S = (l1, l2) and
adjacency matrices A1, A2 be a biplex network with n nodes. Let D1, D2 be the data matrices for layers
l1, l2, respectively.

1 Construct the weighted vectors vi = Di · v0i, for i = 1, 2.
2 Normalization of vi, for i = 1, 2.

vi
∗ =

1
maxj(vi)j

vi.

3 Construct the weighted matrices Wi, for i = 1, 2, as

Wi =
(

wij

)
i
= vi

∗(i) + vi
∗(j).

4 Compute αi, for i = 1, 2, using the expression αi = min
(
v∗i
)

/10, v∗i 6= 0.
5 Obtain εi, according to the expression εi <

1
10 αi.

6 From Ai, Wi, and αi, εi construct MBI as

MBI =
1
2


A1 ◦W1 I I 0

I A2 ◦W2 0 I
I 0 ε1 J ε2 J
0 I ε1 J ε2 J

 .

7 Compute the dominant eigenpair of MBI , (λ1, π̂BI).
8 Compute x from the expression 9.
9 Compute AG the global adjacency matrix using expression (10).

10 From AG and x compute the centrality

CVPBI =
1

λ1
[AGx + x] .

The Algorithm 2, denoted as CVPBI, summarizes the steps required to compute the centrality.
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In Figure 3, a scheme of the eigenvector centrality algorithm for biplex networks is presented.

Figure 3. Eigenvector centrality CVPBI for biplex networks.

This biplex measure provides a ranking vector of the nodes according to their importance.
This classification is obtained from the importance of the nodes in two layers where the nodes are the
same and it changes the links between the nodes and the data associated with them.

Remark that the MBI is built for biplex networks. But, it can be extended for multiplex
networks with k layers {l1, l2, . . . , lk}, defining the adjacency and data matrices {A1, A2, . . . Ak}
and {D1, D2, . . . , Dk}.

The matrix MBI is

Mmulti =
1
k

(
M1,1 M1,2

M2,1 M2,2

)
with

M1,1 =


A1 ◦W1 I · · · I

I A2 ◦W2 · · · I
· · · · · · · · · · · ·

I I · · · Ak ◦Wk

 , (11)

M2,2 =


ε1 J ε2 J · · · εk J
ε1 J ε2 J · · · εk J
· · · · · · · · · · · ·
ε1 J ε2 J · · · εk J

 . (12)

and M1,2, M2,1 are diagonal matrices with the identity In in its blocks.
The centrality for multiple layers may be denoted as CVPM and will be given by the expression

CVPM =
1

λ1
[AGx + x] ,
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where AG is the global adjacency matrix given by

AG = AG(i, j) =

{
1 if nodes i and j are linked in any layer (l1, l2, . . . , lk)
0 otherwise.

and x is the eigenvector of Mmulti associated with the dominant eigenvalue λ1.

3. Results

In this section, we present some numerical examples of the theoretical models studied in Section 2
for different types of networks and sizes. These examples allow the establishment of characteristics
and properties of the centralities developed, with special emphasis on the possibilities offered by an
eigenvector centrality for multiplex networks.

As was discussed in Section 2.2, the way in which the final centrality is calculated in the measures
described in this paper differs from the way in which it is calculated in the classical model, as can be
shown looking at the expressions (1) and (3). To compare the results of centralities when applying both
expressions, we distinguish between two measures of centrality, such as:

CVP The eigenvector centrality for networks with data, using expression (3).
CVPclassic The eigenvector centrality with data calculating the centrality using the expression (1).
We will refer to this model as classic eigenvector centrality with data.

Therefore, the different centralities involved in these examples are:

CVPclassic The classic eigenvector centrality with data.
CVP The eigenvector centrality for networks with data.
CVP2f The eigenvector centrality based on the two-layer approach PageRank idea.
CVPBI The eigenvector centrality for multiplex networks.

All the numerical tests have been carried out by implementing these centralities in R [28], a free
software under the terms of the GNU project. It constitutes a language and environment specially
efficient for computing and graphics.

Firstly, one-layer networks (monoplex) are used to compare the results obtained for the CVPclassic,
CVP, and CVP2f centralities, in order to subsequently develop a discussion on the coherence of the
measures defined with respect to the traditional eigenvector centrality. Later, some examples of the
CVPBI centrality for particular biplex networks are described in detail.

