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Abstract: Modelling and simulation are key tools for analysis and design of systems and processes
from almost any scientific or engineering discipline. Models of complex systems are typically built on
acausal Differential-Algebraic Equations (DAE) and discrete events using Object-Oriented Modelling
(OOM) languages, and some of their key concepts can be explained as symmetries. To obtain a
computer executable version from the original model, several algorithms, based on bipartite symmetric
graphs, must be applied for automatic equation generation, removing alias equations, computational
causality assignment, equation sorting, discrete-event processing or index reduction. In this paper,
an open source tool according to OOM paradigm and developed in MATLAB is introduced. It
implements such algorithms adding an educational perspective about how they work, since the step
by step results obtained after processing the model equations can be shown. The tool also allows
to create models using its own OOM language and to simulate the final executable equation set. It
was used by students in a modelling and simulation course of the Automatic Control and Industrial
Electronics Engineering degree, showing a significant improvement in their understanding and
learning of the abovementioned topics after their assessment.

Keywords: Object-Oriented Modelling; complex and hybrid systems; software tool; simulation

1. Introduction

First-principles modelling of complex systems with continuous and discrete components (hybrid
systems), which arises in many different fields, is a challenging task that can be efficiently carried
out using the Object-Oriented Modelling (OOM) paradigm [1,2]. OOM allows to handle this
complexity by structuring the overall model in a modular and hierarchical way using smaller
basic components organized in libraries that can be reused [3]. Models created with OOM languages
have a declarative nature [4], i.e., they are acausal (without preassigned computational causality in
the model equations) in contrast to procedural or block-oriented modelling languages. This feature
allows one to focus on creating the model without worrying about obtaining a computer executable
equation set ready for simulation because this task (called partition generation) is automatically carried
out by algorithms implemented in OOM tools [5,6]. Currently, Modelica [7] is considered a de facto
standard of OOM languages and is used in most of both commercial and open source OOM tools
(Dymola [8], SimulationX [9], OpenModelica [10], MapleSim [11], etc.), though there are other tools not
based on Modelica, such as gPROMS [12] or EcosimPro [13,14]. Key features common to all OOM
languages are [3]:
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• Encapsulation: isolation of a component internal mathematical description and associated data
from its external interface, allowing the modeller to deal with model complexity in an easier way.
Encapsulation is typically implemented through the class concept. It is a pattern which defines both the
component private part (dynamic equations, discrete events, local variables and internal topology) and
its public part (parameters, attributes and connection ports). An object or component is an instantiation
of a class, and an abstract (or partial) class only describes the common or generic behaviour and data
that will be inherited by different components. All objects instantiated from a class are constrained
to the same structure data and behaviour defined on it, so this concept of class can be explained as
symmetry [15].

• Inheritance: mechanism that allows common behaviours and interfaces to be shared between
components. It simplifies the modelling task and makes possible the creation of class libraries
(packages) organized in a hierarchical way with interrelated parent and derived classes (the latter
can be considered a specialization of the former). Depending on the number of parent classes used,
inheritance can be simple (only one parent class) or multiple (several parent classes). The specialization
concept with invariant data and behaviour between a subclass and its parent classes is also related to
symmetry [15].

• Aggregation: creation of components from others previously developed and debugged (objects
of more basic classes), so that they can be reused. This mechanism can be iteratively applied with no
limit, so a final component can be extremely complex if it is built through aggregation of many other
simpler ones.

A lot of models that have been created using the OOM paradigm can be found on the literature.
To cite just a few recent works from several fields, there are examples of mechanical systems [16–18],
electrical systems [19–21], thermal systems [22–25], energy systems [26–29] and processes [30,31]. This
clearly shows that OOM is a very useful methodology for modelling multidisciplinary complex systems.

On the other hand, it has been proven that software tools used as teaching support of certain
subjects allow a better understanding of its key concepts by the students. In general, the introduction
of these tools has led, to some extent, to an improvement in their learning. For example, in automatic
control, graphical and interactive tools created in different environments, such as MATLAB [32–34],
Sysquake [35,36] or Easy Java/Javascript Simulation [37], represent a suitable and easy way of explaining
and illustrating non-intuitive contents that are difficult to understand. Reviewing recent state of the art,
many other different topics in which educational tools have been introduced can be found, including
electronics [38], physics [39,40], mechanical engineering [41,42], thermodynamics [43], optics [44] or
robotics [45]. In all these works, developed tools proved to be powerful and valuable instruments for
improving student learning.

