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Abstract: Within the earlier developed high-energy-~k · ~p-Hamiltonian approach to describe
graphene-like materials, the simulations of non-Abelian Zak phases and band structure of the
quasi-relativistic graphene model with a number of flavors N = 3 have been performed in
approximations with and without gauge fields (flavors). It has been shown that a Zak-phases
set for non-Abelian Majorana-like excitations (modes) in Dirac valleys of the quasi-relativistic
graphene model is the cyclic group Z12. This group is deformed into Z8 at sufficiently high
momenta due to deconfinement of the modes. Since the deconfinement removes the degeneracy
of the eightfolding valleys, Weyl nodes and antinodes emerge. We offer that a Majorana-like mass
term of the quasi-relativistic model affects the graphene band structure in the following way. Firstly,
the inverse symmetry emerges in the graphene model with Majorana-like mass term, and secondly
the mass term shifts the location of Weyl nodes and antinodes into the region of higher energies.
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1. Introduction

Currently, topological graphene-like materials attract great attention due to possibility of
implementing robust quantum computing on quantum devices constructed from such materials.
Types of topological defects in the band structure of graphene-like materials are diverse, namely Weyl
nodes and antinodes [1], Weyl nodal (antinodal) lines [2], drumhead-like surface flat bands [3,4],
and zero-energy Majorana modes [5], even though the crystal structure of all topological materials is
either hexagonal or almost hexagonal [6]. Establishing a mechanism of the influence of the degree of
symmetry breaking due to spin–orbit coupling (SOC) on the type of the band-structure defectiveness
is a challenge, but it is extremely important for applications of topological materials. A hindrance
to solving this problem lies in impossibility to construct maximally localized Wannier orbitals in a
lattice site i for a band structure with topological defects owing to the presence of the defect in the
site i. Majorana end states were implemented as subgap levels of an atomic chain on the surface
of a p-wave superconductor. This system is named a Kitaev’s chain [7,8]. These subgap levels
are similar to Shockley or Shiba states bound to electric or magnetic end impurities (see [9,10] and
references therein) but Shockley or Shiba states do not possess topological stability of vortex states.
By connecting three Kitaev’s chains into Y-like form and tuning interactions ∆i, i = 1, 2, 3 of the edge
Majorana fermions in that Y-trijunction, it is possible to force two Majorana midgap states from three
ones at the ends of the trijunction to alternatively change their positions [11]. The main problem of
the Kitaev’s-chain network is the broadening of Majorana chain-end states in the place of contacts
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between the chains and, respectively, the small lifetime of Majorana quasi-particle excitations in
the Kitaev’s chain. As it turns out [12], an interface between a topological isolator (TI) and a s-wave
superconductor can be described by the same system of equations as for the Kitaev’s chain. Zero-energy
Weyl nodes and anti-nodes (monopoles) in TI-surface band structure play a role of Majorana-vortex
cores, and Cooper pairs are a “feathering” of these cores. The advantage of the implementation of
motionless Majorane-like excitations on the edge of metallic TI-surfaces is an opportunity to realize an
interchanging (one-dimensional braiding) of Majorana particles among themselves on a contactless
Y-shaped Josephson junction, which increases the Majorana lifetime [13–18].

A chiral massless Dirac fermion (helical state) acquires a phase π when bypassing on a closed
loop due to its spin (helicity) pointing in the direction of motion. Two Majorana bound states, which
form this Dirac fermion, are interchanged at such bypass by Dirac fermion and, respectively, one more
interchange of the Majorana fermions is necessary to place them on their original positions. Therefore,
at single interchange of Majorana particles, their wave function gains only half of the phase π/2 gained
by the massless Dirac fermion the particles compose. Accordingly, on every Majorana fermion in the
pair, the phase shift π/4 is accounted for, signifying that the statistics of the Majorana helical edge
states is non-Abelian.

Graphene is a bipolar material for which there exists a diverging contribution of electron–electron
interactions leading to a diverging behavior of Fermi velocity vF near the Dirac point K [19]. Therefore,
graphene belongs to strongly correlated many-body systems. The electron is a complex fermion,
thus, if one decomposes it into its real and imaginary parts, which would be Majorana fermions,
they are rapidly re-mixed by electromagnetic interactions. However, such a decomposition could
be reasonable for graphene because of the effective electrostatic screening. An imposition of strong
SOC results in the appearance of Majorana-like excitations at the ends of a Fe atom chain on the
surface of conventional superconductor composed of Pb atoms [20]. At the present time, there exist
experimental signatures of graphene Majorana states in graphene-superconductor junctions without
the need for SOC [5]. However, a Dirac-mass Kane–Mele-term [21] originating from non-zero SOC is a
negligibly small one of order 10−3 meV for graphene at K. A model of interacting spins si, i = 1, . . . , N, of
Dirac particles (s = 1

2 ) on a honeycomb lattice may be mapped on free Majorana fermions hopping in
a static gauge field W [22]. This model predicts suddenly topological phases of spin metals. However,
in the Kitaev approach the problem of redefinition of the Majorana hopping and W of the magnetically
ordered system into physical characteristics suitable for the description of pseudo-Dirac massless fermions
in diamagnetic graphene was not solved. Another challenge in graphene physics is the problem of
dynamical mass of graphene charge carriers that, for example, an Eliashberg self-consistent technique
predicted an excitonic pairing in a graphene-like system with a number of physical flavors N = 2
originating from a dynamic screening at low energy E in K [23]. The ab initio calculations predicted
also a gapped band structure of two-dimensional graphite, although for 3D graphite it is known as
gapless one [24]. However, in accordance with experimental data [19], although vF is diverged near K, no
insulating phases emerge at E as low as 0.1 meV. Thus, the mass term for graphene cannot be of the Dirac
type. Constructions of a mass term preserving chiral symmetry for a graphene model of Majorana type
are absent.