3.1. Monoplex Networks

Let G1 = (N , E) be a simple graph with 10 nodes where N = {1, 2, . . . , 10} and
N = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (5, 6), (5, 7), (5, 8), (6, 7), (6, 10), (7, 8), (7, 9), (7, 10), (8, 9), (9, 10)}.
Let us consider the following datasets D1, D2 and D3:

1 2 3 4 5 6 7 8 9 10 α ε

D1 8 1 8 8 1 1 1 1 1 1 1/80 1/800
D2 1 1 1 10 0 0 10 0 0 0 1/100 1/1000
D3 10 2 2 2 2 2 10 2 2 2 2/100 2/1000

Now, we perform the calculations of the CVPclassic, CVP, and CVP2f eigenvector centralities,
using the expression (1) and the Algorithms 1 and 2, respectively. The results are shown in Table 1.

The numerical results of Table 1 are represented graphically in Figure 4. The graphs has been
drawn on the left, while the values of centralities are shown in the right column. It is observed that
the size of each vertex in the graphs is proportional to the amount of data associated with it. Thus,
for example, in the upper part where the data set D1 is evaluated, the nodes 1, 3 and 4 are observed
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with a larger size, since they have the greatest quantity of data, specifically 8. In the following section
a brief analysis of the characteristics of these centralities that emerge from this example is carried out,
with special emphasis on the differences between the classical model of eigenvector centrality and that
proposed by Agryzkov et al. [20].

Figure 4. Eigenvector centralities CVPclassic, CVP, and CVP2f for the graph G1, using datasets D1,
D2, and D3.
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Table 1. CVPclassic, CVP, and CVP2f eigenvector centralities for the simple graph G1.

Node D1 CVPclassic CVP CVP2f D2 CVPclassic CVP CVP2f D3 CVPclassic CVP CVP2f

1 8 0.4632 0.6960 0.4107 1 0.1958 0.2139 0.1254 10 0.0118 0.0170 0.0075
2 1 0.4962 0.6636 0.3915 1 0.2232 0.3211 0.1889 2 0.0293 0.0352 0.0186
3 8 0.4962 0.7920 0.4674 1 0.2232 0.3211 0.1889 2 0.0293 0.0352 0.0186
4 8 0.5542 0.8176 0.4823 10 0.4629 0.6681 0.3944 2 0.1777 0.2018 0.1174
5 1 0.2891 0.3801 0.2234 0 0.9858 1.2528 0.7425 2 0.6630 0.8289 0.4906
6 1 0.1020 0.1103 0.0642 0 0.8668 1.0473 0.6212 2 0.6414 0.8045 0.4767
7 1 0.1115 0.1205 0.0697 10 0.9883 1.4079 0.8352 10 0.8178 1.1304 0.6698
8 1 0.1020 0.1103 0.0642 0 0.8668 1.0473 0.6212 2 0.6414 0.8045 0.4767
9 1 0.0193 0.0212 0.0115 0 0.7802 0.9603 0.5698 2 0.6385 0.8013 0.4748
10 1 0.0193 0.0212 0.0115 0 0.7802 0.9603 0.5698 2 0.6385 0.8013 0.4748

3.2. A Simple Biplex Network

In this section, we study the example of a simple biplex network constituted by 10 nodes and
with two layers. In this case, the links between the nodes in the different layers have been generated
randomly, while the data has been directly associated on the nodes in a simulated way to establish
possible differences in the centrality values for each layer. So, let M1 = (N1, E1,S1) be a biplex
network with nodes N1 = {1, 2, . . . , 10}, with layers S1 = (l1, l2) and adjacency matrices A1, A2

given by

A1 =



0 1 0 0 0 1 0 1 0 0
1 0 1 0 0 1 1 0 1 0
0 1 0 0 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0 0 1
1 1 1 0 1 0 1 0 0 0
0 1 0 0 1 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0


A2 =



0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 1 0 1 1
1 0 0 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0 1
0 0 1 1 1 0 1 0 0 0
1 1 1 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 0 1 0


.

Let D1, D2 be the data vectors for layers l1, l2, respectively,

D1 = [1, 1, 1, 10, 1, 1, 1, 10, 1, 10]T , D2 = [1, 1, 10, 1, 1, 1, 10, 1, 1, 1]T .

It is observed that in layer 1 the largest amount of data has been assigned to those nodes that have
less connectivity, that is, degree 2. However, in layer 2 just the opposite is done, the largest amount of
data has been assigned to the nodes that have greater connectivity (degree 5).

In Table 2, we have reflected the following information about each node of the network: the
data D1, D2 corresponding to layers l1 and l2, respectively, the connectivity in each layer (dg l1, dg l2),
the eigenvector centrality for layer l1 (CVPl1), its eigenvector centrality for layer l2 (CVPl2) and, finally,
the eigenvector centrality for the biplex network CVPBI calculated from Algorithm 2. Data in Table 2
may be visualized by the graphs of Figures 5–7 respectively.

Algorithm 2 have been run taking this network with these datasets. The results for the centrality
are summarized in Table 2.
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Table 2. Classic eigenvector centrality for layers and CVPBI centrality for the simple biplex
networkM1.