This work introduces a software tool focused on system modelling and simulation according to
the OOM paradigm with added educational capabilities. The tool has been developed for creating and
simulating models as well as for learning an OOM language and understanding how the algorithms
for partition generation work. These last two topics have been the main motivation to create the tool;
firstly, the OOM language implemented on it is a subset of Modelica, including its main features,
so it is easier to learn for novice users (in this case, students with no previous knowledge about the
OOM paradigm); secondly, the tool can show partial results from partition generation algorithms (via
ordered equations and incidence matrices), so that the user can observe all equation processing steps
from model source code, which is of great interest for students attending a modelling and simulation
course. Hence, the tool implements all the OOM paradigm’s key features and shows graphically, step
by step, the process of obtaining the final equation set for simulation. Such features are not found in
other solutions mainly focused on obtaining, as quickly as possible, the final equation set for simulation
(making the process transparent to the user) and not on educational aspects. As previously stated,
OOM is widely used in many fields, so the developed tool can be a useful complement for engineering
students to learn effectively this methodology.
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The paper is organized as follows: concepts about DAE systems, their relationship with OOM and
the algorithms frequently used for partition generation are explained in Section 2. Description of the
key tool features and the use of its Graphical User Interface (GUI) is carried out in Section 3. Section 4
provides several didactic examples included with the tool and explains the partition generation and
simulation results obtained from that cases. Student evaluation and assessment after using the tool is
described in Section 5. Finally, conclusions are summarized in Section 6.

2. Background

2.1. Differential-Algebraic Equation Systems

Dynamical models of complex physical systems are often built using differential equations with
algebraic restrictions [1,6], thus constituting a Differential-Algebraic Equation (DAE) system [46].
The general form of these systems is:

f (x′, x, z, t) = 0 (1)

g(x, z, t) = 0 (2)

where x’ are the derivatives of state variables x, z are the algebraic variables and t is the time. Equation (1)
represents the differential (dynamical) part of the system and Equation (2) is the set of algebraic
restrictions [47]. Previous equation systems frequently arise if the OOM paradigm is used to create a
model which, as stated before, is one of the most efficient alternatives when the system to be modelled
is complex. Post-processing of these equations through several steps, i.e., partition generation, is
necessary to obtain a final executable equation set [5,6]. Algorithms applied to this task are mainly
based on bipartite symmetric graphs.

2.2. Partition Generation

After obtaining the initial equation set from the model source code, in the first step, the model
variables must be classified into constant, parameter, algebraic, state or derivative ones. Constants never
change their values, and parameters can do it between simulations (although not during execution of a
simulation). Initial conditions of the state variables are assumed known. The category of each variable
is explicitly defined on the model source code or obtained using symbolic processing.

In the second step, alias equations (i.e., equations whose structure is a = b) are removed [5],
reducing the size of the system. Only one of the variables involved in alias equations is preserved for
each deleted alias equation.

Computational causality assignment is the third step. It determines which unknown is computed
from which equation [5,48]. For this purpose, the original incidence matrix is built, whose rows
represent the model equations, and its columns represent the unknowns (derivative and algebraic
variables). The matrix element (i,j) is “1” if unknown j is involved in equation i, and is “0” otherwise,
so this matrix is mostly sparse [49]. Then, a Dulmage-Mendelsohn permutation [50] is applied to
the original incidence matrix. This algorithm sorts the incidence matrix into blocks, and assigns
computational causality to the equations [51,52]. The resulting incidence matrix is typically lower
triangular, whose main diagonal contains “1s”; all the elements above the main diagonal are “0s”,
and the order of its rows and columns is modified with respect to the original incidence matrix. Each
element of the main diagonal determines which unknown is computed from which equation.

2.3. Algebraic Loops

Previous algorithms have difficulties with systems like the one shown in (3,4). Unknown x needs
to be computed before unknown y (3), but this is not possible without having previously calculated
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unknown x (4). Therefore, no variable can be computed without knowing the other one. In this case,
the system presents an algebraic loop, which often appears with connected model components [5].

y = f (x) (3)

x = g(y) (4)

When the Dulmage-Mendelsohn permutation is applied to systems like (3,4), a sorted block lower
triangular incidence matrix is obtained (with some elements “1” above the main diagonal). This
indicates that unknowns in each block must be jointly resolved and, hence, the equation system is
isolated using symbolic processing.

Algebraic loops can be linear or non-linear, depending on the type of equations involved in the
loop, and they are resolved in a different way [53,54]. When all equations are linear with respect to its
unknowns in a block of the sorted incidence matrix, you have a linear algebraic loop. In this case, both
well-known symbolic and numerical solvers can be used in the subsequent code generation stage. If
the block is non-linear, the Newton-Raphson method can be used iterating the non-linear Equations (5)
and (6) after having computed the Jacobian function until the absolute and relative errors are lower
than an upper bound.