In relativistic quantum mechanics, a quasi-relativistic approximation is known (see, e.g., the
review in [25]) as the following procedure. In terms of the bispinor composed of two spinor components

ψ =

(
ϕ

χ

)
, the Dirac equation reads

(
D̂−mc2

)
ψ = Eψ
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where the operator D̂ is written as

D̂ =

(
mc2 + V c~σ · ~p

c~σ · ~p −mc2 + V

)

with~σ being a vector of Pauli matrixes, ~p the momentum, m the electron mass, c the speed of light,
and V some scalar potential. If one is interested in electronic states only, the relation between upper
and lower bispinor components can be written in the form χ = X̂ϕ, with X̂ being a solution of the
equation 2mc2X̂ = cσp− [X̂, V]− cX̂~σ · ~pX̂. One can omit the last two terms on the right-hand side of
the last equation and obtain X̂ =

~σ·~p
2mc . In this case, the lower bispinor (χ) component is of the order c−1

of the upper (ϕ) one, which corresponds to the use of the leading term in series expansion on c−1 for
the original systems and is known as quasi-relativistic theory or limit.

Our model of graphene originates from the genuine relativistic approach and is derived by this
procedure in a self-consistent Dirac–Hartree–Fock field approximation [26–30]. We called this model
the quasi-relativistic graphene model. A two-dimensional (2D) graphene model with pseudo-Dirac
massless fermions as charge carriers is originated from the Wallace’s model of three-dimensional (3D)
graphite [31] derived within non-relativistic quantum mechanics. The projection of the 3D-model into
the pseudo-Dirac 2D-model predicts the values of electrical and magnetic characteristics that differ
by two orders of magnitude from their experimental values, and in this model there is no universal
limit for the low-frequency conductivity of graphene. Moreover, the pseudo-Dirac model does not
describe experimental signatures of graphene Majorana states in graphene-superconductor junctions
without the need for SOC [5]. It is also known [32] that the usage of non-relativistic approaches
fails when applied to ab initio band simulations of solids. This is why all software in this field
(see, e.g., [33–35]) employs the genuine Dirac equation and appropriate field theory variants. Thus,
the pseudo-Dirac model needs substantial extension and generalization. We offer our quasi-relativistic
graphene model as such a generalization. An analysis of Majorana-like graphene models becomes
relevant in connection with the discovery of an unconventional superconductivity for twisted bilayer
graphene at a very small angle θM of rotation of one monoatomic layer (monolayer) relative to another
one [36]. A feature of the unconventional superconductivity is accompanying insulator states such
as flat bands being Dirac cone-like bands with zero Fermi velocity at θM. In the case of graphene
monolayer without strain, a phenomenological tight-binding model of the graphene superlattice with
interlayer interaction of the graphite type predicts such flat bands at θM only [37] but unfortunately
parameters of this non-realistic model cannot be adapted to experimental data.

In this paper, we investigate a vortex dynamics of charge carriers in the quasi-relativistic graphene
model and its approximations using a high-energy~k · ~p Hamiltonian. The Wilson non-closed loop
method to characterize band-structure topology through holonomy is used to study the relationship
between the topology of the Brillouin zone, the symmetry breaking of the band structure, spin–orbital
coupling, and different types of resonances in the graphene model.

2. Theoretical Background

Graphene is a 2D semimetal hexagonal monolayer, which is comprised of two trigonal sublattices
A, B. Semi-metallicity of graphene is provided by delocalization of π(pz)-electron orbitals on a
hexagonal crystal cell. Since the energies of relativistic terms π∗(D3/2) and π(P3/2) of a hydrogen-like
atom are equal to each other [38], there is an indirect exchange through d-electron states to break
a dimer. Therefore, a quasi-relativistic model monolayer graphene, besides the configuration with
three dimers per the cell, also has a configuration with two dimers and one broken conjugate double
bond per the cell. The high-energy~k · ~p Hamiltonian of a quasi-particle in the sublattice, for example
A, reads [

~σ · ~p +~σ · h̄
(
~KB − ~KA

)]
|ψ∗BA〉 −

i2

c
ΣABΣBAψ̂†

−σA
|0,−σ〉 = Equψ̂†

−σA
|0,−σ〉 , (1)
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|ψ∗BA〉 = ΣBAψ̂†
−σA
|0,−σ〉 (2)

where ψ̂†
−σA
|0,−σ〉 is a spinor wave function (vector in the Hilbert space); ~σ = {σx, σy} is the 2D

vector of the Pauli matrixes; ~p = {px, py} is the 2D momentum operator; ΣAB and ΣBA are relativistic
exchange operators for sublattices A, B, respectively; i2ΣABΣBA is an unconventional Majorana-like mass
term for a quasi-particle in the sublattice A;

