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Abstract: Quantum droplets are ultradilute liquid states that emerge from the competitive interplay
of two Hamiltonian terms, the mean-field energy and beyond-mean-field correction, in a weakly
interacting binary Bose gas. We relate the formation of droplets in symmetric and asymmetric
two-component one-dimensional boson systems to the modulational instability of a spatially uniform
state driven by the beyond-mean-field term. Asymmetry between the components may be caused
by their unequal populations or unequal intra-component interaction strengths. Stability of both
symmetric and asymmetric droplets is investigated. Robustness of the symmetric solutions against
symmetry-breaking perturbations is confirmed.

Keywords: quantum droplet; binary Bose–Einstein condensate; modulational instability

1. Introduction

The mean-field (MF) theory of weakly interacting dilute atomic gases rules out formation of a
liquid state [1,2]. However, it has been recently shown that a liquid phase arises if one takes into
account beyond-MF effects originating from quantum fluctuations around the MF ground state of
weakly interacting binary (two-component) Bose gases [3]. A fundamental property that allows one
to interpret this phase as a fluid is incompressibility: It maintains a limit density which cannot be
made larger (see details below), hence adding more atoms leads to spatial expansion of the state.
Another fundamental feature of this quantum-fluid phase is that it facilitates self-trapping of quantum
droplets (QDs), which are stabilized by the interplay between the contact MF interaction and the
beyond-MF Lee–Huang–Yang (LHY) correction [4]. Binary Bose–Einstein condensates (BECs) with
competing intra- and inter-component MF interactions of opposite signs offer a remarkable possibility
for the generation of QDs, as proposed by Petrov [3]. This possibility was further elaborated in various
settings, including different effective dimensions [5–20]. In particular, the dynamics of QDs with the
flat-top (FT) or Gaussian shape, which correspond to large or relatively small numbers of particles,
respectively, was addressed in the framework of the one-dimensional (1D) reduction of the model [20].
The theoretical prediction was followed by experimental creation of QDs in mixtures of two different
atomic states of 39K, with quasi-2D [21,22] and fully 3D [23,24] shapes (see also recent reviews [25,26]).

Symmetry 2020, 12, 174; doi:10.3390/sym12010174 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-6474-360X
https://orcid.org/0000-0002-3825-9099
https://orcid.org/0000-0001-5323-1847
http://dx.doi.org/10.3390/sym12010174
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/1/174?type=check_update&version=2


Symmetry 2020, 12, 174 2 of 24

Very recently, the creation of especially long-lived QDs was reported in a heteronuclear 41K-87Rb
system [27]. Another theoretically predicted and experimentally realized option for the creation of
QDs makes use of the single-component condensate with dipole–dipole interactions [28–35]. It is
relevant to mention that the formation of multiple droplets was also predicted and experimentally
observed as an MF effect in strongly nonequilibrium (turbulent) states of BECs [36].

Collective modes of QDs are a subject of special interest, as they reveal internal dynamics of the
droplets [20,24,32,37,38]. In particular, the stable existence of the QDs is secured if the particle-emission
threshold lies below all excitation modes, hence a perturbation in the form of such modes will not
cause decay of the droplet.

We aim to address issues that are related to the creation of QDs in the 1D setting and were not
addressed in previous works. First, we consider modulational instability (MI) of spatially uniform
plane-wave (PW) states, in the framework of the coupled system of Gross–Pitaevskii (GP) equations
with the LHY corrections, for the two-component MF wave function of the binary condensate. This is
the system which was originally derived in [5]. Recently, MI has been experimentally demonstrated in
BECs with attractive interactions [39–41]. Other examples of the MI are provided by the binary BEC
with the linear Rabi coupling or the spin-orbit coupling [41,42], and by a system combining the MF
and LHY terms [43]. The linear-stability analysis, followed by direct simulations of the corresponding
GP equations, shows that the lower branch of the PW states exhibits MI, the instability splitting the
PW into a chain of localized droplet-like structures. Secondly, we address properties of the QDs
in the binary condensate in the framework of the two-component GP system, without assuming
effective inter-component symmetry, which reduces the system to a single-component GP equation.
The asymmetry implies different MF self-repulsion coefficients in the two components, and/or unequal
norms in them. Although properties of QDs have been studied by using the two-component GP
system in some papers [6,11,14,15,17,18], the explicit asymmetry of the system parameters has not been
addressed, except for [14] in which the situation for 39K-39K and 23Na-87Rb atomic mixtures have been
considered. We conclude that the population difference between the components does not significantly
affect density profiles of QDs in the system with equal MF self-repulsion strengths in the two
components. On the other hand, we find that profiles of the QD solutions are essentially asymmetric
when the self-repulsion coefficients are different in the components. Generally, the numerical findings
corroborate stability of the known symmetric states against symmetry-breaking perturbations. We also
address the MI of the two-component system, and demonstrate that chains of asymmetric QDs can be
generated by the MI-induced nonlinear evolution.

The paper is organized as follows. In Section 2 we introduce the model and discuss conditions
necessary for the formation of the droplets. Section 3.1 deals with the single-component version of the
symmetric system. We consider various solutions admitted by it (PW, FT, periodic, etc.), and apply the
linear-stability analysis of the PW solution to assess the MI, in a combination with direct simulations.
In Section 3.2, we address the stability of asymmetric droplets, as well as the formation of droplets in
the two-component asymmetric system via the MI. The paper is concluded by Section 4. Additional
symmetric and asymmetric exact and approximate analytical solutions are presented in Appendices.

2. Model and Methods

We consider the 1D model of the two-component condensate with coefficients of the
intra-component repulsion, g1 > 0 and g2 > 0, and inter-component attraction, g12 < 0. In the
weak-interaction limit, the corresponding energy density, which includes the MF terms and LHY
correction, was derived in [5]:

E1D =

(√
g1ρ1 −

√
g2ρ2

)2

2
+

gδg
(√

g2ρ1 +
√

g1ρ2
)2

(g1 + g2)2 − 2
√

m (g1ρ1 + g2ρ2)
3/2

3πh̄
, (1)
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where m is the atomic mass (the same for both components), ρj = |Ψj|2 (j = 1, 2) is the density of the
j-th component, represented by the MF wave function Ψj, and

g ≡ √g1g2, δg ≡ g12 + g. (2)

The last term in Equation (1) represents the LHY correction. Derivation of Equation (1) assumes that the
binary BEC is close to the point of the MF repulsion-attraction balance, with |δg| � g . In experiments,
δg may be tuned to be both positive and negative [21–23].