F(z) = 0 (5)

zn+1 = zn − J−1(zn)·F(zn) (6)

where z are the non-linear unknowns, J is the Jacobian of F(z) with respect to z and n is the iteration
number. To prevent the expensive computing of the inverse Jacobian (J-1), the system (7) on unknowns
zn+1 can be solved as an alternative.

J(zn)·(zn − zn+1) = F(zn) (7)

2.4. Higher Index DAEs

The index of a DAE is defined as the number of times the equation system (1,2) must be derived
with respect to time t to determine (x’, z’) as a continuous function of x, z and t [47,55]. For example,
an index-0 system is a set of ODE (Ordinary Differential Equations) and index 1 means that there is
an algebraic loop. Numerical algorithms used to solve DAE [56] will fail if its index is greater than
1 [57]; such DAE has a structural singularity and is called higher index or overdetermined system [1].
In practice, this means that two or more state variables are not mutually independent, that is, some of
them are not true state variables. This situation can arise when some components of complex systems
are connected using an OOM language [5]. When the Dulmage–Mendelsohn permutation is applied to
a higher index system, some rows of the sorted incidence matrix only contain “0s” (no unknown is
solved from these equations, which are called singular equations).

An index reduction method must be used to solve this problem, like the Pantelides’
algorithm [57–59], which can be applied in most cases. It states that singular equations must be
derived with respect to time and, for each one, a state variable must become algebraic [60], which
means it will not be integrated. These derivatives of singular equations are added to the initial system
because the number of unknowns increases. Each step of Pantelides’ algorithm reduces the system
index by one, so it must be iteratively applied until index 1 is obtained (algebraic loop). Depending
on the system, it can be more computationally advantageous, relaxing some state variables instead
of others.

2.5. Events

Mathematical models of physical systems can reproduce their behaviour up to a certain degree of
accuracy. Fast dynamics complicate the simulation and, typically, do not improve precision, so that
these dynamics are incorporated in the so-called hybrid systems [2] by adding some discrete equations.
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Discrete equations are executed when a boolean condition, called event, is triggered. The purpose of
these equations is to take the system to a new state after the processed event, where it can be simulated
by the DAE solver yet again.

In an OOM language, the discrete equations are enclosed into programming structures which define
the set of conditions which triggers an event. During integration of the system, when the conditions
associated to an event become true, integration stops and discrete equations are “activated” [2].
Evaluation of these equations is instantaneous, that is, they do not add any lag to simulation time.
After execution of the discrete equations, continuous integration is resumed by the solver using the
resulting values of state variables as its new initial conditions. To determine the exact time instant in
which the event is triggered, all the conditions are converted into crossing functions, monitored by
the solver during continuous integration. If any of them crosses zero, the solver computes the exact
instant of the crossing, it stops integration and then executes the discrete equations.

3. Developed Tool

Object-Oriented Modeling tool from University of Cordoba (OOMUCO) is a software tool
developed in MATLAB 2018a [61] aiming to create and simulate models according to the OOM
paradigm and to help students to learn an OOM language and understand how partition and
simulation algorithms work. It is an open source project, available at http://www.uco.es/grupos/prinia/

wp-content/uploads/OOMUCO.zip, which comprises a simple editor, a compiler and a simulator.
Figure 1 shows the relationship between these software components and the workflow from model
creation to simulation. Figure 1a shows the editor component, which allows the user to visualize
and edit the model source code; the compiler component, which makes parsing of the model source
code and translates it into MATLAB code and the simulator component, which carries out the model
simulation and shows graphically its results. To describe models, OOMUCO uses a subset of Modelica
specification [62] as OOM language.

Figure 1. (a) OOMUCO components (editor, compiler and simulator) and tool workflow;
(b) simulation steps.

The user has two complementary alternatives for programming the model of a system in OOMUCO.
The first one is to directly write the model equations, specifying variables, parameters, constants, states,

http://www.uco.es/grupos/prinia/wp-content/uploads/OOMUCO.zip
http://www.uco.es/grupos/prinia/wp-content/uploads/OOMUCO.zip
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etc. The second one is to use library components and link them through connections using specific
language sentences. Both options can be combined when the user writes the model in the text editor.
The compiler checks source code’s syntax and then applies the algorithms described in Section 2 to
obtain an executable equation set in MATLAB code. OOMUCO handles the equations in a symbolic
way, i.e., it allows exact differentiation of equations and symbolic resolution of equation systems.