∣∣ψ∗BA
〉

is a spinor wave function of quasi-particle in the
sublattice B; and ~KA(~KB) denotes the graphene Dirac point (valley) ~K(~K′) in the Brillouin zone. A small
term h̄~σ ·

(
~KB −~KA

)
∼ h

a in Equation (1) is a spin–valley–current coupling. One can see that the term
with conventional mass in Equation (1) is absent. Since the exchange operators transform a wave function
from sublattice A into B and vice versa in accord with Equation (2), the following expression holds

|ψ̃∗BA〉 = ΣBAΣABΣBA |ψA〉 = Σ2
BAΣABψA +ΣBA[ΣAB, ΣBA] |ψA〉 = Σ2

BA{ΣAB +Σ−1
BA[ΣAB, ΣBA]} |ψA〉 .

Since the latter can be written inthe form
∣∣ψ̃∗BA

〉
= Σ2

BA |ψ̃A〉, one gets the following property of
the exchange operator matrix:

|ψ̃∗BA〉 ≡ α−1ΣBA |ψ̃A〉 = Σ2
BA |ψ̃A〉 , (3)

with some parameter α. Due to the property in Equation (3), one can transform Equation (1) into the
following form:(

Σ−1
BA~σΣBA

)
·
(

Σ−1
BA

(
~p + h̄(~KB − ~KA)

)
ΣBA

)
Σ−1

BAΣ2
BA

(
Σ−1

BAψ̂†
−σA

ΣBA

) (
Σ−1

BA |0,−σ〉
)
− i2 α

c

×
(

Σ−1
BAΣABΣ2

BA

)
ΣBA

(
Σ−1

BAψ̂†
−σA

ΣBA

) (
Σ−1

BA |0,−σ〉
)
= Σ−1

BAEquΣBA

(
Σ−1

BAψ̂†
−σA

ΣBA

) (
Σ−1

BA |0,−σ〉
)

.
(4)

Let us introduce the following notations

~σ′AB = Σ−1
BA~σΣBA, ~p ′BA = Σ−1

BA ~p ΣBA, ~K′
BA
B − ~K′

BA
A = Σ−1

BA(
~KB − ~KA)ΣBA,

MBA = i2αΣBAΣAB, MAB = i2αΣABΣBA, ψ̂′
†
−σ′A

= Σ−1
BAψ̂†

−σA
ΣBA,

∣∣0,−σ′
〉
= Σ−1

BA |0,−σ〉 .
(5)

Then, Equation (4) can be rewritten as[
~σ′AB ·

(
~p ′BA + h̄(~K′

BA
B − ~K′

BA
A )
)
− 1

c
M′AB

]
ΣBAψ̂′

†
−σ′A

∣∣0,−σ′
〉
= v̂−1

F EquΣBAψ̂′
†
−σ′A

∣∣0,−σ′
〉

. (6)

Here, v̂F is the Fermi velocity operator: v̂F = ΣBA,

M′AB = Σ−1
BA MABΣBA. (7)

Equation (6) formally is similar to the massless Dirac fermion equation.
Let us prove that the mass operators MAB, MBA remain invariant under the action of exchange

interactions in Equation (7), namely, the transformed mass operator M′AB in Equation (7) for an electron
(hole) in the Majorana mode represents itself the mass operator MBA for a hole (electron) in this mode.
Using the property in Equation (3), we transform Equation (1) an another way:(

ΣBA~σΣ−1
BA

)
·
(

ΣBA

(
~p + h̄(~KB − ~KA)

)
Σ−1

BA

)
ΣBA

(
ΣBAψ̂†

−σA
|0,−σ〉

)
−i2

α

c
(ΣBAΣAB)ΣBA

(
ΣBAψ̂†

−σA
|0,−σ〉

)
= EquΣBAψ̂†

−σA
|0,−σ〉 .

(8)

Then, due to the property in Equation (3), ΣBA

(
ΣBAψ̂†

−σA

)
= 1

α ΣBAψ̂†
−σA

and by the following
notations

~σAB = ΣBA~σΣ−1
BA, ~pBA = ΣBA ~p Σ−1

BA, ~KBA
B − ~KBA

A = ΣBA(~KB − ~KA)Σ−1
BA, (9)
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Equation (8) can be rewritten as[
~σAB ·

(
~pBA + h̄(~KBA

B − ~KBA
A )
)
− 1

c
MBA

]
ΣBAψ̂†

−σA
|0,−σ〉 = v̂−1

F EquΣBAψ̂†
−σA
|0,−σ〉 . (10)

Since the operator ΣBA acts on vectors ψ̂′
†
−σ′A
|0,−σ′〉 and ψ̂†

−σA
|0,−σ〉, belonging to the same

Hilbert space, the operator MBA represents itself a result of the transformation in Equation (7):

MBA = M′AB. (11)

Owing to the invariance of the operators MBA, MAB with respect to the transformation in
Equation (7), their eigenvalues are dynamical masses of the Dirac fermions, which gain in the
Majorana-like superposition (Majorana electron–hole pair).