Equation (1) is valid in the case of tight confinement applied in the transverse dimensions, which
makes the setting effectively one-dimensional. In the 3D case, the LHY term ∼ −ρ3/2 (for ρ1 = ρ2 ≡ ρ)
is replaced by one ∼ +ρ5/2. A detailed consideration of the crossover from 3D to 1D [12,44,45] in the
two-component system is a problem which may be a subject of a separate work. Here, it is relevant to
compare the symmetric version of Equation (1) for the energy density with that recently presented
in [12]. It demonstrates that an accurately derived LHY contribution to the energy density of the 1D
system contains, in addition to the ρ3/2 term which was derived in [5], a term ∼ ρ2, which can be
absorbed into the mean-field energy density, and a higher-order term ∼ ρ3, which was omitted in the
analysis reported in [12]. A conclusion formulated in that work is that the energy density originally
derived in [5] is literally valid if the ratio of the mean-field energy to that of the transverse confinement
takes values ≤ 0.03. For typical experimental parameters, this implies that the difference between
absolute values of scattering lengths of the mean-field intra-component repulsion and inter-component
attraction should be ≤ 1 nm, which may be achieved in the experiment. The 1D QDs originate from
the balance of the second term in Equation (1), corresponding to the weakly repulsive MF interaction,
with δg > 0, and the LHY term, which introduces effective attraction in the 1D setting, on the contrary
to the repulsion in the 3D setting [5,20].

The energy functional,
∫ +∞
−∞ E1DdZ, gives rise to the system of GP equations, which include the

LHY correction,

ih̄
∂Ψ1

∂T
= − h̄2

2m
∂2Ψ1

∂Z2 + (g1 + Gg2)|Ψ1|2Ψ1 − (1− G)g|Ψ2|2Ψ1 −
g1
√

m
πh̄

√
g1|Ψ1|2 + g2|Ψ2|2Ψ1,

ih̄
∂Ψ2

∂T
= − h̄2

2m
∂2Ψ2

∂Z2 + (g2 + Gg1)|Ψ2|2Ψ2 − (1− G)g|Ψ1|2Ψ2 −
g2
√

m
πh̄

√
g1|Ψ1|2 + g2|Ψ2|2Ψ2,

(3)

where T and Z are the time and coordinate measured in physical units, and parameter

G =
2gδg

(g1 + g2)2 , (4)

measures the deviation from the MF repulsion–attraction balance point, see Equation (2).
The normalization of the components of the wave function is determined by numbers of bosons
in each component:

Nj =
∫ +∞

−∞
|Ψj|2dZ. (5)

Further, rescaling (
mg2

h̄3

)
T ≡ t,

(
mg
h̄2

)
Z ≡ z,

(
h̄
√

mg

)
Ψ1,2 ≡ ψ1,2 (6)

casts Equation (3) in the normalized form,

i
∂ψ1

∂t
= −1

2
∂2ψ1

∂z2 + (P + GP−1)|ψ1|2ψ1 − (1− G)|ψ2|2ψ1 −
P
π

√
P|ψ1|2 + P−1|ψ2|2ψ1,

i
∂ψ2

∂t
= −1

2
∂2ψ2

∂z2 + (P−1 + GP)|ψ2|2ψ2 − (1− G)|ψ1|2ψ2 −
1

πP

√
P−1|ψ2|2 + P|ψ1|2ψ2,

(7)



Symmetry 2020, 12, 174 4 of 24

where parameter

P ≡
√

g1

g2
=

g1

g
(8)

determines the asymmetry of the system, in the case of P 6= 1. Note that, as concerns stationary
solutions with chemical potentials µ1,2, sought for as

ψ1,2 (z, t) = exp(−iµ1,2t)φ1,2(z), (9)

states with mutually proportional components, φ1(z) = Kφ2(z), are only possible in the fully
symmetric case with P = 1, µ1 = µ2, and K = 1. In previous works [5,20], 1D solutions for QDs were
considered only in the framework of the single GP equation which corresponds to symmetric system
Equation (7) with P = 1 and ψ1 = ψ2.

3. Modulation Instability Versus QDs

In this section, we address MI of PWs in both symmetric and asymmetric GP systems, and relate
it to formation of the QDs in the binary bosonic gas. To the best of our knowledge, this is the first
work aiming to associate the MI with the formation of the 1D droplets in the system with unequal
components. We first consider MI in the framework of the single-component reduction of the symmetric
version of Equation (7), after briefly reviewing stationary solutions of the GP equation. Next, we extend
the analysis for the two-component GP system, which makes it possible to produce asymmetric QDs,
starting from the MI of asymmetric PW states.

3.1. The Single-Component GP Model

Under the single-component reduction of the binary system, with g1 = g2 ≡ g and ψ1 = ψ2 ≡ ψ,
Equation (1) simplifies to [5]

ε1D ≡
h̄4

m2g3 E1D =
δg
g

n2 − 25/2

3π
n3/2, (10)

with the single dimensionless density, n = |ψ|2 ≡
(

h̄2/mg
)

ρ. Assuming a spatially uniform state,
the equilibrium density and the corresponding chemical potential are given by

n0 =
8

9π2

(
g

δg

)2
, µ0 = − 4

9π2
g

δg
. (11)

Density n0 corresponds to the minimum of the energy per particle, ∂n
[
n−1ε1D(n)

]
= 0, and µ0 is

negative for δg/g > 0. The corresponding single GP equation is

i
∂ψ

∂t
= −1

2
∂2ψ

∂z2 +
δg
g
|ψ|2ψ−

√
2

π
|ψ|ψ, (12)

with normalization condition
∫ +∞
−∞ |ψ(z)|

2dz = N, where N ≡ N1 = N2 is the number of atoms in
each component.

Although coefficient δg/g can be scaled out in Equation (12), as done in [20], we keep it here as a
free parameter. This option is convenient for the subsequent consideration of the MI, treating δg/g and
density n as independent constants, which may be matched to experimentally relevant parameters.

Below, we address two stationary solutions of Equation (12). One is the QD bound state of a finite
size, which was studied in detail in [5,20]. The other solution is the PW with uniform density. Here,
we briefly recapitulated basic properties of these solutions for the completeness of the presentation.
In Section 3.1.3 we address the MI of the PWs and associate it with the spontaneous generation of
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chains of localized modes. Additional families of exact analytical solutions of Equation (12) are given
in Appendix A.