The simulation process is shown in Figure 1b. The compiler checks the model source code, and if
it contains no errors, the user can run the simulator, specifying the parameters’ values, state variables’
initial values and simulation time. Thus, several simulations can be carried out with one single
compilation. The simulator uses a 4th or 5th order Runge-Kutta integration method, and its simulation
results can be viewed graphically (plots of variables selected by the user) or its data saved into a file.

3.1. Object-Oriented Modelling Features in OOMUCO

As previously stated, OOMUCO uses a subset of Modelica OOM specification so that it implements
typical features such as classes, types, connections (ports), specialized classes, partial models (abstract
classes) and inheritance [62].

To define connectors, OOMUCO uses the specialized class connector, which specifies the variables
to interchange between connected objects. For example, the first step to write a library of electronic
components is to define the class which connects them, as it is shown in Source code 1.

Source code 1. Connector class “Pin”

connector Pin
Real v “pin voltage”;
flow Real I “pin current”;

end Pin;

In this case, variables v of connected Pins will have the same value and the sum of their currents
i will be equal to zero (as indicated by the reserved word flow). Therefore, connector classes allow
defining how the information between connected components is interchanged. For example, two
instances of class Pin (named Pin1 and Pin2) can be declared into two other classes (components) and
connect them using the sentence connect(Pin1, Pin2), which generates the equations Pin1.v = Pin2.v
and Pin1.i + Pin2.i = 0.

A model can be partially defined, that is, it is not intended to be instantiated, but it can be used to
describe a generic (abstract) common behaviour through its variables and equations, which will be
inherited by some sub-models. For example, a generic object including two connectors components’
common behaviour can be created (Source code 2) and then it can be reused to describe specific circuit
elements, such as a resistor.

Source code 2. Partial model of a two-connector component

partial model TwoPins
Pin p, n;
Real v, I;

equations
i = p.i;
v = p.v - n.v;
p.i + n.i = 0;

end Pin;

Inheritance can be expressed through the reserved word extends. The child class inherits the
equations and variables of the parent. As an example, how inheritance is used for Resistor component,
which inherits from TwoPins, is shown in Source code 3.
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Source code 3. Component Resistor, an example of inheritance

partial model Resistor extends TwoPins
parameter Real R = 1e3 “Units Ohm”;

equations
v = R * i;

end Resistor;

The specialized class package is used to define libraries of components, structured in a hierarchical
way, which can be instantiated or reused. Reserved word import can be used to import a library
into ant component’s source code. OOMUCO provides both electrical, electronic and mechanical
libraries with basic components so that the students can use them in their models and analyse how
they are built.

3.2. Graphical User Interface

OOMUCO’s GUI allows the user to create, edit, compile and simulate models created with its
own OOM language. It contains menu entries to access all application’s functionality.

The “Load File . . . ” menu item of the “File” menu loads a model source code file. They are plain
text files with .moo extension. If the model is successfully loaded, its source code is shown in the main
window (Figure 2). On the other hand, the “Exit” menu item of the “File” menu quits the application.

Figure 2. Main window with a model file loaded.

If a model has been loaded, the user can edit its source code with “Edit with Notepad” menu item
of the “Edit” menu. All saved changes will be displayed in OOMUCO’s main window.

The “Options . . . ” menu item of “Tools” menu (Figure 3) shows the options dialog box. It mainly
configures OOMUCO’s behaviour when generating partition and simulating the loaded model.
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Figure 3. Options dialog box.

The “Activate Alias” option turns the alias removal algorithms on or off and the active “View
Incidence Matrices” option allows successively viewing, step by step, each of the incidence matrices
which are obtained when Dulmage-Mendelsohn permutation, Pantelides’ algorithm and/or algebraic
loops processing are applied. The Working Directory and Library paths configure the tool’s root
directory and libraries directory, respectively. Finally, some options for the Runge-Kutta integration
method (integration algorithm for stiffness, relative tolerance, absolute tolerance, etc.) are also set in
the dialog box.

The “Compile . . . ” menu entry of the “Tools” menu launch the partition generation process.
At first, the user must choose the component (class) to be processed (Figure 4).

Figure 4. Component selection for generating partition.

If “View Incidence Matrices” option is off, partition generation process is transparently carried
out, except in cases where user intervention is required. If this option is on, then the original incidence
matrix and equations are shown (Figure 5). With the “>>” button, the user can observe the results
obtained after each algorithm’s processing through the successive sorted incidence matrices and
equations. The user can watch, step by step, unknowns-equations pairings and which unknowns,
equations and/or state variables are removed by alias removal algorithm or involved in algebraic loops
or structural singularities. Depending on the problems found, several user actions can be requested or
not. After processing, the final incidence matrix and sorted equations are shown (Figure 6).
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Figure 5. Example of original incidence matrix and equations.