An equation similar to Equation (10) can be also written for the sublattice B. As a result, one gets
the equations of motion for a Majorana bispinor (|ψAB〉 ,

∣∣ψ∗BA
〉
)T [26,28]:

[
~σBA

2D · ~pAB − c−1MAB

]
|ψAB〉 = i

∂

∂t
|ψ∗BA〉 , (12)[

~σAB
2D · ~p ∗BA − c−1 (MBA)

∗
]
|ψBA〉 = −i

∂

∂t
|ψ∗AB〉 . (13)

3. Band Structure and Non-Abelian Zak Phase Simulations

The system of Equations (12) and (13) for the stationary case can be approximated by a Dirac-like
equation with a “Majorana-force” correction in the following way. The operator Σ−1

AB in Equation (12)
plays a role of Fermi velocity as well: v̂′F = ΣAB. Then, one can assume that there is the following
expansion up to a normalization constant 〈0| v̂F |0〉 = 〈0| v̂′F |0〉:

|ψAB〉 =
ΣAB|ψ∗BA〉
〈0|v̂′F |0〉

= ΣABΣBA
〈0|v̂′F |0〉

|ψAB〉 = {ΣBA+[ΣAB ,ΣBA ]}|ψAB〉
〈0|v̂F |0〉

≈
{

1 + (∆Σ+[ΣAB ,ΣBA ])
〈0|v̂F |0〉

}
|ψAB〉

(14)

where [·, ·] denotes the commutator, ∆Σ = ΣBA − ΣAB. Substituting Equations (2) and (14) into the
right-hand side of Equation (13), one gets the Dirac-like equation with a “Majorana-force” correction
of an order of energy difference of quantum exchange for two graphene sublattices:[

~σAB
2D · ~pBA − c−1MBA

]
|ψ∗BA〉 = Ẽ

{
1 +

(∆Σ + [ΣAB, ΣBA])

〈0| v̂F |0〉

}
|ψ∗BA〉 (15)

where Ẽ = E/ 〈0| v̂F |0〉. The exchange interaction term Σx
rel is determined as [30]

Σx
rel

(
χ̂†
−σA

(~r)

χ̂†
σB
(~r)

)
|0,−σ〉 |0, σ〉 =

(
0 ΣAB

ΣBA 0

)(
χ̂†
−σA

(~r)
χ̂†

σB
(~r)

)
|0,−σ〉 |0, σ〉 , (16)

ΣABχ̂†
σB
(~r) |0, σ〉 =

Nv N

∑
i=1

∫
d~riχ̂

†
σi

B(~r) |0, σ〉∆AB〈0,−σi|χ̂†
−σA

i
(~ri)V(~ri −~r)χ̂−σB(~ri)|0,−σi′〉, (17)

ΣBAχ̂†
−σA

(~r) |0,−σ〉 =
Nv N

∑
i′=1

∫
d~ri′ χ̂

†
−σA

i′
(~r) |0,−σ〉∆BA〈0, σi′ |χ̂†

σB
i′
(~ri′)V(~ri′ −~r)χ̂σA

(~ri′)|0, σi〉. (18)

Here, interaction (2 × 2)-matrices ∆AB and ∆BA are gauge fields (or components of a gauge
field). Vector-potentials for these gauge fields are determined by the phases α0 and α±,k, k = 1, 2, 3
of π(pz)-electron wave functions ψpz

(~r) and ψpz ,±~δk
(~r), k = 1, 2, 3, respectively, for which the
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exchange interaction Σx
rel (Equation (16)) accounting for the nearest lattice neighbors for a tight-binding

approximation reads [26,27,30]

ΣAB =
1√

2(2π)3
e−ı(θkA

−θKB )
3

∑
i=1

exp{ı[~Ki
A −~qi] ·~δi}

∫
V(~r)d~r

×


√

2ψpz
(~r)ψ∗pz ,−~δi

(~r) ψpz
(~r)[ψ∗pz

(~r) + ψ∗pz ,−~δi
(~r)]

ψ∗pz ,−~δi
(~r)[ψpz ,~δi

(~r) + ψpz
(~r)]

[ψpz ,~δi
(~r)+ψpz

(~r)][ψ∗pz
(~r)+ψ∗pz ,−~δi

(~r)]
√

2

 , (19)

ΣBA =
1√

2(2π)3
e−ı(θKA−θKB )

3

∑
i=1

exp{ı[~Ki
A −~qi] ·~δi}

∫
V(~r)d~r

×

 [ψpz ,~δi
(~r)+ψpz

(~r)][ψ∗pz
(~r)+ψ∗pz ,−~δi

(~r)]
√

2
−ψ∗pz ,−~δi

(~r)[ψpz ,~δi
(~r) + ψpz

(~r)]

−ψpz
(~r)[ψ∗pz

(~r) + ψ∗pz ,−~δi
(~r)]

√
2ψpz

(~r)ψ∗pz ,−~δi
(~r)

 (20)

where the origin of the reference frame is located at a given site on the sublattice A (B); V(~r) is
the three-dimensional (3D) Coulomb potential; designations ψpz , ±~δi