3.1.1. The Droplet Solution

As shown in [5,20,46], at δg/g > 0 Equation (12) gives rise to an exact soliton-like solution
representing a QD, maintained by the balance between the effective cubic self-repulsion and
quadratic attraction:

ψ(z, t) =
Ae−iµt

1 + B cosh(
√
−2µz)

, A =
√

n0
µ

µ0
, B =

√
1− µ

µ0
. (13)

This solution exists in a finite range of negative values of the chemical potential µ0 < µ < 0, featuring
the FT shape at 0 < µ − µ0 � |µ0|, with size L ≈ (−2µ0)

−1/2 ln
[
(1− µ/µ0)

−1
]

[5,20]. A typical
density profile of the FT solution is displayed in the inset of Figure 1. At µ = µ0, the size of the droplet
diverges, and the solution carries over into the delocalized PW with uniform density, n = n0. The fact
that the density of the condensate filling the FT state cannot exceed the largest value, n0, implies its
incompressibility. For this reason, the condensate may be considered as a fluid, as mentioned above.
With the increase of µ from µ0 towards µ = 0, the maximum density of the localized mode,

nmax ≡ n(z = 0) = n0

(
µ

µ0

)2 (
1 +

√
1− µ

µ0

)−2
, (14)

monotonously decreases from n0 to 0. The QD’s FWHM size, defined by condition n (z = LFWHM/2) =
n (z = 0) /2, also shrinks at first with increasing µ, attaining a minimum value (LFWHM)min ≈
2.36/

√−µ0 at µ/µ0 ≈ 0.776. Further increase of µ towards µ = 0 makes the QD broader, its width
diverging as LFWHM ≈ 1.71/

√−µ at µ→ −0.

µ0

FT

µc

nc

n0

PW (n+)

PW (n−)

Figure 1. The maximum density nmax ≡ n(z = 0) in the FT (flat-top) state, as per Equation (14), and the
PW (plane-wave)/density are displayed as functions of µ by the red-solid and blue-dashed curves,
respectively, for δg/g = 0.05. In this case, Equation (11) yields n0 = 36.025 and µ0 = −0.900633.
The PW solution includes upper and lower branches corresponding to n±, as given by Equation (20),
the lower one (marked by circles) being subject to the MI (modulational instability). The spinodal
point is one with coordinates (µc, nc). For other values of δg/g, the plot can be generated from the
present one by rescaling. The inset shows the density profile of the FT solution for δg/g = 0.05 and
µ = µ0 + 0.00001, very close to the delocalization limit (the transition to PW).
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The norm of the exact QD solutions given by Equation (13) is

N(µ) = n0

√
− 2

µ0

[
ln

(
1 +

√
µ/µ0√

1− µ/µ0

)
−
√

µ

µ0

]
. (15)

It satisfies the well-known Vakhitov–Kolokolov (VK) necessary stability criterion [47],

dN(µ)

dµ
= −n0

µ2
0

√
−µ

2
1

1− µ/µ0
< 0, (16)

due to µ0 < 0 and
0 < µ/µ0 < 1. (17)

Full stability of the QD family has been verified by direct simulations of the evolution of perturbed
QDs in the framework of Equation (12).

It is relevant to mention that the exact solution of Equation (13) is valid too at δg/g < 0, when the
cubic term in Equation (12) is self-attractive, like the quadratic one. In that case, µ0 is positive, as per
Equation (11), while the chemical potential of the self-trapped state remains negative, as the solution
of Equation (13) may exist only at µ < 0. Then, it follows from Equation (13) that the soliton-like
mode exists for all values of µ < 0 (unlike the finite interval Equation (17), in which the solution exists
for δg/g > 0), and it does not feature the FT shape. Rather, with the increase of −µ, it demonstrates
a crossover between the KdV-soliton shape ∼ sech2 (√−µ/2z

)
and the nonlinear-Schrödinger one,

∼ sech
(√
−2µz

)
. For δg/g < 0, the N(µ) dependence for the soliton family carries over into the

following form,

N(µ)

∣∣∣∣
δg<0

= n0

√
2

µ0

[√
− µ

µ0
− arctan

(√
− µ

µ0

)]
, (18)

which is an analytical continuation of Equation (15). This dependence also satisfies the VK criterion.

3.1.2. The Plane-Wave Solution

The PW solution of Equation (12 )can be presented in a form ψ(z, t) =
√

n exp (iKPWz− iµt) with
wavenumber KPW and constant density n, which determine the corresponding chemical potential:

µPW =
δg
g

n−
√

2
π

√
n +

1
2

K2
PW. (19)

The Galilean invariance of Equation (12) implies that any quiescent solution ψ0 (z, t) generates a family
of moving ones, with arbitrary velocity c. Therefore, KPW may be canceled by means of transformation
ψc (z, t) = exp

(
icz− ic2t/2

)
ψ0 (z− ct, t) with c = −KPW.

For given µ, Equation (19) produces two different branches of the density as a function of µ (here,
KPW = 0 is set): √

n±(µ) =
1√
2π

g
δg
±

√
1

2π2

(
g

δg

)2
+

g
δg

µ. (20)

For δg/g = 0.05, these branches are shown in Figure 1. As follows from Equation (20), they exist (for
δg/g > 0) above a minimum value of µ: µc = −(2π2δg/g)−1 = (9/8)µ0, the respective density being

nc = n±(µc) =
1

2π2

(
g

δg

)2
=

9
16

n0. (21)

Values µ = µc and n = nc correspond to the spinodal point [5], and n+(µ0) = n0 (see Equation (13)).
Note that the above-mentioned existence region of the soliton solution in terms of the chemical
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potential, µ0 < µ < 0, lies completely inside that of the PW state, which is µc ≤ µ. Thus, the soliton
always coexists with the PW (this fact is also obvious in Figure 1).

3.1.3. Modulational Instability of the Plane Waves

Here, we aim to analyze the MI of PW solutions in the framework of the single-component GP
Equation (12) and demonstrate how the development of the MI can help to generate QDs. We perform
the analysis for the PWs with zero wavenumber KPW = 0, which is sufficient due to the aforementioned
Galilean invariance of the underlying equation.

A small perturbation is added to the stationary PW state as

ψ(z, t) =
[√

n + δψ(z, t)
]

exp (−iµt) . (22)

The substitution of this expression in Equation (12) and linearization with respect to perturbation δψ

leads to the corresponding Bogoliubov–de Gennes equation,

i
∂

∂t
δψ = −1

2
∂2

∂z2 δψ +
δg
g

n(δψ + δψ∗)−
√

n√
2π

(δψ + δψ∗). (23)

By looking for perturbation eigenmodes with wavenumber k and frequency Ω,

δψ = ζ cos(kz−Ωt) + iη sin(kz−Ωt), (24)

and real infinitesimal amplitudes ζ and η, Equation (23) yields a dispersion relation for the
eigenfrequencies:

Ω2 =
k4

4
+

(
δg
g

n−
√

n√
2π

)
k2. (25)

The MI takes place when Ω acquires an imaginary part. As follows from Equation (25), this occurs
when the density satisfies condition n < [2π2(δg/g)2]−1 = nc see (Equation (21)), which corresponds
to branch n− of the PW state. The instability region in terms of k is given by

k2 < 4
( √

n√
2π
− δg

g
n
)
≡ k2

0. (26)

The MI gain σ ≡ |ImΩ| is plotted in Figure 2 versus |k| and δg/g, for given density n = 40 in panel (a),
and versus |k| and n, for given δg/g = 0.05 in (b). It is easy to find from Equation (25) that the largest
gain is attained at wavenumber

kmax =
k0√

2
, (27)

with k0 defined as per Equation (26). Note that Figure 2a includes the case of the self-attractive cubic
nonlinearity, with δg/g < 0, which naturally displays much stronger MI, as in this case it is driven by
both the quadratic and cubic nonlinear terms. In fact, the extension of the MI chart to δg/g < 0 makes
it possible to compare the MI in the present system and its well-known counterpart in the setting with
the fully attractive nonlinearity.