Figure 6. Example of final incidence matrix and sorted equations.

After partition generation, the model can be simulated. The “Simulate . . . ” menu entry of “Tools”
menu will be enabled if a partition has been generated and will display a graphical window (Figure 7).
The user can modify values of the model’s parameters and constants and must specify the state
variables’ initial values and simulation time.
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Figure 7. Simulation window.

Then, the user must click on the “Simulate” button. All the model’s unknows and state variables
will be displayed on the center list, and the user can select several of them to be graphically displayed
using the same axes (Figure 8) or saved on to disk (using the “Save . . . ” button). The “Clean” button
will only erase all graphics, not the simulation data.

Figure 8. Example of graphical simulation.

4. Examples

OOMUCO provides several representative instructional examples suitable for teaching students
the use of an OOM language and how partition generation algorithms work. These examples cover
alias removal, algebraic loops (linear and non-linear), higher index systems, events processing, etc.
Some of them will be shown in the next subsections.
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4.1. Index-0 DAE System

Partition generation and simulation of an index-0 DAE system will be carried out in this example,
a simple electrical circuit shown in Figure 9. Applying Kirchhoff’s laws, the DAE system representing
its dynamics is (8−18).

Vcc = A· sin(2·PI·Freq·TIME) (8)

Vcc = V1 (9)

VR = R·i1 (10)

VR = V1 −V2 (11)

VL = L·
di3
dt

(12)

VL = V2 (13)

dVC
dt

=
i2
C

(14)

VC = V2 (15)

V1 = V0 (16)

i1 = i0 + I0 (17)

i1 = i2 + i3 (18)

where A is the amplitude of the input voltage Vcc.

Figure 9. Electrical circuit as an example of index-0 DAE.

The differential part of the DAE is modelled by equations (12) and (14) and the algebraic part is
composed of the remaining equations. These equations cannot be simulated in any environment in
this form. However, this can be done in an OOM environment like OOMUCO. The source code of this
model is shown in Source code 4.
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Source code 4. Model of electrical circuit (index-0 DAE example)

model circuit
// Declarations of model constants and parameters
constant Real PI = 3.1415926;
parameter Real A = 5;
parameter Real Freq = 50;
parameter Real C = 4.7e-6;
parameter Real L = 1e-3;
parameter Real R = 1e3;
parameter Real I0 = 0.05;
// Declarations of model variables
Real vcc, vR, vL, vC(start=0), v0, v1, v2;
Real i0, i1, i2, i3(start=0);

equations
// Equations from Kirchhoff’s laws
v1 = A*sin(2*PI*Freq*TIME);
v1 = vcc;
vR = R*i1;
vR = v1-v2;
vL = L*der(i3); “Dynamic equation”
vL = v2;
der(vC) = i2/C; “Dynamic equation”
vC = v2;
v1 = v0;
i1 = i0+I0;
i1 = i2+i3;

end circuit;

In the first step, variables are classified as constants (PI), parameters (VA, Freq, C, L, R, I0), state
variables (vC, i3), derivatives (der(vC), der(i3)) and algebraic variables (i0, i1, i2, v0, v1, v2, vR, vL,
vcc). In the second step, alias equations ((9), (13), (15) and (16)) are removed by the compiler, thus
reducing the size of the system. Note that Equations (9) and (16) link variables v1, vcc and v0, and
Equations (8) and (10) link variables vL, v2 and vC. The compiler selects one variable from each of
these groups and replaces the remaining ones with them in the equations. Thus, the equation system
at this stage is (19−25).

Vcc = A· sin(2·PI·Freq·TIME) (19)

VR = R·i1 (20)

VR = Vcc −VC (21)

VC = L·
di3
dt

(22)

dVC
dt

=
i2
C

(23)

i1 = i0 + I0 (24)

i1 = i2 + i3 (25)

In the third step, automatic assignment of computational causality is carried out by the compiler
using symbolic processing. To do this, the original incidence matrix is built as explained in Section 2.2
(Figure 10) and the Dulmage-Mendelsohn permutation is applied to it. The result is a sorted scalar
lower triangular incidence matrix (Figure 11), which implies the system is an index-0 DAE. Model
simulation is shown in Figure 12.
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Figure 10. Original incidence matrix (index-0 DAE example).

Figure 11. Sorted incidence matrix (index-0 DAE example).
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Figure 12. Simulation results (index-0 DAE example).

As can be seen in Figure 12, variables v1, der(vC) and der(i3) were selected for plotting with a
simulation time of 0.02 s. Neither model parameter values nor states variables’ initial values were
altered. Notice the plot of variable v1, which shows that it is a senoid with a frequency of 50 Hz, equal
to vcc, as stated by Equation (9).