(~r), ψpz , ±~δi
(~r2D) ≡ ψpz

(~r±~δi),

i = 1, 2, 3 refer to atomic orbitals of pz-electrons with 3D radius-vectors~r±~δi in the neighbor lattice
sites ~δi; and nearest to the reference site ;~r±~δi is the pz-electron 3D-radius-vector. Elements of the
matrices ΣAB and ΣBA include bilinear combinations of the wave functions so that their phases α0 and
α±,k, k = 1, 2, 3 enter into ∆AB and ∆BA from Equations (17) and (18) in the form∣∣∣ψpz

∣∣∣ ∣∣∣ψpz , ±~δk

∣∣∣ exp
{

ı (α0 − α±,k)
}
≡
∣∣∣ψpz

∣∣∣ ∣∣∣ψpz , ±~δk

∣∣∣∆±,k. (21)

Therefore, an effective number N of flavors in our gauge field theory is equal to 3. Then, owing to
translational symmetry, we determine the gauge fields ∆±,i in Equation (21) in the following form:

∆±,i(q) = exp
(
±ıc±(q)(~q ·~δi)

)
. (22)

Substituting the relative phases in Equation (22) of particles and holes into Equation (19), one gets
the exchange interaction operator ΣAB

ΣAB =
1√

2(2π)3
e−ı(θkA

−θKB )

(
Σ11 Σ12

Σ21 Σ22

)
(23)

with following matrix elements:

Σ11 =
√

2
{

∑j I j
11∆−,j(q) exp{ı[~K j

A −~q] ·~δj}
}

, Σ12 =
{

∑j

(
I j
12 + I j

11∆−,j(q)
)

exp{ı[~K j
A −~q] ·~δj}

}
, (24)

Σ21 =

{
∑

j

(
I j
21∆+,j(q)∆−,j(q) + I j

11∆−,j(q)
)

exp{ı[~K j
A −~q] ·~δj}

}
, (25)

Σ22 =
1√
2

{
∑

j

(
I j
22∆+,j(q) + I j

12 + I j
21∆+,j(q)∆−,j(q) + I j

11∆−,j(q)
)

exp{ı[~K j
A −~q] ·~δj}

}
(26)

where I j
nimk =

∫
V(~r)ψpz+ni~δj

ψ∗pz−mk~δj
d~r, i, k = 1, 2; (n1, m1) = (0, 1), (n1, m2) = (0, 0), (n2, m1) =

(n2, m2) = (1, 1). There are similar formulas for ΣBA.
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Now, neglecting the mass term, we can find the solution of Equation (15) by the successive
approximation technique as:

~σBA
2D (∆±,i) · ~pAB(∆±,i) |ψAB〉+

E(0) (∆Σ(∆±,i) + [ΣAB(∆±,i), ΣBA(∆±,i)])

〈0|v̂F|0〉2
|ψAB〉 =

E(1)

v̂F
|ψAB〉 . (27)

According to Equation (22), eigenvalues E(1)
i , i = 1, 2 of Equation (27) as well as eigenvalues

Ei, i = 1, . . . , 4 of the 4× 4 Hamiltonian in Equations (12) and (13) are functionals of c±. To eliminate
arbitrariness in the choice of phase factors c±, one needs a gauge condition for the gauge fields. The
eigenvalues Ei, i = 1, . . . , 4 are real because the system of Equations (12) and (13) is transformed to
the Klein–Gordon–Fock equation [28]. Therefore, we impose the gauge condition as a requirement on
the absence of imaginary parts in the eigenvalues Ei, i = 1, . . . , 4 of the Hamiltonian in Equations (12)
and (13):

=m(Ei) = 0, i = 1, . . . , 4. (28)

To satisfy the condition in Equation (28) in the momentum space, we minimize a function
f (c+, c−) = ∑4

i=1 |=m Ei|, the absolute minimum of which coincides with the solution of the system
in Equation (28). For the mass case, band structures for the sublattice Hamiltonians are the same.
Therefore, neglecting the mass term, the cost function is f = 2 ∑2

i=1 |=m Ei|. For the non-zero mass
case, we assume the same form of the function f due to smallness of the mass correction.

Topological defect pushes out a charge carrier from its location. The operator of this
non-zero displacement presents a projected position operator P~rP with the projection operator
P = ∑N

n=1

∣∣∣ψn,~k

〉〈
ψn,~k

∣∣∣ for the occupied subspace of states ψn,~k(~r). Here, N is a number of occupied

bands,~k is a momentum. Eigenvalues of P~rP are called Zak phase [39]. The Zak phase coincides with
a phase

γmn = i
∫

C(~k)

〈
ψm,~k

∣∣∇~k∣∣ψn,~k

〉
· d~k, n, m = 1, . . . , N (29)

of a Wilson loopWmn = T exp(iγmn) being a path-ordered (T) exponential with the integral over a
closed contour C(~k) [40]. Let us discretize the Wilson loop by Wilson linesWki+1,ki

:

W =
NW→∞

∏
i=0

W~ki+1,~ki
=

NW→∞

∏
i=0

exp

(
−
∫ ~ki+1

~ki

〈
ψm,~q

∣∣∣∣ ∂

∂~q

∣∣∣∣ψn,~q

〉
· d~q
)

. (30)