Comparing parameter values at which the QD solutions are predicted to appear, and the MI
condition for the PW with the corresponding density, the MI is expected to provide a mechanism for
the creation of the QDs. This is confirmed by direct simulations of the GP Equation (12), as shown in
Figure 3. The PW with n = 10 is taken as the input, so that it is subject to the MI for δg/g = 0.05, as seen
in Figure 2b. As shown in Figure 3, small initial perturbations trigger the emergence of multiple-QD
patterns (chains) at t ≥ 100. For these parameters, we get kmax = 0.6508 and σ (kmax) = 0.2118,
which determines the wavelength of the fastest growing modulation, λ = 2π/kmax ≈ 9.66, and the
growth-time scale, τ = 2π/σ (kmax) ≈ 30. The number of the generated droplets in Figure 3 is
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consistent with estimate L/λ ' 10, where L = 100 is the size of the simulation domain. We have
checked that the number of generated droplets is approximately given by L/λ for other values of
parameters as well. This dynamical scenario is similar to those observed in other models in the course
of the formation of soliton chains by MI of PWs [39,40]. The long-time evolution in Figure 3a shows
that the number of the droplets becomes smaller due to merger of colliding droplets into a single one,
which agrees with dynamical properties of 1D QDs reported in [20].

(a) (b)

| k | | k |

ndg
g

0 321 0 0.50.25
s s

dg/g = 0.05n = 40

Figure 2. Color-coded values of the MI gain, σ = Im(Ω), are displayed for fixed n = 40 in (a), and for
fixed δg/g = 0.05 in (b). Note that panel (a) covers both signs of the cubic nonlinearity, δg > 0 and
δg < 0. Solid and dashed white curves represent the MI boundary (Equation (26)) and the peak value
of the MI gain (Equation (27)), respectively.

To implement this mechanism of the generation of a chain of solitons in the experiment, i.e., make
the density smaller than the critical value nc, one may either apply interaction quench (by means of
the Feshbach resonance), suddenly decreasing δg/g, as was done in recent experimental works for
different purposes [21–23,48]. Another option, which is specific to the 1D setting, is sudden decrease
of density n by relaxing the transverse trapping.

3.2. The Two-Component Gross–Pitaevskii Model

In this section, we revert to the full two-component GP system Equation (7), aiming to explore
the formation of QD states in it. The two-component setting may include parameter imbalance
between the two components, as indicated theoretically [3] and observed experimentally [21–23,27].
Here, we present the analysis of asymmetric QDs in two cases: (i) the two-component GP system
with different populations, N1/N2 6= 1, and equal intra-component coupling strength, g1 = g2 (i.e.,
P = 1, see Equation (8)), and (ii) the system with different intra-component coupling strengths,
g1 6= g2 (i.e., P 6= 1). These options suggest a possibility to check the stability of the solutions of the
symmetric system, reduced to the single-component form, against symmetry-breaking perturbations.
That objective is relevant because, in the real experiment, scattering lengths of the self-interaction in
the two components are never exactly equal [21–24]. We address, first, an asymmetric single-droplet
solution, and, subsequently, MI of the PW states in the two-component system.

Because, as said above, solutions with mutually proportional components (written as φ1 = Kφ2)
are possible solely in the strictly symmetric setting, asymmetric QDs cannot be found in an exact
analytical form. As shown in Appendix B (see Equations (A6)–(A12)), asymptotic analytical solutions
can be obtained for strongly asymmetric states, with one equation replaced by its linearized version.
In this section, we chiefly rely on numerical solution of Equation (7).
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(a) (b)

(c)

(d)

0-40 -20 20 40
z

t

0

200

100

50

150

t=100

t=120

t=140

0

24

12

n

Figure 3. A typical example of the MI development, starting from an unstable PW state, with density
n = 10 and δg/g = 0.05, which is subject to the MI, pursuant to Figure 2. In (a), the spatiotemporal
pattern of the evolution of the condensate density is shown. In the right-hand panels, cross sections of
the density profiles are displayed at t = 100 (b), t = 120 (c), and t = 140 (d). The simulations were
performed in domain −50 < z < +50 with 2500 grid points and periodic boundary conditions.

3.2.1. Asymmetric QDs with Unequal Populations (N1 6= N2) for g1 = g2 (P = 1)

In the system with P = 1 (see Equation (8)), we calculated the droplet states as stationary solutions
of Equation (7) by means of the imaginary-time-evolution method with the Neumann’s boundary
conditions, under the constraint that the norm is fixed in the first component,

∫ +∞
−∞ dz|ψ1(z)|2 = N1,

while chemical potential µ2 is fixed in the other one, allowing its norm N2 to vary.
Figure 4 displays essential features of weakly asymmetric droplets for δg/g = 0.05 and fixed

N1 = 100. The symmetric (completely overlapping) solution with N1 = N2 is found at µ1 = µ2 =

−0.88878. When µ2 deviates from this value, profiles of the two components become slightly different,
as shown in Figure 4a. The profiles of the droplet solution hardly change for different values of µ2,
but Figure 4b demonstrates that, at µ2 → −0, ψ2 develops small-amplitude extended tails, which are
absent in ψ1. Due to the contribution of the tails, the approach of µ2 < 0 towards zero leads to the
increase of norm N2, as seen in Figure 4c. Note that the growth of N2(µ2) at µ2 → −0 is opposite to the
decay of the QD’s norm in the single-component model at µ→ −0, cf. Equation (15). At µ2 ≥ 0, the ψ2
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component undergoes delocalization, with its tails developing a nonzero background at |z| → ∞,
as seen in the density profile displayed in Figure 4b for µ2 = 0, and norm N2(µ2) diverging at µ2 → −0
in Figure 4c.