4.2. Algebraic Loop

Consider the DAE system (26−28).
dx
dt

= −x + z (26)

3z− 6y = 9 (27)

4z + 2y = x (28)

The original and sorted incidence matrices are shown in Figures 13 and 14, respectively.

Figure 13. Original incidence matrix (linear algebraic loop example).
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Figure 14. Sorted incidence matrix (linear algebraic loop example).

The sorted incidence matrix is block lower triangular with two diagonal blocks. The first one is
2 × 2 and constituted by Equations (27) and (28) with unknowns y-z. The second block is 1 × 1 and
constituted by Equation (26) with unknown

.
x. In the syntax analysis stage, the compiler detects that

the first block corresponds to a linear algebraic loop, which is isolated and symbollicaly processed
for faster simulation execution. Equations (29)–(31) and Figure 15 show the obtained system and
simulation results, respectively.

z =
x + 3

5
(29)

y =
x + 12

10
(30)

dx
dt

= −x + z (31)

Figure 15. Simulation results (linear algebraic loop example).
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At stationary state, z = x from Equation (31), so variables x and z reach the same stationary value
of 3/4 = 0.75 from Equation (29), as it is shown in Figure 15. On the other hand, initial value of variable
z is 3/5 = 0.6 because x = 0 at zero time.

4.3. Higher Index System

A classical example of higher index system is an electrical circuit with two capacitors in parallel
(Figure 16). Directly applying Kirchhoff’s laws directly, Equations (32)−(38) can be obtained.

Vcc = A·sin(w·t) (32)

VR = Vcc −VC1 (33)

VR = R·i1 (34)

dVC1

dt
=

i2
C1

(35)

dVC2

dt
=

i3
C2

(36)

VC1 = VC2 (37)

i1 = i2 + i3 (38)

Figure 16. Electrical circuit with two capacitors in parallel (higher index system).

From Equations (35) and (36), initially there are two state variables, the voltage of the two
capacitors VC1 and VC2, but from Equation (37) (singular equation), it is clear that both are equivalent,
and therefore, they are not independent. Thus, DAE (32−38) is an overdetermined system.

As stated in 2.2, alias equations are removed as one of the first steps of the partition generation.
Equation (37) is clearly an alias equation, so it is removed from the system, and only VC1 or VC2

is preserved. In fact, when OOMUCO compiles the model, VC2 does not even appear in the initial
incidence matrix (Figure 17) since it has been substituted by VC1 in all equations. Hence, in this case,
index reduction has been carried out through alias removal, and the sorted incidence matrix (Figure 18)
only shows an algebraic loop.
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Figure 17. Initial incidence matrix (two capacitors in parallel example).

Figure 18. Sorted incidence matrix (two capacitors in parallel example).

This system can also be modelled by means of the OOM paradigm, as it is shown in Figure 2 using
the “electrica” library provided by OOMUCO. The first sorted incidence matrix (Figure 19) shows that
no unknown is solved from equation 5 (singular equation), confirming that it is a higher index system.
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Figure 19. First sorted incidence matrix (two capacitors in parallel example modelled with the OOM
paradigm).

Applying Pantelides’ algorithm, symbolic derivatives with respect to time of singular equations
are added to the system, and OOMUCO displays an assistant asking the user to select which state
variables should become unknowns and showing which of them are suggested (Figure 20).

Figure 20. OOMUCO’s higher index problem assistant (two capacitors in parallel example modelled
with the OOM paradigm).

With the default selection of state variables in Figure 20, the final sorted incidence matrix shows
an algebraic loop (Figure 21), so the system index has been reduced to 1.
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Figure 21. Final sorted incidence matrix (two capacitors in parallel example modelled with OOM).

4.4. Events

In this example, the motion of a ball bouncing between two walls will be modelled and simulated,
considering negligible friction and movement only on the x-axis. OOMUCO’s code for this example is
shown in Source code 5, where discrete equations are enclosed within a WHEN clause, which defines
the set of conditions for the impact with one wall or another (x < x0 or x > x1). The “reinit” sentences
set the new initial conditions both for position and speed to go on the continuous integration after the
event processing. Simulation results for 20 seconds are shown in Figure 22.

Source code 5. OOMUCO’s code for bouncing ball example

model rebound
parameter Real x0 = 0 “Left wall”;
parameter Real x1 = 10 “Right wall”;
Real x(start=8) “Initial ball position”;
Real vx(start=2) “Initial ball speed”;
equations
// Model dynamic equations (two state variables)
der(x) = vx;
der(vx) = 0;
// Events
when x < x0 then
reinit(x,x0);
reinit(vx,-vx);
elsewhen x > x1 then
reinit(x,x1);
reinit(vx,-vx);
end when;
end rebound;
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Figure 22. Simulation of bouncing ball example.