Here, momenta~ki, i = 0, 1, . . . , NW form a sequence of the points on a curve (ordered path),
connecting initial and final points in the Brillouin zone:~ki =~k0 + ∑i

j=1 ∆~k j,j−1, ∆~k j,j−1 =~k j −~k j−1 → 0

and~kNW =~k0; ψn,~ki
, n = 1, . . . , N are eigenstates of a model Hamiltonian. We perform the integration

by parts and then expand the matrix element Wmn
~ki+1,~ki

,~ki+1 −~ki → 0 of the Wilson line with Bloch

waves ψn,~q(~r) for our model hamiltonian into series in terms of ∆~k j,j−1:

Wmn
~ki+1,~ki

= exp
(
−∑µ

∫
d~r
∫ kµ,i+1

kµ,i
ψ∗m,qµ

(~r) ∂
∂qµ

ψn,qµ (~r)dqµ

)
= e−

∫
d~rψ∗m,~q(~r)ψn,~q(~r) exp

(
∑µ

∫
d~rψn,qµ

(~r)

×
∫ kµ,i+1

kµ,i

∂
∂qµ

ψ∗m,qµ
(~r)dqµ

)
= e−δ(q)δmn

(
1 + ∑µ

∫
d~r(ψ∗m,kµ,i+1

(~r)− ψ∗m,kµ,i
(~r))ψn,kµ,i

(~r)
)

,
(31)

where δ(q) is a Dirac δ-function, δmn is the Kronecker symbol, and~ki ≤~q ≤~ki+1. Taking into account
that e−δ(q)δmn = 1− δmn and a band-crossing condition〈

ψm,~k|ψn,~k

〉
≡ |ψmn|2 = ∑

l,l′
|ψll′ |2 (δl′n − δmlδln) = ∑

n,l
|ψln|2 −∑

l,n
|ψln|2 δmlδln = 1− δmn
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in Equation (31), one gets

Wmn
~ki+1,~ki

= (1− δmn) +
〈

ψ∗
m,~ki+1

| ψn,~ki

〉
−
〈

ψ∗
m,~ki
| ψn,~ki

〉
=
〈

ψ∗
m,~ki+1

| ψn,~ki

〉
. (32)

In our calculation of Equations (30) and (32) for the Hamiltonian without the mass term, the
number N of bands is equal to four (N = 4): two electron and hole valent bands and two electron and
hole conduction bands. We consider the parallel transport of filled Bloch waves around momentum
loops~l because the basis of Wannier functions generated only by the occupied Bloch eigenstates. A
global characterization of all Dirac touching is possible with a non-Abelian Zak invariant defined over
a noncontractible momentum loop [39]. Therefore, instead the closed contour, we take a curve C(~k)
being one side~l(ky) of the equilateral triangle of variable size (defined by the value of ky component

of the wavevector~k) with the coordinate system origin in the Dirac K(K′)-point. A change γ
[
~l(ky)

]
in the flux of the non-Abelian gauge field along the non-closed oriented loop~l(ky) in the occupied
half Brillouin zone of graphene is shown in Figure 1a. The N phases are defined then as arguments
of the eigenvalues of the Wilson loop. One chooses NW (NW = 500) that a “noise” in output data is
sufficiently small to observe discrete values of Zak phases.

(a) (c) (d)

(b)

(e) (f)

Figure 1. (a) Definition of a change ~γ
[
~l(ky)

]
in the flux of non-Abelian gauge field along the paths

~l(ky) to define Wilson loops. A rhombic first Brillouin zone (BZ) of the honeycomb lattice consisting of
two triangular sublattices A (green) and B (red) is labelled with a dashed line. High-symmetry points
are Γ, K(K′), M. Occupied half-BZ is gray shaded. A reference point of coordinates (kx, ky) is in Γ.
(b,e) Non-Abelian phases Φ1, . . . , Φ4 of the Wilson-loop eigenvalues in the units of π at non-zero (b)
and zero (e) gauge fields. (c) A spin–orbit texture of the bands on momentum scales q/K = 0.002 in
contour plots and a model vortex of the precessing orbitals in inset to (d). The angle α, 0 ≤ α ≤ π/2 is
a variable precession angle of pz-orbital. (d,f) Sketch of topological defects for the quasi-relativistic
graphene model at non-zero (d) and zero (f) gauge fields; a bypass over each contour in (d,f) gives
phase shift value 4π;~q =~k− ~K.



Symmetry 2020, 12, 261 9 of 14

4. Results and Discussion

Simulation of the Zak phases was performed for three graphene models: the first one is a
massless pseudo-Dirac fermion model [8]; the second one is our quasi-relativistic graphene model in
an approximation of zero gauge field; and the third model is the same but accounting for the non-zero
gauge field. The results are presented in Table 1 and Figure 1b,e.

Table 1. Topological characterization of the graphene models: Model 1 is the massless pseudo-Dirac
fermion model, and Models 2 and 3 are the quasi-relativistic graphene model in the approximations
of zero- and nonzero-gauge field, respectively. the second column from the left: arguments of the
Wilson-loop eigenvaluesW(qy).