Node D1 dg l1 D_2 dg l_2 CVPl1 CVPl2 CVPBI

1 1 3 1 3 0.2438 0.3548 0.6833
2 1 5 1 4 0.5517 0.1946 0.6651
3 1 4 10 5 0.6488 0.5382 0.8172
4 10 2 1 2 0.6403 0.1207 0.2944
5 1 4 1 4 0.8701 0.4342 0.6029
6 1 5 1 4 0.6720 0.4338 0.7259
7 1 4 10 5 0.5383 0.5388 0.7725
8 10 2 1 2 0.2087 0.1815 0.5289
9 1 3 1 4 0.5806 0.1622 0.4524

10 10 2 1 3 0.6530 0.1291 0.3770

Figure 5. Eigenvector centrality CVPl1.
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Figure 6. Eigenvector centrality CVPl2.

Figure 7. Eigenvector centrality CVPBI.

3.3. A Jazz Musicians Biplex Network

An example of a biplex network related to the history of jazz is shown in this section. Among the
many jazz artists that emerged between 1900 and 1930, 75 has been selected from the most relevant
and influential in the following decades, such as:

Louis Armstrong 1, John Coltrane 2, Charles Mingus 3, Charlie Parker 4, Miles Davis 5, Count
Basie 6, Dizzy Guillespie 7, Duke Ellington 8, Ella Fitzgerald 9, Billie Holiday 10, Thelonious Monk
11, Abbey Lincoln 12, Alice Babs 13, Art Blakey 14, Arthur Prysock 15, Artie Shaw 16, Ben Webster



Symmetry 2019, 11, 763 15 of 24

17, Benny Goodman 18, Bill Evans 19, Bing Crosby 20, Blue Mitchell 21, Bud Powell 22, George
Buster Cooper 23, Cannonball Adderley 24, Cat Anderson 25, Chet Baker 26, Coleman Hawkins 27,
Cootie Williams 28, Dexter Gordon 29, Earl Hines 30, Dave Brubeck 31, Grant Green 32, Hank Mobley
33, Harry Carney 34, Helen Merrill 35, Helen Humes 36, Herbie Hancock 37, Jackie Wilson 38, Jeri
Southern 39, Gerry Mulligan40, Jim Hall41, Jimmy Hamilton 42, Jimmy Jones43, Jimmy Rushing 44,
Joe Williams 45, Johnny Hartman 46, Johnny Hodges 47, Johnny Smith 48, Kenny Burrell 49, King
Oliver 50, Lester Young 51, Max Roach 52, Milt Jackson 53, Nat King Cole 54, Nina Simone 55, Lionel
Hampton 56, Oscar Peterson 57, Billy Eckstine 58, Paul Desmond 59, Paul Gonsalves 60, Clifford Brown
61, Russell Procope 62, Sam Woodyard 63, Sammy Davis 64, Sarah Vaughan 65, Fletcher Henderson 66,
Sonny Rollins 67, Sonny Stitt 68, Stan Getz 69, Art Tatum 70, Teddy Wilson 71, Clark Terry 72, Tony
Bennett 73, Dinah Washington 74, Wes Montgomery 75.

This is a personalized list and, therefore, debatable and improvable. However, the majority of the
most influential jazz musicians of all time are in this set of 75 great musicians. Only seven of them are
out of the range 1900–1930 but were included for its influence on musicians of later times.

The data collected from these jazz figures are: date of birth, place of birth, instrument and
discography. Regarding of the discography, three data have been compiled. On the one hand,
the number of discs (LP’s) commercially released by each artist. On the other hand, the number of
appearances of an artist on the disc of other colleagues has been collected. Finally, the data referring to
the production of singles & EPs by each musician have been extracted from specialized Web pages.
A part of the data collected in the study are shown in Table 3.

In addition to these data, a more in-depth study is carried out based on the collaborations
between them, understanding by collaboration the joint participation in discs, concerts, etc. Note
that we also consider a collaborative relationship if an artist has been part of the band of another
artist on the list. The majority of data has been collected from web pages specialized in jazz, such
as https://www.discogs.com, https://en.wikipedia.org or https://www.britannica.com/art/jazz.
A map with the geographical location of the artists born in USA can be seen in Figure 8.