(a)

µ2=�0.4

(b)

µ2=�0.4

µ2=�0.04

µ2= 0

(c)

Figure 4. (a) Stationary weakly asymmetric (with respect to the two components) solutions of
Equation (7), obtained for µ2 = −0.4 with fixed N1 = 100. Dashed and solid curves display density
profiles of the first (n1) and second (n2) components, respectively. (b) The semi-log plot of the density
profiles of n2 for µ2 = −0.4, −0.04, and 0 at z > 0. (c) Dependences of N2 (black dots: the left vertical
axis) and asymmetry parameter δ21, defined as per Equation (28) (the red dashed line pertaining to
the right vertical axis), on µ2 for fixed N1 = 100. The parameters are P = 1 (g1 = g2) and δg/g = 0.05.
The symmetric point with N1 = N2 = 100 and δ21 = 0 corresponds to µ1 = µ2 = −0.88878.

In Figure 4c, we also plot the parameter of the asymmetry between the two components, defined as

δ21 =
n2(z = 0)− n1(z = 0)
n2(z = 0) + n1(z = 0)

. (28)

It increases almost linearly with µ2, although its absolute value does not exceed 0.02. Thus, the droplet
tends to keep a nearly symmetric profile, with respect to the two components, in the symmetric
system, even if the population imbalance is admitted. In fact, this circumstance makes the analysis
self-consistent, as the use of the GP system with the LHY correction implies that the MF intra- and
inter-component interactions nearly cancel each other, which is possible only if shapes of the two
components are nearly identical.

3.2.2. Asymmetric QDs in the System with P 6= 1 (g1 6= g2)

Next, we consider the QDs for P 6= 1, setting P > 1 without loss of generality. Then, the MF
energy is minimized for n2 > n1; the situation with n1 > n2 can be considered too, replacing P by P−1.

Following the procedure similar to that employed in Section 3.2.1, we produce QD solutions
for δg/g = 0.05, N1 = 100, and several different values of P, varying µ2. In Figure 5a, we plot
density profiles for three different values of P. Naturally, the difference of the two components
increases with the increase of P. In Figure 5b we display N2 and parameter δ21 (see Equation (28))
of the asymmetric QDs for P = 1.25 and 1.67. All these states have been checked to be stable in
time-dependent simulations.

The density difference at the center of the droplet can be determined by the condition of
the existence of the liquid phase in the free space. This condition is obtained by minimizing the
grand-potential density E1D − µ1ρ1 − µ2ρ2 [5,14], which leads to the zero-pressure condition,

p(ρ1, ρ2) = −E1D + ∑
j=1,2

(
∂E1D

∂ρj

)
ρj

≡ −E1D + µ1ρ1 + µ2ρ2 = 0. (29)
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From this, we obtain relation

(
√

g1ρ1 −
√

g2ρ2)
2

2
+

gδg(
√

g2ρ1 +
√

g1ρ2)
2

(g1 + g2)2 −
√

m
3πh̄

(g1ρ1 + g2ρ2)
3/2 = 0, (30)

which can be rewritten in the scaled form as

P + GP−1

2
n2

1 +
P−1 + GP

2
n2

2 + (G− 1)n1n2 =
1

3π

(
Pn1 +

n2

P

)3/2
. (31)

For given n1, we solved Equation (31) to find the respective value of n2, which is shown in
Figure 6 for δg/g = 0.05 and several values of P. There are two branches of the solutions,
that enclose the negative-pressure region, in which QDs may exist. The maximum value of nj
at the tip of the negative-pressure region corresponds to the density in the droplet’s FT segment.
The ascending negative-pressure region for each P nearly follows relation n2 = Pn1, which is derived
by the minimization condition for the dominant first term in Equation (30) It is seen that a larger
difference in the profiles of the two components occurs for larger P, as expected. Also, for given
n1, the negative-pressure region becomes wider with respect to n2 for larger P (note that the figure
displays a log–log plot).

P =1.25 P = 1.67 P = 2.5
(a)

(b)

P =1.25

P =1.67

Figure 5. (a) Stationary solutions of Equation (7), obtained for δg/g = 0.05 and N1 = 100. From the
left panel to the right one, the parameter in Equation (8) is P = 1.25, 1.67, and 2.5, and the chemical
potential for the second component is µ2 = −0.018, −0.011, and −0.006, respectively, just below the
threshold above which the tails of ψ2 extend to infinity. Dashed and solid curves represent the density
of the first (n1) and second (n2) components. (b) Dependences of N2 (black dots: the left vertical axis)
and asymmetry parameter δ21, defined as per Equation (28) (the red dashed line pertaining to the right
vertical axis), on µ2 for fixed N1 = 100 and P = 1.25 or P = 1.67.

As the QDs have a finite norm, it is relevant to characterize the asymmetry in terms of the norm,
rather than density. Here, we aim to find a largest value of the norm difference,

∆21 = (N2 − N1)/NT, (32)
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where NT = N1 + N2 is the total norm, which admits the existence of the QDs. For given N1, we
obtain the upper bound for N2 above which the solution becomes delocalized, and calculate the
corresponding critical value of ∆21. The results are shown in Figure 7. For the system with P = 1 ,
the curve demonstrates an empirical dependence ∆21 ∝ N−α

T with exponent α ≈ 0.58. Accordingly,
the asymmetry tends to vanish asymptotically for very “heavy” droplets, at NT → ∞. As the
system becomes slightly asymmetric, with P = 1.25, exponent α is significantly reduced for small NT,
and converges to a certain finite value at NT → ∞. Thus, it is again confirmed that values P > 1
maintain conspicuous asymmetry between the QD’s components. Finally, strongly asymmetric non-FT
(Gaussian-shaped [20]) solutions can be obtained in an approximate analytical form for any value of P,
as shown in Appendix C.

P = 10

P = 2.5
P = 1.25

P = 1

Figure 6. The negative-pressure region in the (n1, n2) plane for δg/g = 0.05 and values of asymmetry
parameter in Equation ( 8) P = 1 (the solid curve), 1.25 (dashed), 2.5 (dashed-dotted), and 10 (dotted).
Boundaries are determined by the zero-pressure condition, as given by Equation (31). The negative
pressure, at which localized states may exist, occurs inside the boundaries. Thin lines represent relation
n2 = Pn1.

P = 1

P = 1.25
P = 2.5

Figure 7. The inverse of the largest relative norm difference ∆21, up to which the asymmetric droplets
exist (see Equation (32)), shown as a function of the total number, NT, at different values of asymmetry
parameter of Equation (8). Here we set δg/g = 0.05.
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3.2.3. The MI of the Asymmetric PW States

The MI of two-component asymmetric PWs is a relevant subject too. Such solutions are written as
ψj(z, t) = √nje

−iµjt, (j = 1, 2). The substitution of this in Equation (7) yields

µ1 = (P + GP−1)n1 + (−1 + G)n2 −
P
π

√
Pn1 +

n2

P
,

µ2 = (P−1 + GP)n2 + (−1 + G)n1 −
1

πP

√
Pn1 +

n2

P
. (33)

Accordingly, in the symmetric system with P = 1, densities of the asymmetric PW state are expressed
in terms of the chemical potentials as

nj =
1
4

[
1

π2G2 +
µ1 + µ2

G
+ (−1)j+1(µ1 − µ2)

]
±
√

1 + 2π2G(µ1 + µ2)

4π2G2 .