As can be observed from Figure 22, ball position x ranges between values 0 and 10, so the ball
is rebounding over time between the left and right walls, respectively. When a rebound occurs,
integration stops; the when clause is activated, and the reinit sentence sign changes the current ball
speed vx and assigns value x1 or x0 (depending on the wall) to x. Then, integration resumes using the
new values of the state variables.

5. Evaluation

One of the main goals of the proposed tool was to improve student learning of OOM key concepts
and algorithms, supplementing theoretical explanations. Therefore, OOMUCO was used in a modelling
and simulation course of the Automatic Control and Industrial Electronics Engineering degree at
University of Cordoba. There is an specific subject devoted to OOM in this course, which covers the
following topics: introduction to OOM and its core concepts, description of OOM languages’ main
characteristics and use, introduction to DAE and how they arise in OOM, how partition generation
is carried out and typical issues related with it (equation sorting, computational causality, algebraic
loops, overdetermined systems, etc.) and description of algorithms used in the previous steps. These
theoretical concepts are explained to the students in several lectures.

Once the theory was covered, OOMUCO was presented. Firstly, language sentences and structures
implemented in the tool for system modelling were described and, after that, its components (compiler,
simulator, etc.) and workflow (model creation with the integrated OOM language, partition generation
and steps for simulation) were explained. Then, some typical examples included in the tool were
described (introduced in Section 4), taking all necessary steps with OOMUCO to obtain a final
executable model and the subsequent simulation. These examples are study cases which cover the
different issues that may arise when OOM paradigm is applied to system modelling (algebraic loops,
higher index systems, etc.). By doing so, the students can learn the basic concepts of the OOM
paradigm, how to create models using an OOM language and understand how the different algorithms
for partition generation work. Further examples included in the tool were suggested to be reviewed
individually by the students for better undestanding.

In addition, the students had to complete a couple of homework exercises prepared for using
OOMUCO from model creation to final simulation and to write a detailed explanatory report where
they had to analyse the obtained results. The steps involved in each exercise were:

• Modelling of each case applying the OOM paradigm and the built-in OOM language included in
the tool. It was encouraged to use typical features such as ports, abstract or generic components,
inheritance, etc.
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• Partition generation, noticing the different incidence matrices and equation sets obtained in each
step and how the algorithms automatically solve the computational causality assignment and the
potential issues that may arise.

• Simulation of the final executable model, testing different parameter values and state variables’
initial conditions.

5.1. Student Survey of the Tool

After completing their practical work, students were asked to complete a voluntary questionnaire,
using an online platform to gather their opinions (Table 1) based on those used in similar
surveys [34,63,64]. Included questions were classified into three categories: improvement in learning,
teaching support and usability of the tool.

• Improvement in learning questions consider the students’ opinions as to whether the tool has
helped them to learn the OOM’s theoretical concepts and to create models using OOM languages.

• Teaching support questions evaluate if the tool is useful as a complement to lecture classes.
• Usability of the tool questions allow to know, from the student’s point of view, if the tool’s GUI is

clear and easy to use and if the workflow is intuitive and the information provided by the tool is
easy to interpret.

Table 1. Questionnaire for tool survey.

Improvement in Learning

Q1 Did the tool help you to understand and learn the OOM paradigm’s key concepts?
Q2 Do you think the tool has improved your skills to create mathematical models using OOM languages?
Q3 Did the tool make it easy for you to remember the theoretical concepts taught in lectures?
Q4 Rate if using the tool has motivated you in learning the OOM paradigm

Teaching Support

Q5 Did the tool help you to understand how the partition generation algorithms work?
Q6 Have tool examples used in lectures been helpful to improve your learning?
Q7 Rate the additional examples included in the tool

Q8 Were homework exercises using the tool useful to strengthen your ability to create and simulate models
according to OOM paradigm?

Usability and Easy Understanding of the Tool

Q9 Do you think the tool is easy to understand and use?
Q10 Do you think the tool’s GUI is intuitive and user-friendly?
Q11 Are the workflow and the concepts presented in the tool clear and easy to follow?