This work aims to study the most influential jazz musicians of the early twentieth century taking
into account on the one hand the professional collaborations between them, as well as the amount of
contemporary artists to each musician. The data associated with each artist are related to the musical
production of the artist throughout his professional career. For this purpose, we design a biplex
networkM2 = (N2, E2,S2) with nodes N2 = {1, 2, . . . , 75}, and layers S2 = (l1, l2). The nodes are the
jazz artists from the previous list and the two layers are constructed from the following relationships
and data:

layer 1 the nodes are the 75 artists previously enumerated and the relationships we analyze are the
musical collaborations between them. That is, two artists are linked by an edge if they have
collaborated together in a disc or a remarkable musical event. The data associated with each
node are related to its musical production. In this layer each node has a number representing
the quantity of discs commercially launched throughout their professional career.

layer 2 the nodes are the same as in layer 1 but the relationships established between them are
related to their contemporaneity. Specifically, a link between two artists is established if their
age difference is less than 5 years. The data that accompanies each node is also related to its
musical production, although now we measure the quantity of singles & EPs commercially
launched along their life.

In Figure 9 we have drawn the graphs corresponding to the two layers of the biplex networkM2.
On the left image, the graph of layer 1 has been drawn, where each link represents a collaboration
between two jazz artists and the size of the nodes is proportional to the degree they have in the
graph. Note that it is an undirected graph with 75 nodes and 386 edges, where the node that has
a greater degree is that of Duke Ellington with 25 collaborations. In the graph of Figure 9 (right),
the graph of layer 2 is shown. Now the idea of establishing relationships between artists is given by

https://www.discogs.com
https://en.wikipedia.org
https://www.britannica.com/art/jazz
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their contemporaneity. Thus, we establish a link between two artists if the difference of their ages is
less than 5 years. Analogously, the size of the nodes is directly proportional to the degree. It is a graph
of 75 nodes and 728 edges, where now the node with the highest degree is John Coltrane, with 32 links.

Figure 8. Geolocation of the birthplace of the artists who were born in USA.

(a) Layer 1 (b) Layer 2

Figure 9. Graphs involved in the biplex networkM2.
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Table 3. Datasets related to the jazz artists biplex network.

ARTIST ID Discs 1 Discs 2 Singles Degree1 Degree2 CVPl1 CVPl2 CVPBI

Louis Armstrong 1 257 140 601 14 8 0.208132 0.000643 0.306822
John Coltrane 2 128 74 61 14 32 0.127194 0.900217 0.349227

Charles Mingus 3 78 47 25 10 28 0.136596 0.964608 0.337863
Charlie Parker 4 170 59 105 18 25 0.188845 0.800695 0.370992

Miles Davis 5 146 115 170 19 31 0.153326 0.871672 0.313106
Count Basie 6 291 96 163 22 9 0.281710 0.000872 0.432763

Dizzy Guillespie 7 248 87 145 32 15 0.356342 0.376652 0.470798
Duke Ellington 8 431 145 127 25 7 0.298445 0.000562 0.379134
Ella Fitzgerald 9 251 149 590 23 15 0.313765 0.376652 0.434902
Billie Holiday 10 124 120 152 12 13 0.138286 0.241592 0.329981

Thelonious Monk 11 94 61 44 10 24 0.104393 0.764596 0.305996
Abbey Lincoln 12 28 8 6 3 17 0.033822 0.263212 0.134663

Alice Babs 13 39 18 183 1 28 0.035207 0.977196 0.304719
Art Blakey 14 70 27 31 14 19 0.135806 0.535606 0.306970

Arthur Prysock 15 35 2 87 1 28 0.027843 0.977196 0.298056
Artie Shaw 16 40 37 25 3 12 0.019123 0.025645 0.134019

Ben Webster 17 134 35 29 13 9 0.209926 0.010411 0.279045
Benny Goodman 18 223 64 106 11 8 0.092611 0.010290 0.137790

Bill Evans 19 117 41 16 11 20 0.071621 0.413341 0.161494
Bing Crosby 20 360 126 1181 7 10 0.112533 0.000886 0.256514

Blue Mitchell 21 40 11 18 7 16 0.045919 0.258306 0.138295
Bud Powell 22 73 24 33 17 28 0.193356 0.977196 0.352628

George Buster Cooper 23 2 1 0 3 20 0.050249 0.413341 0.203845
Cannonball Adderley 24 65 46 61 9 27 0.079829 0.723771 0.232014

Cat Anderson 25 24 2 1 2 16 0.044258 0.378344 0.249225
Chet Baker 26 213 63 62 8 20 0.062369 0.413341 0.167218

Coleman Hawkins 27 156 70 102 21 8 0.263319 0.000792 0.372268
Cootie Williams 28 15 4 3 6 14 0.089591 0.057162 0.208219
Dexter Gordon 29 108 35 20 15 28 0.159453 1.001248 0.372268

Earl Hines 30 182 34 59 19 10 0.284581 0.000886 0.403670
Dave Brubeck 31 106 62 43 4 24 0.037805 0.764596 0.285276