We introduce the perturbation around the PW states as

ψj(z, t) =
[√

nj + δψj(z, t)
]

e−iµjt, (34)

δψj = ζ j cos(kz−Ωt) + iηj sin(kz−Ωt), (35)

with infinitesimal amplitudes ζ j and ηj, cf. Equation (24). The substitution of this in Equation (7) and
the linearization with respect to ζ j and ηj yields the dispersion equation for the perturbation:

Ω2
± =

k2

4

[
k2 + 2(P1 + P2 −Q1 −Q2)

]
± k2

2

√
(P1 − P2 −Q1 + Q2)2 + 4(R− S)2, (36)

where

P1 = (P + GP−1)n1, P2 = (P−1 + GP)n2,

Q1 =
P2n1

2π
√

Pn1 + P−1n2
, Q2 =

P−2n2

2π
√

Pn1 + P−1n2
. (37)

R = (−1 + G)
√

n1n2, S =

√
n1n2

2π
√

Pn1 + P−1n2
,

For P = 1 and n1 = n2, these results reproduce Equation (25) for the Ω− branch. A parameter
region in which at least one squared eigenfrequency Ω2

± is negative gives rise to the MI of the
two-component state.

3.2.4. The MI for P = 1

In Figure 8, we plot the gain spectrum σ = Im(Ω) for the asymmetric PWs in the symmetric
system with P = 1 and δg/g = 0.05, in the plane of wavenumber k and density ratio n12 = n2/n2.
For the consistency with the single-component situation displayed in Figure 3, we here fix the total
density as (n1 + n2)/2 = 10. For given n12, the MI occurs at |k| < k0, and the gain attains its maximum
at k = kmax = k0/

√
2. The largest gain is obtained at equal densities, n12 = 1. Both the k-band of the

instability and magnitude of the gain slowly decrease as the deviation of n12 from unity increases.
This means that the MI occurs in the PW states with a large density difference, thus giving rise to the
formation of solitons with large asymmetry even for equal intra-component MF interaction strengths,
P = 1 (see Equation (8)).
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0 0.250.125
s

0 0.250.125
s

(a) (b)

|k| |k|

n12 n12

P = 1 P = 1.25 (c)

n12
maxσ kmax( )

Figure 8. Color-coded values of the MI gain, σ = Im(Ω), for asymmetric PWs, as calculated from
Equation (36) in the plane of wave number |k| and density ratio n12 = n1/n2, are displayed for (a) P = 1
and (b) P = 1.25 with fixed δg/g = 0.05 and (n1 + n2)/2 = 10. The solid and dashed white curves
represent the MI boundary k = k0 and the peak value of the MI gain at k = kmax = k0/

√
2, respectively.

In (c), we plot σ(kmax) (circles) and nmax
12 (triangles) versus P.

In Figure 9 we display typical examples of the numerically simulated development of the MI in
the symmetric two-component system with P = 1 and population imbalance. Figure 9a shows the
evolution of central-point values of the density of the first component, n1(z = 0), for different values
of the density ratio, n12 = n1/n2. Time required for the actual onset of the instability increases with
the increase in n12, as is clearly shown by the density-plot evolution in Figure 9d,e for n12 = 1 and
Figure 9f,g for n12 = 9. This observation can be understood in terms of the MI gain σ, as shown in
Figure 8c, where σ at k = kmax becomes smaller with increasing n12.

Spatial profiles at fixed time, which are plotted in Figure 9b,c for these two cases, show
fragmentation of the profiles into sets of localized structures. The decrease in the number of fragments
with the increase of n12 is explained by the decrease of kmax, see Figure 8a. For n12 = 1, the results
are the same as in the single-component case, as coinciding profiles in the two components of the
symmetric system are stable against spontaneous symmetry breaking. On the other hand, when
n12 6= 1 an in-phase two-component localized structure appears, keeping the initial density imbalance.
Since one can select an arbitrary ratio of densities of the two components for the initial PW state,
a highly asymmetric structure, like the one displayed in Figure 9c, may emerge even for P = 1, as a
result of the MI-induced nonlinear evolution.

3.2.5. The MI for P 6= 1

Figure 8b represents the MI gain for P = 1.25 and a fixed total density, (n1 + n2)/2 = 10, in the
case of slightly different strengths of the intra-component repulsion. The peak value of the MI gain is
attained at n12 = nmax

12 = 0.577, below the equal-densities point n12 = 1. This is consistent with the fact
that, at P > 1, unequal values n1 < n2 are suitable to the formation of an asymmetric soliton structure,
as seen in Figure 5a. In Figure 8c, we plot the peak MI gain, σ(kmax), along with the respective value
of the density ratio, nmax

12 , as a function of P. Value nmax
12 monotonously decreases as a function of P,

while the peak gain attains a minimum at P = 1.
In Figure 10, we present the development of the MI in the two-component system for P = 1.25

and a fixed total density, (n1 + n2)/2 = 10. Figure 10a displays the evolution of the central-point
density of the first component, n1(z = 0), for different values of the density ratio, n12 = n1/n2. It
shows that time required for the development of the MI increases with the increase in the asymmetry
of the density. This is also made evident by the density plots of the temporal evolution of the first
component, shown in Figure 10e–g. This result is consistent with Equation (36), which shows a
decrease of the MI gain with the increase of the asymmetry even for P 6= 1. Spatial profiles at fixed
time, displayed in Figure 10b–d, show fragmentation of the profiles. Figure 10c clearly indicates that,



Symmetry 2020, 12, 174 15 of 24

even for n12 = 1, the MI generates asymmetric droplet-like structures similar to Figure 5a, where the
complete overlapping of the two densities does not occur.