Table 2 summarizes and Figure 23 details, respectively, the students’ answers (22 students were
surveyed), which were rated as Strongly agree, Agree, Neutral, Disagree and Strongly disagree using
a Likert scale. It is observed that, in the Learning value category, response rates for Strongly agree
and Agree are fairly high, so the students find the tool useful both to learn and consolidate the OOM
concepts and to practice model creation using that paradigm. In the Teaching support category,
although response rate for Agree is the highest and for Strongly agree is not low, it can be seen a
higher rate for Neutral than expected, remarkably affected by answers to question Q7. This implies
that, according to students’ opinion, additional examples included in the tool are not as significant
complement to teaching as those selected for lectures or homework exercises, which have been highly
valued. On the other hand, higher rates for Neutral and Disagree are observed in the Usability and
easy understanding of the tool category compared to those in the other two. The students think the
OOM concepts are presented clearly by the tool, and its workflow is easy to follow (question Q11), but
the GUI, though easy to understand and use (question Q9), could be more user-friendly (question Q10).
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Table 2. Response rates in each category.

Categories Strongly Agree Agree Neutral Disagree Strongly Disagree

Learning value (Q1–Q4) 33% 53% 11% 2% 1%
Teaching Support (Q5–Q8) 23% 41% 27% 6% 3%

Usability and easy understanding of
the tool (Q9–Q11) 10% 35% 35% 15% 4%

Figure 23. Students’ answers to the tool survey (22 students).

Previous analysis suggests a good acceptance from the students to use the tool, although it will
be necessary to slightly improve the GUI and include other additional exercises. Moreover, current
course has been the first one in which the tool has been introduced, so the authors think its integration
with subject contents will be improved, and student acceptance will be raised in future courses.

5.2. Student Assessment

As commented before, the students had to do a couple of practical homework exercises using the
tool, covering the contents taught in class and whose complexity was similar to the examples described
in Section 4. Each exercise was a case study about model creation of a physical system using the OOM
paradigm, generation of an executable equation set and its simulation. Firstly, each student had to
decompose the global system into its components, creating an “object” hierarchy, and define their
models from their dyamic equations, discrete behaviour and their connection “ports”. Then, such
models and connections with each other had to be implemented using the OOM language included into
OOMUCO to obtain the whole model. Once it had been created, partition generation had to be carried
out using the tool, noting the equation processing and the successive incidence matrices obtained after
applying the required algorithms. Finally, different simulations of the executable model had to be done,
changing values of parameters and state variables’ initial conditions. The students had to analyse the
effect of these changes in simulation and relate them with the physical behaviour of the real system.

All the students of the current academic year (26 students), none of them with prior background
on OOM, submitted via the online learning platform of the University of Cordoba [65] an individual
explanatory report with their solution to the exercises. Figure 24 shows the students’ mark distribution
with an average of 7.19 and a rate of passing students of 92.31%. It seems clear that the vast majority of
the students successfully solved the proposed exercises using the tool and, therefore, largely learned
the OOM concepts taught in class.

Additionaly, both in the current and previous academic years, all the students also had to take a
final exam (24 students in the previous one). This consisted on several brief theory questions about the
OOM paradigm and a short practical modelling exercise. As previously stated, only the current students
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used OOMUCO. Figure 25 shows the students’ marks in the current academic year and in the previous
one, and Figure 26 shows the rates of passing and failing students in both years. The average mark of
current and previous academic years was 5.62 and 4.13, respectively, so the improvement is noticeable.
In addition, a remarkable increase in the percentage of passing students between current and previous
years can be observed. Therefore, it seems clear that there has been an important enhancement in learning
of the OOM concepts in the academic year where the tool has been introduced.

Figure 24. Students’ marks distribution in the homework exercises.

Figure 25. Students’ marks distribution in current and previous academic years.

Figure 26. (a) Rate of passing and failing students in the current academic year and (b) in the
previous one.

6. Conclusions

In this paper, a software tool focused on Object-Oriented Modelling (OOM) has been presented.
It allows to create models using a built-in OOM language which includes the paradigm’s typical
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features such as encapsulation of behaviour (continuous and discrete equations and clauses) with
its associated data in classes, connections (ports), abstract models or inheritance. It also implements
different algorithms for automatic partition generation and allows the simulation of the final equation
set. The tool can be used both to teach theoretical and practical foundations of OOM and partition
generation algorithms and to create and simulate models of real systems. Student feedback shows
that the tool has been a satisfactory complement to lectures, improving their understanding and
learning about OOM. Nevertheless, the student survey carried out suggests that the usability of the
tool should be enhanced, specifically the GUI, which could be more user-friendly. Additionaly, student
assessment clearly shows that the average mark in the current academic year (in which the tool has
been introduced) has been improved compared with that in the previous one, as well as the rate of
passing students respect to failing ones. Therefore, it can be concluded that the use of the tool has had
a substantial beneficial effect on learning OOM concepts.
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