Grant Green 32 47 28 17 7 10 0.040097 0.033256 0.064868
Hank Mobley 33 47 5 7 4 11 0.066871 0.000946 0.268092
Harry Carney 34 2 6 2 8 11 0.079306 0.024874 0.180728
Helen Merrill 35 54 9 13 5 2 0.063261 0.000320 0.077881
Helen Humes 36 14 8 27 3 13 0.069416 0.136435 0.191121

Herbie Hancock 37 92 116 77 4 2 0.021405 0.000320 0.029367
Jackie Wilson 38 36 38 207 1 10 0.027848 0.033256 0.063010
Jeri Southern 39 19 8 43 1 31 0.006230 0.871672 0.237127

Gerry Mulligan 40 105 50 62 17 31 0.213152 0.848650 0.408619
Jim Hall 41 75 22 9 5 16 0.054026 0.258306 0.151018

Jimmy Hamilton 42 11 5 1 3 15 0.052359 0.376652 0.243584
Jimmy Jones 43 7 5 38 9 16 0.137392 0.424007 0.288736

Jimmy Rushing 44 36 6 18 9 8 0.114722 0.000643 0.239110
Joe Williams 45 74 33 74 6 15 0.121835 0.407672 0.262070

Johnny Hartman 46 26 6 22 4 29 0.081128 1.023736 0.337525
Johnny Hodges 47 74 27 54 17 12 0.193260 0.002906 0.311268

Johnny Smith 48 21 8 10 11 27 0.125096 0.936140 0.367494
Kenny Burrell 49 113 29 32 14 15 0.122991 0.157607 0.197506

King Oliver 50 17 10 16 4 3 0.036315 0.000191 0.050221
Lester Young 51 144 37 66 10 8 0.121040 0.010290 0.199839

Max Roach 52 76 22 22 18 28 0.199269 0.977196 0.378927
Milt Jackson 53 94 24 57 10 29 0.107126 1.023736 0.322419

Nat King Cole 54 94 123 550 9 19 0.128473 0.535606 0.316639
Nina Simone 55 70 111 148 1 9 0.008779 0.033248 0.041665

Lionel Hampton 56 180 51 91 12 12 0.142204 0.005542 0.271646
Oscar Peterson 57 217 63 121 16 26 0.255504 0.872415 0.459690

Billy Eckstine 58 72 23 248 9 12 0.158024 0.180078 0.250622
Paul Desmond 59 45 23 27 4 28 0.023382 0.977196 0.275923

Paul Gonsalves 60 31 6 6 10 24 0.182909 0.764596 0.387172
Clifford Brown 61 34 10 24 7 16 0.078844 0.258306 0.179309

Russell Procope 62 3 1 0 4 11 0.068304 0.005413 0.210888
Sam Woodyard 63 7 1 0 4 25 0.086137 0.835869 0.299651

Sammy Davis 64 87 52 269 4 25 0.097230 0.835869 0.311143
Sarah Vaughan 65 177 90 363 18 28 0.202532 0.977196 0.439896

Fletcher Henderson 66 2 9 15 6 4 0.080752 0.000254 0.102392
Sonny Rollins 67 103 31 47 12 16 0.100452 0.258306 0.197234

Sonny Stitt 68 171 24 78 11 28 0.124375 0.977196 0.320762
Stan Getz 69 181 105 135 20 31 0.246832 0.835160 0.423175

Art Tatum 70 126 34 108 6 8 0.129773 0.010290 0.207813
Teddy Wilson 71 103 27 56 18 13 0.232958 0.057073 0.319262

Clark Terry 72 136 30 25 14 24 0.224492 0.764596 0.401614
Tony Bennett 73 123 105 240 8 31 0.088067 0.871672 0.301548

Dinah Washington 74 58 57 164 6 28 0.105916 0.977196 0.356948
Wes Montgomery 75 70 43 33 5 29 0.032566 1.023736 0.303567
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Table 3 summarizes the whole set of data collected regarding to the biplex network of jazz artists
of the early twentieth century. This table shows the names of the artists and their identifiers as network
nodes. The following three columns show the information related to the musical production of each
artist. The column discs 1 shows the number of discs (LP’s) released commercially, the column discs 2
shows, for each artist, the number of discs of other colleagues in which the artist has appeared and
in the third column singles we have the number of singles released commercially. The next columns
degree1 and degree2 show the degrees of a node in the graphs of layer 1 and layer 2, respectively. Finally,
the last three columns show the results of the calculated centralities. The centrality CVPl1 refers to
the eigenvector centrality taking individually the first layer, CVPl2 refers to the eigenvector centrality
taking individually the second layer, while the CVPBI centrality is shown in the third column, having
been calculated running Algorithm 2.These results are analyzed and discussed in next section.