(d)
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(f) (g)

Figure 9. Numerically simulated development of the MI of asymmetric PW states in the two-component
system, with P = 1 and δg/g = 0.05 . The initial PW states are taken with fixed total density,
(n1 + n2)/2 = 10. (a) The evolution of the central density of the first component, n1(z = 0), for different
density ratios in the two components, n12 = n1/n2. (b,c) Snapshots of density profiles for the cases of
(b) n12 ≡ n1/n2 = 1 at t = 200 and (c) n12 = 9 at t = 400. Panels (d,e) and (f,g) are top views of the
spatiotemporal evolution of the densities, n1 (z, t) and n2(z, t), for n12 = 1 and n12 = 9, respectively.
Simulations were performed in the domain −50 ≤ z ≤ +50 with 2048 grid points, subject to periodic
boundary conditions. In this figure and in Figure 10, the scaled time unit corresponds to ∼ 1 µs in
physical units.
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Figure 10. Numerically simulated development of the modulational instability in the two-component
system with δg/g = 0.05 and P = 1.25. The initial PW states are taken with a fixed total density,
(n1 + n2)/2 = 10. (a) The evolution of the central density of the first component, n1(z = 0), for different
density ratios in the two components, n12 = n1/n2. (b–d) Snapshots of density profiles for the cases of
(b) n12 ≡ n1/n2 ∼ 0.1 at t = 300, (c) n12 = 1 at t = 200 and (d) n12 = 9 at t = 600. Panels (e–g) represent
the top view of the spatiotemporal evolution of the densities, n1 (z, t), corresponding to (b–d),
respectively (the evolution of n2 (z, t) shows similar patterns). Simulations were performed in the
domain −50 ≤ z ≤ +50 with 2048 grid points, subject to periodic boundary conditions.

4. Conclusions

The main purpose of this work is to associate the MI (modulation instability) of plane waves
(PWs) to the mechanism of the creation of QDs (quantum droplets) in the system described by
the coupled GP (Gross–Pitaevskii) equations including the LHY (Lee–Huang–Yang) terms in the
1D setting. This system is the model of weakly interacting binary Bose gases with approximately
balanced interactions between the intra-component self-repulsion and the inter-component attraction.
We have investigated, analytically and numerically, the MI of the lower branch of PW states in both
symmetric (effectively single-component) and asymmetric (two-component) GP systems, and ensuing
formation of a chain of droplet-like states. In particular, numerical solution for QDs which are
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asymmetric with respect to the two components are obtained, both in the system with equal repulsion
strengths but unequal populations in the two components, and in the one with different self-repulsion
strengths. The results corroborate that the previously known symmetric states are robust against
symmetry-breaking disturbances.

These predictions can be tested experimentally by preparing uniform binary Bose gases with
equal or different densities of two components, and suddenly reducing the strength of the effective MF
(mean-field) interaction by means of the Feshbach-resonance quench, in order to enhance the relative
strength of the LHY terms. In particular, for typical values of physical parameters, an estimate of the
characteristic time of the modulation instability growth for typical values of the physical parameters is
∼1 µs. This time is much smaller than a typical lifetime of the droplet, which is &100 µs [21–23,27],
thus making the observation of the MI feasible. The present analysis being restricted to the 1D setting,
effects of the tight transverse confinement and crossover to the 3D configuration [12,44,45] deserves
further consideration.
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Appendix A. Other Exact Solutions for the Single-Component GP Equation

Here we briefly list other types of exact solutions of the single-component Equation (12),
in addition to the FT and PW solutions in Equations (13) and (22) which were considered in detail above
(solutions to Equation (12) in the form of dark and anti-dark solitons were reported in [46]).The stability
of a majority of these solutions is not addressed here, as it should be a subject for a separate work.

Appendix A.1. δg/g > 0

In the case of comparable quadratic self-attraction and cubic repulsion in Equation (12) with
δg > 0, exact spatially-periodic solutions with odd parity can be expressed in terms of the Jacobi’s
elliptic sine, whose modulus q is an intrinsic parameter of the family:

ψ(z, t) = exp (−iµsnt) [A sn(βz, q) + B], (A1)

where

B =

√
2

3π

g
δg

> 0, A =

√
2

1 + q2 B > 0, µsn = −2
δg
g

B2 < 0, β2 =
2

(1 + q2)

δg
g

B2.

In the limit of q→ 1, Equation (A1) goes over into the kink (the same as found in [46]),

ψ(z, t) = exp (−iµkinkt) [A tanh(βz) + B] , (A2)

with parameters

A = B =

√
2

3π

g
δg

> 0, µkink = −2
δg
g

B2, β2 =
δg
g

B2.
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Appendix A.2. δg/g < 0

In the case when the inter-species MF attraction is stronger than the intra-species repulsion,
resulting in δg < 0, spatially-periodic solutions are expressed in terms of even Jacobi’s elliptic functions,
dn(x, q) and cn(x, q). First, it is

ψ(z, t) = exp (−iµdnt) [A dn(βz, q) + B], (A3)

with the elliptic modulus taking all values 0 < q < 1, other parameters being

B =

√
2

3π

g
δg

< 0, A = −
√

2
2− q2 B > 0, µdn = −2B2 δg

g
> 0, β2 = − 2

(2− q2)

δg
g

B2.

The second solution is expressed in terms of the elliptic cosine, with q2 > 1/2:

ψ(z, t) = exp (−iµcnt) [A cn(βz, q) + B] , (A4)

B =

√
2

3π

g
δg

< 0, A = −
√

2
2q2 − 1

B > 0, µcn = −2
δg
g

B2 > 0, β2 = − 2
(2q2 − 1)

δg
g

B2.

In the limit of q → 1, both solutions in Equations (A3) and (A4) carry over into a state of the
“bubble” type [49], which changes the sign at two points (the same solution was reported as an
“W-shaped soliton” in [46]):

ψ(z, t) = exp (−iµbubblet) [Asech(βz) + B], (A5)

with parameters

B =

√
2

3π

g
δg

< 0, A = −
√

2B > 0, µ bubble = β2 = −2
δg
g

B2 > 0.

Appendix B. Analytical Solutions for Strongly Asymmetric Fundamental and Dipole States

Here we consider analytical solutions of Equation (7) with strong asymmetry, N1 � N2, which can
be found under small-amplitude conditions, n1(z = 0)� n2(z = 0)� n0. Then, cubic terms may be
neglected in Equation (7), and approximation

√
P|ψ1|2 + P−1|ψ2|2 ≈ P−1/2 |ψ2| is used to simplify

Equation (7) to the following equations for stationary states in Equation (9):

µ1φ1 = −1
2

d2φ1

dz2 −
√

P
π

φ2φ1, (A6)

µ2φ2 = −1
2

d2φ2

dz2 −
1

πP3/2 φ2
2. (A7)

Although this case is somewhat formal, in terms of the underlying concept of the quantum droplets,
which is essentially based on the competition of residual MF and LHY terms, it is interesting to consider
it too.

