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Abstract: We propose a bicosmology model which reduces to the classical analog of noncommutative
quantum mechanics. From this point of view, one of the sources in the so modified Friedmann-Robertson-
Walker equations is a kind of dark energy governed by a Chapligyn-like equation of state. The parameters
of noncommutativity θ and B are interpreted in terms of the Planck area and a magnetic-like field,
which presumably acts as a seed for magnetogenesis.
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1. Introduction

The possibility that spacetime has an underlying structure at small distance scale—or high energy
scale—has been part of long standing research in recent years, mainly driven for the search of a Quantum
Gravity Theory [1–8]. Departures from a continuous Minkowski four-dimensional manifold is one possible
consequence of this approach, and the loss—or deformation—of Lorentz symmetry at such scales turns
out to be an interesting issue.

In this context, the spacetime endowed with a noncommutative structure (Noncommuting coordinates
date back to the works of Peierls (Peierls, Z. Phys. 80, 763 (1933)), even if the idea was already suggested
by Heisenberg in 1930 (Heisenberg W, Z. Phys. 65 4 (1930)). An explicitly Lorentz invariant model with
noncommutative coordinates was built in 1947 by Snyder (H.S. Snyder Phys. Rev. 71, 38 (1947))) has been
a route intensively explored in the last twenty years including noncommutative quantum field theories,
noncommutative quantum mechanics, and also noncommutativity in the the space of fields, rather than
the usual noncommutative spacetime [9–16].

In this regard, the possibility of non-standard commutation relations or, at the classical level, the
introduction of deformed Poisson bracket structures (even in the whole phase space) [17–22] allows for
exploring new routes to explain old problems. In this paper, we will explore the implications of such
constructions in cosmology, where the observational evidence collected in the last forty years shows not
only a remarkable agreement with the standard cosmological model, but also shows that the universe
is expanding at an accelerated rate, requiring the incorporation of dark energy in order to explain such
acceleration [23].

As much as the standard model of particles needs to be modified in order to incorporate the dark
matter [24–30], the existence of dark energy requires ideas beyond the standard cosmological model.
In this paper, we will show that the incorporation of a second Friedmann’s scale factor together with a non
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standard Poisson structure might shed some light on the origin of dark energy and of magnetic fields in
the universe. The mechanisms to originate a magnetic seed might require, in principle, the breaking of a
symmetry that is possibly hidden, appearing as an effective degree of freedom—this would be similar to
the magnetic field of a magnet that has a purely quantum origin—and the mechanism proposed in the
present paper rests on the deformation of the Poisson bracket structure in the space of field.

The assumption about the existence of a second Friedmann’s scale factor—which would represent the
existence of different patches in the universe, or even other universes, causally disconnected as in bubbles
models [31–35]—can not be theoretically ruled out. On the other hand, if the cosmological principle does
not reflect an exact symmetry, the transference of information between patches should be a process that
would leave some observable traces. This poses the question about the information transfer mechanism.

One of the goals of this letter is to offer an approach that combines the idea of bimetric gravity [36–40]
and a relationship with noncommutative quantum mechanics [41] (for a general discussion on bimetric
gravity in cosmology, see e.g., [42]).

The idea sketched above allows for incorporating considerations about gauge invariance, causality,
and evolution of states, thus providing a different approach to those modern cosmological problems.

This approach has interesting implications because it allows for giving physical interpretations to
both infrared and ultraviolet scales.

The paper is organized as follows: in Section 2, we will review some basic aspects of the
Friedmann-Robertson-Walker (FRW) metric as well as the extension of the model as it was considered
in [43]. Section 3 is devoted to presenting and developing the model in a fully non-commutative phase
space. Section 4 provides the conclusions.

2. Modified FRW Equations

Let us describe briefly the standard FRW model with one scale factor in order to fix notation.
We consider the metric

ds2 = −N(t)2 dt2 + a(t)2
(

dr2

1− kr2 + r2dΩ2
)

, (1)

where coordinates are {t, r, θ, ϕ}; k = {−1, 0, 1} is the spatial curvature and N(t) is the lapse shift.
Einstein’s equations for the metric (1) reduce to the FRW equations which, in the gauge N = 1,

turn out to be

2
ä
a
+

(
ȧ
a

)2
= Λ + · · · , (2)(

ȧ
a

)2
=

1
3

Λ + · · · , (3)

where · · · denote contributions from matter fields. From here on, we restrict ourselves to the case k = 0,
which is also consistent with present observations [44] and, for the sake of clarity, we will also omit the
matter contributions.