The biplex centrality for the jazz artists network is displayed in Figure 10, where the biplex
centrality CVPBI is represented in front of the individual centralities of each layer. Figure 10 shows
how there is a group of nodes with very high CVPBI centrality and a low centrality in layer 2.

Figure 10. Eigenvector centrality CVPBI for jazz artists network.

4. Discussion

The way in which we calculate the centralities CVP (eigenvector centrality with data) and CVP2f
(eigenvector centrality based on the two-layer PageRank approach) differs from the way in which
the classical eigenvector centrality is calculated. When considering the CVP centrality it is assumed
that the importance of the data associated with the node itself may be not negligible in the calculation
of its importance within the network. If the expression (3) is observed, we notice the presence of
the component x, which fulfills this function precisely and which does not appear in the classical
eigenvector centrality.

The importance of this detail on the computation of centrality is shown in the first network of
the results section. On a simple network of 10 nodes, with two clearly differentiated components,
three data sets are strategically distributed between the different nodes of the network. We analyze
them briefly.
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We pay attention to the upper graph corresponding to the data set D1, which centers all the data of
the network in the first four nodes. Firstly, It is observed that the results of the three centralities studied
are coherent, in the sense that the most relevant nodes coincide in the three measures, maintaining the
order of importance of the nodes in all cases. However, certain differences are seen in the values of
centrality in those nodes where the data are concentrated. Specifically, the biggest differences between
the classic eigenvector centrality and the rest are given in nodes 1, 3 and 4, which are the ones that
concentrate the data. This is a consequence of the way in which eigenvector centrality for networks
with data is calculated, taking into account not only the degree of the node but also its own importance
based on the data it contains. Observing the graphs shown in Figure 4, the great similarity in the
values of the CVPclassic and CVP2f centralities is clear. Likewise, when the nodes do not have data,
the three measures of centrality are practically identical. In the central graph of Figure 4, corresponding
to dataset D2, it can be seen how the most relevant node in the network is 7, which is one of the two
nodes that stores the data present in the network. One might think that the second most relevant node
of the same would be node 4, which is the other node with 10 data. However, this is not the case, since
the second node in importance is node 5. The reason for this behavior is that, although node 5 does not
contain data, it is connected to the two nodes that contain all the data of the network (nodes 4 and 7).
This case intuitively shows us the idea on which the eigenvector centrality is based.

In the lower graph of Figure 4, corresponding to dataset D3, the importance of connectivity is
also seen. Although nodes 1 and 7 have the maximum data, node 7 is the most relevant due to its
connectivity (grade 5), compared to node 1 that only has degree 2. The nodes connected to node 7
present a higher centrality for its greater connectivity. The fact repeated is that the greatest differences
in the values of the centralities occur when data are present in the nodes.

This coherence in the values of the centralities studied is not only observed in small networks.
Tests have been carried out with networks of different sizes, up to 10, 000 nodes. The literature suggests
different alternatives to study the correlations between two rankings; in this case a classic one has been
chosen to perform the numerical tests, as it is the the Spearman correlation coefficient. The results are
conclusive: in all the cases tested with different sizes, the Spearman coefficient between the variables
exceeded the 0.9999 value, being 1 in most cases from sizes of n = 100. This positive correlation is very
relevant in this proposal since we have a solid measure such as the CVP2f centrality that allows us to
design a new measure for networks with multiple layers.

Let us consider the networkM1 with two layers and 10 nodes. In the first layer l1 the data are
associated with the nodes with less connectivity, while in layer l2 they are located in the two nodes
with greatest connectivity. The influence of data on those nodes with more links is clearly observed.
If we analyze the global centrality of the biplex network, it is much closer to the eigenvector centrality
calculated for layer l2 than for layer l1. In fact, the three most central nodes of the measures CVPl2
and CVPBI are the same, although following a different order in the ranking. However, if we consider
separately the centrality of layer l1, it has nothing to do with the global results when analyzing the
network by layers. In layer l1 the two most relevant nodes do not coincide with the nodes that have
more data; however, this does not happen in layer l2, where clearly the sum of data and degree makes
the most central nodes are those that accumulate more data.

This shows that when a multilayer network with data is considered and evaluated, the results
differ when the centrality is applied individually to each of the layers.

Now, we discuss the jazz musicians network described in Section 3.3. Note that the goal is
not only to establish a ranking of musicians of this time based on their collaborations and musical
production. To address this objective, it would be enough to calculate the eigenvector centrality of
layer l1 (CVPl1) and we would have this classification. Note that we relate the collaborations between
artists with those who are contemporary with each other. Following the idea of centrality based on
the eigenvector concept, we consider that the relevance of an artist is also related to the presence of
contemporary artists and, in addition, the more famous they are, the more fame they provide to a
work and production. Therefore, the goal is not only to establish a ranking of musicians of that time
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based on their collaborations and musical production. If this were the objective, it should be enough to
calculate the CVP centrality of layer 1 and we would have this classification. In this case it is mixed the
collaborations between artists with those who are contemporary with each other. Following the idea of
centrality based on the eigenvector concept, it is established that the importance of an artist is also
related to the presence of contemporary artists and, in addition, the more relevant they are, the more
value they provide to their work and production.