The soliton solution of Equation (A7) is obvious,

φ2(z) =
3π

2
(−µ2)

P3/2

cosh2 (√−µ2/2z
) (A8)

where the solution in Equation (13) takes essentially the same form in the limit of |µ| � µ0. Then,
the substitution of Equation (A8) in Equation (A6) makes it tantamount to the linear Schrödinger
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equation with the Pöschl-Teller potential [50]. The ground-state (GS) solution of Equation (A6) for φ1,
with arbitrary amplitude φ

(0)
1 ,

(φ1(z))GS =
φ
(0)
1[

cosh
(√
−µ2/2z

)]γ , (A9)

exists with
γ =

1
2

(√
24P2 + 1− 1

)
, (A10)

and eigenvalue

(µ1)GS =
(√

24P2 + 1− 1
)2 µ2

16
. (A11)

In this case, the QD solutions are quasi-Gaussian objects [20]. Note that, in the symmetric system with
P = 1, Equations (A10) and (A11) yield γ = 2 and (µ1)GS = µ2, i.e., the eigenmode and eigenvalue
coincide with their counterparts in the soliton solution in Equation (A8), while they are different in the
asymmetric system, the GS level lying below or above the chemical potential of soliton in Equation (A8)
at g1 > g2 and g1 < g2, respectively.

In Figure A1 we compare a typical asymptotic solution given by Equations (A8) and (A9) with a
numerically obtained GS solution for the same values of the parameters. It is seen that the analytical
and numerical results match well.
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Figure A1. Comparison of the asymptotic analytical solutions, given by Equations (A8) and (A9),
with their numerically obtained counterparts. The density of the first (n1) and second (n2) components
are displayed in top and bottom panels, respectively. Solid blue lines represent the numerical results,
while dashed red lines represent the analytical solution. Here, parameters are δg/g = 0.05, N1 =

0.0001067, N2 = 0.0148044 and (µ2)GS = µ2 = −0.005.

Further, it is also possible to produce the first excited state of Equation (A6) in the form of the
dipole (antisymmetric) mode with an arbitrary amplitude:

(φ1(z))dip =
φ
(0)
1 sinh

(√
−µ2/2z

)[
cosh

(√
−µ2/2z

)]γ , (A12)

where γ is the same as in Equation (A10), the respective eigenvalue being

(µ1)dip =
(√

24P2 + 1− 3
)2 µ2

16
, (A13)

which is obviously higher than its GS counterpart in Equation (A11) (at P = 1, Equation (A13) yields
(µ1)dip = µ2/4, and (µ1)dip falls below µ2 for P >

√
2). Unlike the GS, the dipole mode exists not
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at all values of P, but only for P >
√

1/3. Exactly at P =
√

1/3, one has (µ1)dip = 0, and the dipole

mode in Equation (A12), with γ = 1, is a delocalized one, ∼ tanh
(√
−µ2/2z

)
.

Linear Schrödinger Equation (A6) with the Pöschl-Teller potential may give rise to higher bound
states of integer order ν as well, with eigenvalues

(µ1)ν =
(√

24P2 + 1− (1 + 2ν)
)2 µ2

16
, (A14)

where ν = 0 and 1 correspond to Equations (A11) and (A13), respectively, the ν-th spate existing at
P2 > ν (ν + 1) /6. The number of such solutions is always finite.

Unlike solutions considered in Appendices A and C, the stability of the solutions given by
Equations (A8)–(A14) is obvious.

Appendix C. Other Exact Solutions in the Case of N1 � N2

Here we provide periodic solutions to the semi-linear system of Equations (A6) and (A7) in terms
of Jacobi elliptic functions. In the limit of q → 1, they go over into solutions given in the main text,
in the form of Equations (A8), (A9), and (A12).

Appendix C.1. Solution of Equation (A7)

An exact periodic solution of Equation (A7) with the quadratic nonlinearity is

φ2 = A[dn2(βz, q) + p] , (A15)

with

β2 = − µ2

2
√

1− q + q2
, A = − 3πµ2P3/2

2
√

1− q + q2
, p =

−(2− q) +
√

1− q + q2

3
. (A16)

In the limit of q→ 1, the solution in Equation (A15) goes over into the solution in Equation (A8). Note
that p is vanishing in this limit, according to Equation (A16).

Appendix C.2. Solutions of Equation (A6)

We now show that, with φ2 given by Equation (A15), linear Equation (A6) φ1 has several particular
solutions depending on the value of P.

Solutions For P2 = 1/3

Appendix C.2.1. Solution I

It is easy to check that
φ1 = φ

(0)
1 dn(βz, q) (A17)

is an exact solution to Equation (A6), provided that

P2 =
1
3

, µ1 =
(µ2

12

) 2− q + 2
√

1− q + q2√
1− q + q2

.

Appendix C.2.2. Solution II

φ1 = φ
(0)
1 cn(βz, q) (A18)

is an exact solution to Equation (A6), provided that

P2 =
1
3

, µ1 =
(µ2

12

) 2q− 1 + 2
√

1− q + q2√
1− q + q2

.
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In the limit of q → 1, solutions I and II go over into the solution Equation (A9) with γ = 1 and
µ1 = µ2/4.

Appendix C.2.3. Solution III

φ1 = φ
(0)
1 sn(βz, q) (A19)

is an exact solution to Equation (A6), provided that

P2 =
1
3

, µ1 =
(µ2

12

) 2
√

1− q + q2 − (1 + q)√
1− q + q2

.

In the limit of q→ 1, solution III goes over into the solution Equation (A12) with γ = 1 and µ1 = 0.
Solutions for P2 = 1.

Appendix C.2.4. Solution IV

It is easy to check that
φ1 = φ

(0)
1 [dn2(βz, q) + p] (A20)

is an exact solution to Equation (A6), provided that

P2 = 1, µ1 = µ2 .

Appendix C.2.5. Solution V

φ1 = φ
(0)
1 cn(βz, q)dn(βz, q) (A21)

is an exact solution to Equation (A6), provided that

P2 = 1, µ1 =
(µ2

2

) q +
√

1− q + q2√
1− q + q2

.

In the limit q = 1, solutions IV and V go over into solution Equation (A9) with γ = 2 and µ1 = µ2.

Appendix C.2.6. Solution VI

φ1 = φ
(0)
1 sn(βz, q)dn(βz, q) (A22)

is an exact solution to Equation (A6), provided that

P2 = 1 , µ1 =
(µ2

4

) 3(1− q) +
√

1− q + q2√
1− q + q2

.

Appendix C.2.7. Solution VII

φ1 = φ
(0)
1 sn(βz, q)cn(βz, q) (A23)

is an exact solution to Equation (A6), provided that

P2 = 1 , µ1 =
(µ2

4

) 2
√

1− q + q2 − (2− q)√
1− q + q2

.

In the limit of q→ 1, solutions VI and VII go over into Equation (A12), with γ = 2 and µ1 = µ2/4.
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