Type of the Graphene Model ArgW(qy)

Model 1 {0, ±π} ;

Model 2 {0, ±π/2, ±π} ;

{0,−π/6,−2π/6,−3π/6, . . . ,−π} at qy → 0,
Model 3 {0,−π/4,−π/2,−3π/4,−π} at qy > 0.2|K|,

{0,−π/4,−π/2,−3π/4,−π} and {0, π/2, π} at qy > 0.24|K|

Up to finite accuracy of the numeric method, we get a discrete set of obtained values of phases for
considered models. For the massless pseudo-Dirac model, arguments of the Wilson-loop eigenvalues
are equal to 0,±π and are multipliers of π/3. Hence, due to hexagonal symmetry of the lattice, the
first model is a topologically trivial one.

For the second model, there exist two different sets of the Wilson-loop-arguments eigenvalues,
namely one set 0,±π in the vicinity of the Dirac point K(K′) and a second one 0,±π/2,±π at
sufficiently high values of wavevectors qy = ky − KA,y (see Figure 1e). This testifies the topological
non-triviality of the second model. In the vicinity of K(K′), the arguments of the Wilson-loop
eigenvalues form the same cyclic group Z2 as for the case of the massless pseudo-Dirac model.
Additional values ±π/2 of the Wilson-loop arguments and two cyclic groups Z4 with generators
π/2 or −π/2, respectively, are at values of qy/KA higher than 0.05. The observed deformation of the
cyclic group Z2 to Z4 is a consequence of the increase in spin–orbit coupling at the high qy. The strong
spin–orbital coupling lifts the degeneration on pseudospin. Meanwhile, Weyl node and antinode
emerge. Since the cyclic group is Z4, the Weyl node (antinode) should be a double defect (in the form of
two singular points). Only in this case, as shown in Figure 1f, bypassing the doubled node (antinode)
along a contour with a double rotation on an angle 4π gives the phase shift for the wave function
by 2π. Since the Weyl node (antinode), similar to any quantum fermion state, is a Kramers doublet,
its doubling is a result of splitting spin degeneration owing to the spin–orbital-coupling breaking
of time-reversal symmetry. However, resulting homotopy group Z2 ×Z4 protects the electron–hole
symmetry for the approximation with zero gauge field.

As simulation results for the third model demonstrate in Figure 1b, paths with the topological Zak
phases, multiple to (−π/6) , constitute the cyclic groups Z12 in the vicinity of K(K′) at small momenta
qy and additional Majorana Wilson-loop-arguments eigenvalues, multiple to (−π/4), appear at high
qy. These results testify that the quasi-relativistic graphene model is a topologically nontrivial one in the
entire energy range. A contour plot in Figure 1c displays the vortex distribution of levels of equal energy
in the zone. The vorticity of the distribution around defects originates a band dichroism. Simulations
discovers eight right- and left-handed vortices on the surfaces of electron and hole bands, as shown
in Figure 2a. A (−π/6) rotation is equivalent to a (−π/2) rotation due to hexagonal symmetry
and, correspondingly, the electron and hole configurations in the momentum space are orthogonal to
each other. A schematic representation of this electron–hole configuration in the form of a T-shaped
trijunction of four peculiar points (topological defects) is presented in Figure 1d. An atomic chain with
two topological defects at the ends implements a Majorana particle. Therefore, the trijunction is formed



Symmetry 2020, 12, 261 10 of 14

by three Majorana particles (modes) produced in flavor states, a number of flavors N = 3. The total
angular momentum~J of such a Majorana-like excitation is equal to~J = ∑3

i=1
~ji with the absolute value

J = 3/2. Here,~ji is angular momentum of ith Majorana particle, i = 1, 2, 3. Majorana and antiMajorana
states (excitations) with J = 3/2 differ by the projections Jy = −3/2,−1/2, 1/2, 3/2 of the total angular
momentum~J. Therefore, the Majorana and antiMajorana excitations confined in the Dirac point by
hexagonal symmetry are fourth-fold degenerated. Fusions and fissions of the configuration of three
Majorana modes with J = 3/2 are represented in an inset to Figure 1c as precession of the pz-electron
orbital with a variable procession angle and the total angular momentum jpz

= 3/2. The cyclic group
Z12 existing at small momenta q, q→ 0 testifies that hexagonal symmetry confines the Majorana mode
in the vicinity of the Dirac point owing to small spin–orbital coupling. We associate each component
of the Majorana (antiMajorana) excitation with the projection Jy one of these vortex states of the band
structure. Then, the coincidence of the four left-handed (right-handed) bands at small q, q→ 0 implies
the degeneracy of these vortices in the K(K′). We call these vortex states subreplicas.