A portion of the dataset collected is shown in Table 3, while the geographical location of the artists’
birth places can be seen in the USA map in Figure 8, where the large production of artists in the east
and southeast of the country is clear.

Regarding to the data referring to the musical production, some highlights may be remarked:

• Much of the artists with the highest production of LP’s and singles are singers, such as
Ella Fitzgerald, Billie Holiday, Bing Crosby, Nat King Cole, Nina Simone, Sarah Vaughan or
Tony Bennett.

• It is remarkable the huge musical production of Bing Crosby.
• Most artists whose musical production is very low is a consequence of having been part of other

bands, though their importance and influence in later times is undeniable.
• If we focus on the artists who have a higher number of collaborations with other musicians, most

of them are part of all the lists of the best jazz musicians of all time, such as Dizzy Guillespie,
Duke Ellington, Ella Fitzgerald, Miles Davis, Charlie Parker, Stan Getz or Louis Armstrong.

To analyze the data obtained from the jazz artists network, Table 3 is simplified by taking the 15
nodes that present higher values of centralities. Therefore, Table 4 summarizes the ranking of nodes
for the calculated values of centralities CVPl1, CVPl2 and CVPBI.

An extensive analysis of the results reproduced in Table 4 and displayed in Figure 11 is performed.
As already mentioned, if we limit to the calculation of the eigenvector centrality for networks

with data in layer l1 using Algorithm 1, we obtain a classification of the nodes in importance according
to the collaborations with other artists and taking the data of his musical production in terms of
records. We must bear in mind that it is being valued as relevant not only the number of collaborations
but the quality of these, always under the prism that we are relevant if our contacts are relevant.
The importance of the musicians with whom they collaborate or participate is measured. Looking at
Figure 11 (up left), the first in the ranking of the artists in the classification to measure the centrality
CVPl1 is Dizzy Gillespie, key trumpeter in the evolution of jazz to the present. It is the node with the
highest degree, that is, with a greater number of connections with other musicians.

It is noted that in this list are some of the best known artists of that time by the public, such as
Dizzy Gillespie, Duke Ellington, Ella Fitzgerald, Count Basie, Oscar Peterson, Louis Armstrong and
others. Other names are also not as well known as Earl Hines, pianist of the band of Louis Armstrong
and whose musical production is remarkable with 182 albums released.

If the eigenvector centrality for layer 2 is now analyzed, a different pattern is observed. To begin
with, there are hardly any names on the list that are so familiar to non-specialists in jazz music. Remark
that now we relate the artists for contemporaneity. It follows that the artists with higher centrality
are those born between 1923 and 1924, years of abundance in the birth of artists of unquestionable
quality, some of whom are on this list. It is not surprising that several artists have the same centrality,
since they were born in the same year they form similar subgraphs with the same degrees. Figure 11
(up right) displays the 15 first names in the classification.
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Table 4. The first 15 jazz artists with higher centralities.

Ranking CVPl1 Artist CVPl2 Artist CVPBI Artist

1 0.3563 Dizzy Guillespie 1.0237 Johnny Hartman 0.4708 Dizzy Guillespie
2 0.3138 Ella Fitzgerald 1.0237 Milt Jackson 0.4597 Oscar Peterson
3 0.2984 Duke Ellington 1.0237 Wes Montgomery 0.4399 Sarah Vaughan
4 0.2846 Earl Hines 1.0012 Dexter Gordon 0.4349 Ella Fitzgerald
5 0.2817 Count Basie 0.9772 Alice Babs 0.4328 Count Basie
6 0.2633 Coleman Hawkins 0.9772 Arthur Prysuck 0.4232 Stan Getz
7 0.2555 Oscar Peterson 0.9772 Bud Powell 0.4086 Gerry Mulligan
8 0.2468 Stan Getz 0.9772 Max Roach 0.40367 Earl Hines
9 0.2330 Teddy Wilson 0.9772 Paul Desmond 0.4016 Clark Terry
10 0.2245 Clark Terry 0.9772 Sarah Vaughan 0.3872 Paul Gonsalves
11 0.2132 Gerry Mulligan 0.9772 Sonny Stitt 0.3791 Duke Ellington
12 0.2099 Ben Webster 0.9772 Dinah Washington 0.3789 Max Roach
13 0.2081 Louis Armstrong 0.9646 Charles Mingus 0.3723 Coleman Hawkins
14 0.2052 Sarah Vaughan 0.9361 Johnny Smith 0.3722 Dexter Gordon
15 0.1993 Max Roach 0.9002 John Coltrane 0.3710 Charlie Parker

Figure 11. Jazz network centralities CVPl1 (upper left), CVPl2(upper right), and CVPBI taking the top
15 nodes (musicians) in the ranking of centralities.

Considering the network as a whole and not individually by layers, the influences of the different
relationships between the nodes and the data associated with them are mixed together and the layers
interact. Applying Algorithm 2 a ranking is obtained (see Figure 11 down).The winner is Dizzy
Gillespie, a trumpet virtuoso and improviser. In the 1940s Gillespie, with Charlie Parker, became a
major figure in the development of bebop and modern jazz. The second artist in the classification is
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Oscar Peterson, exceptional pianist in the history of music. Being born in 1925, being contemporary
of many jazz greats with whom he has collaborated actively throughout his career and his extensive
musical production of both albums and singles takes to occupy a high position in this ranking. In the
third place appears Sarah Vaughan, born in 1924. As in the previous case, her enormous musical
production and having sung with the most relevant artists in the history of jazz cause her to be in
second place. The same behavior repeats with the rest of the artists.

If we compare the three classifications, the names do not match. This is really what we expected
when we consider multipex networks: the value of individual centrality does not exactly match the
global centrality.

This example help us to understand how the data must be analyzed in the context of the networks
and their characteristics. Thus, the analysis of the data collected on the musical production shows us a
clear pattern as it is that the singers of this list have a very high musical production. The most obvious
cases are those of Bing Crosby, Ella Fitzgerald or Nat King Cole, which have a singles production of
1181, 590 and 550, respectively, occupying the first three positions if we take this isolated data. Note
that these artists are born before 1919 and the great explosion of artists in those decades is between 1921
and 1927, which penalizes them and it does not allow them to occupy higher positions in the rankings.

Throughout the example, we see the possibilities of treatment that a dataset has from the study of
diverse relations between the different nodes of the network. If we had related the artists in another
sense, the results probably would not be same, but it is certain that in the final list some of the greatest
artists in jazz history should appear.

5. Conclusions

In this paper, a centrality measure for biplex networks (CVPBI), based on the eigenvector centrality
for networks with data, has been designed and implemented. The advantage of this type of measure
is twofold. Firstly, it can determine the importance of the nodes of a network by analysing multiple
relationships between the nodes. On the other hand, it allows to work with several datasets associated
with the nodes themselves.

As a preliminary step to the design of the measure for multilayer networks, it has been necessary
to adapt the eigenvector centrality for networks with data to the idea underlying the two-layered
approach PageRank. Following this technique, a new centrality (CVP2f) is designed by means of
the construction of a 2× 2 block matrix, where the blocks of the main diagonal have the objective of
separating the effect of the network topology on the data with the quantity of these. Thus, the first
block assumes the importance of the network topology while the second block takes into account the
influence of the data at a global or residual level.

In the several numerical tests performed on networks of different types and sizes, a coherence was
observed in the values offered by CVP2f measure with the classic eigenvector centrality (CVPclassic)
and with the eigenvector centrality for networks with data (CVP). This consistent result has allowed us
to generalize to multiplex networks the idea of considering blocks in each of the layers differentiating
the influence of the data according to the network topology and the data as a whole (following a
similar reasoning as in the CVP2f centrality).

The centrality proposed for multiplex networks has been experienced on a real network of
jazz musicians of the early twentieth century. It has demonstrated its ability to evaluate different
relationships on the same set of nodes when different datasets are considered. From this particular
example, we have shown how introducing a layer structure, by distinguishing different types of
interactions between the nodes, may vary the behaviour of the network.

Author Contributions: All authors contributed equally to: conceptualization, F.P., L.T. and J.F.V.; methodology,
F.P., L.T. and J.F.V.; formal analysis, F.P., L.T. and J.F.V.; investigation, F.P., L.T. and J.F.V.; writing—original draft
preparation, F.P., L.T. and J.F.V.

Funding: This research is partially supported by the Spanish Government, Ministerio de Economía y
Competividad, grant number TIN2017-84821-P.



Symmetry 2019, 11, 763 23 of 24

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CVP Eigenvector centrality for networks with data
CVPclassic Eigenvector centrality for networks with data with classic centrality calculation
CVP2f Eigenvector centraliy using two-layer approach PageRank
CVPBI Eigenvector centrality for biplex networks
CVPM Eigenvector centrality for multiplex networks
CVPl1 Eigenvector centrality for networks with data for layer l1
CVPl2 Eigenvector centrality for networks with data for layer l2
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