Increasing spin–orbit interaction at high qy splits the degeneracy of vortex states on Jy and,
correspondingly, the degeneracy of the subreplicas. The appearance of eight subreplicas is shown in
Figures 2a and 3. This octal splitting of conical bands represents a phenomenon of Majorana particles
deconfinement. The deconfinement violates the hexagonal symmetry that SOC deforms the cyclic
group Z12 with the generator (−π/6) to Z8 with the generator (−π/4). Zak phase values, multiple to
π/4, appear at momenta qy > 0.2|K|, as shown in Figure 1b. A configuration of four nondegenerate
vortices is equivalent to a T-shaped trijunction from three deconfined Majorana modes or anti-modes.
As shown in Figure 1d, the bypass of the T-shaped trijunction along a contour with four turns by an
angle of 4π gives a phase shift for the wave function by 2π, while at bypass of a single vortex defect
the wave function acquires the phase π/4. The deformation is accompanied by subsequent flatting
of the bands that the Fermi velocity trends to 0, as Figure 3 demonstrates. Since the Majorana “force”
Equation (27) diverges for the flat bands, four vortices in the T-trijunction are always linked at high
energies, but they become asymptotically free in the vicinity of the Dirac points (q→ 0). The splitting
of the Dirac cones by strong SOC into the non-coinciding four electron and four hole subreplicas
implies the break of electron–hole symmetry. This violation is revealed as an appearance of additional
topological Zak phases equal to π/2, π and, correspondingly, an additional cyclic group Z4 at values of
momentum qy > 0.24K. Resonances and antiresonances that are non-invariant with respect to change
in sign of the energy band E of the form E→ −E are observed in the band structure (see Figure 3) as
a manifestation of broken electron–hole symmetry due to strong SOC. Vortices are created in pairs.
Therefore, one can assume that the observed resonances and anti-resonances are, respectively, the
cores (sinks) and anti-cores (sources) of the vortices remaining after the destruction of their pair at
the spin–orbital coupling. Such topological defects are monopoles and are called Weyl nodes and
antinodes. Since the homotopy group is Z4, the Weyl nodes (antinodes) in the quasi-relativistic
graphene model are doubled. Since spin states are Kramers doublets, this doubling can be explained
by violation of the symmetry of time reversal, which splits the Kramers degeneracy on spin of Weyl
nodes and antinodes.
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(a) (b)

Figure 2. (a) A vortex texture in contour plots of electron (left) and hole (right) bands calculated without (top) and with (bottom) Majorana-like mass term on
momentum scales q/KA = 0.002. (b) A mass correction to the hole (top) and electron (bottom) bands on momentum scales q/KA = 0.02. Contour plots in (b) are
displayed in color gradations.
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We also investigated effects of the Majorana-like mass mass operator MAB (MBA). Hamiltonian of
our graphene model holds the Majorana-like mass term MAB(MBA). Therefore, to reveal violations
of chiral symmetry by MAB(MBA), the band structures for the Hamiltonian of the graphene model
are compared with and without the mass term. Direct numerical calculation replacing v̂F with the
constant vF near Dirac point showed that the parameter α entering Equation (3) depends on the
absolute value of the wave vector. Therefore, since α(

∣∣∣~K +~q
∣∣∣) → α(K) ≡ vF, MAB(MBA) is a small

term of order 1
vFc at~k 6= ~K(~K′). It is equal to zero in K(K′) because ΣAB = ΣBA = 0 in K(K′). The

Majorana-like mass correction to energy hole and electron bands, presented in Figure 2b, is very
small, of the order 10−5, 10−6, and is vanishing in K(K′). According to numerical results presented in
Figure 2a, band structures are chiral for both graphene models with and without the mass term. As
Figure 2b demonstrates, the mass term leads to the appearance of the center of inversion, preserving
the Dirac touching in the band structure for the Hamiltonian with MAB(MBA). Since vorticity is also
observed for the band structure for the Hamiltonian with MAB(MBA), at least one of the eigenvalues
of the mass term gives a chiral one-particle state. Since chiral and non-chiral one-particle states are
mixed by the mass term, this is sufficient for the existence of a band dichroism. Since there is the cyclic
group Z4 with generator π/2 at high energy, the strong spin–orbital coupling lifts the degeneration
on pseudospin and time-reversal symmetry is broken. Meanwhile, Weyl node and antinode emerge
(Figure 3a). Comparing the band structures calculated with and without MAB(MBA) in Figure 3,
the mass-term shifts the location of Weyl nodes and antinodes into the region of higher energies. Thus,
we find that band inversion leads to a class of topological, gapless phases.

(a) (b)

Figure 3. Band structure calculated with (a) and without (b) Majorana-like mass term on momentum
scale q/KA = 0.02 for quasi-relativistic model of graphene with non-zero gauge field.

5. Conclusions

Our finding is a graphene model with valleys and bands in a vortex state. Four vortex defects
form three Majorana fermions confined by the hexagonal symmetry. Deconfinement of the Majorana
modes stems from a spin–orbital coupling. We present a new method to construct a mapping between
spectra of Wilson non-closed loop over the first Brillouin zone and vortex bands. We prove that Z12 is
a homotopy group of the momentum space in the Dirac corners with the confined Majorana modes.
The spin–orbital coupling deforms Z12 into Z8 of the deconfined Majorana modes and leads to an
emergence of Weyl nodes. We predict that there is a very small nonzero Majorana mass term of the
order of 1

vFc in the graphene model. The Majorana mass term keeping Dirac-points chiral symmetry
tends to frustrate only one of two pairs of left-handed and right-handed vortex modes. However,
mixing the mass term remains the resulting bands in a helical state signifying that this term keeps the
chiral symmetry of the model.

Finally, we discuss the possibility to realize a topological Majorana band structure of the
diamagnetic honeycomb graphene-like system. An experimental observation of such systems with
fine effects that stem from the Majorana nature of quasi-particle excitations demands a new advanced
high-accuracy experimental setup.
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