The previous equations can then be obtained from the Lagrangian

L =
1

2N
aȧ2 +

N
6

Λa3. (4)

Indeed, while Equation (2) results from variations with respect to the variable a, the second one (3) results
from variations with respect to N.
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It will be useful for our purposes to describe this model, through a nonlinear transformation of the
dynamical variable, as a harmonic oscillator with imaginary frequency. Indeed, consider the change
of variables

x =
2

3
√

G
a3/2. (5)

In terms of this new variable, which has dimensions of (energy)−1/2, the Lagrangian in (4) changes into

G3/2 L =
1

2N
ẋ2 − N

2
ω2x2, (6)

where the frequency is defined as

ω2 = −3
4

Λ. (7)

From here on, we will omit the global factor G in the Lagrangian.
The equations of motion obtained though variations of L in Equation (6) with respect to the variables

x and N (in the gauge N = 1) are respectively

ẍ + ω2x = 0, (8)

ẋ2 + ω2x2 = 0. (9)

Note that the constraint (9) is obtained also from Equation (8) as a first integral. Indeed, multiplying this
last equation by ẋ, we get the equivalent equation

d
dt

[
ẋ2 + ω2x2

]
= 0.

Therefore, the constant ẋ2 + ω2x2 must be chosen as equal to zero (in which case the energy is zero) and
non-trivial solutions are obtained for ω an imaginary number, as it is upon the identification with the
cosmological constant in Equation (7).

Now, we will modify the FRW equations by assuming more than one scale factor. The assumptions
of homogeneity and isotropy of each RW patch, together with the assumption of causal disconnection
between them, implies that, in the present model, the scale factors ai(t), i = 1, 2, · · · satisfy[

ai(t), aj(t)
]
= 0, (10)

where [ , ] denotes a Poisson bracket. Note that this “microcausality”principle implies also the possibility
of gauging the lapse function for all these patches in order to choose one and the same cosmological time
for all them.

Interestingly, there is an alternative approach if one assumes the point of view of conformal invariant
general relativity theory (We would like to thank the anonymous referee who drew our attention to this
subtle issue) [45,46]. There, instead of considering two different scale factors, one should introduce two
different dilaton fields and the interaction between them will be given—as in the present case—by
a deformed Poisson bracket structure. In such case, the so-called unphysical metric (that is, ḡµν in
ds2 = a2(t) ḡµνdxµdxν) is chosen as the same for the two patches.

The key observation—in the present model—is to note that, in the harmonic oscillator representation
(5), the model admits a straightforward generalization to more than one Friedmann’s scale factor.

Let us consider the case of only two patches. Instead of the usual Poisson’s bracket between conjugate
momenta pi(t), satisfying [pi(t), pj(t)] = 0, we will choose [pi(t), pj(t)] = Fij, where Fij = εijB, with εij the
antisymmetric symbol and B a constant that can be identified as an effective infrared cut-off.
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The generalization of the Lagrangian L in (6) which incorporates two scale factors and this
infrared cut-off is equivalent to a mechanical system defined through the Lagrangian involving two
harmonic oscillators,

L0 =
1

2N

(
ẋ2

1 + ẋ2
2

)
− N

2

(
ω2

1x2
1 + ω2

2x2
2

)
, (11)

with frequencies

ω2
1 = −3

4
Λ1, ω2

2 = −3
4

Λ2, (12)

plus an interaction term

L̄ =
B
2
(x1 ẋ2 − x2 ẋ1) , (13)

so that the total Lagrangian is given by
L = L0 + L̄. (14)

This Lagrangian formally describes a charged non-relativistic particle moving in a constant magnetic
field B pointing in the direction of an x3-axis perpendicular to the 〈x1, x2〉 plane. This magnetic field is
defined in the field space rather than in the spacetime.

The equations of motion (in the gauge N = 1) are now

ẍ1 + ω2
1 x1 − B ẋ2 = 0,

ẍ2 + ω2
2 x2 + B ẋ1 = 0, (15)

while the constraint, a consequence of time reparametrization invariance, reads as

1
2

(
ẋ2

1 + ẋ2
2

)
+

1
2

(
ω2

1x2
1 + ω2

2x2
2

)
= 0. (16)

As in the previous section, condition (16) gives nontrivial solutions for imaginary frequencies, which
is just the case at hand.

In order to make contact with the cosmological description, we define, in analogy with Equation (5),

x1 =
2

3
√

G
a3/2, x2 =

2
3
√

G
b3/2, (17)

and then Equations (15) become

2
ä
a
+

(
ȧ
a

)2
= −4

3
ω2

1 + B
√

a b
ḃ
a2 ,

2
b̈
b
+

(
ḃ
b

)2

= −4
3

ω2
2 − B

√
a b

ȧ
b2 , (18)

and the constraint (16) now reads as(
ȧ
a

)2
= −

(
2
3

ω1

)2
− 1

a3

(
3
4

ω2
2b3 + ḃ2b

)
. (19)

The expressions in (18) can be considered as the FRW equations for two patches of the Universe
that interact through a constant external like-magnetic field, while (19) is the analog of the equation
G00 = −8πG T00 for the one-metric conventional gravity.
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We would like to emphasize that, in this picture, dark energy emerges as a consequence of the
incorporation of a sort of interaction—in the space of gravitational fields—between neighboring patches in
spacetime, and these extra contributions add to the cosmological constant Λ1 and Λ2, on each patch.

From the point of view of the energy and momentum content in Sector 1, Equations (18) and (19) turn
out to be

T11 = T22 = T33 = −B
√

a b
ḃ
a2 ,

and

T00 = −
(

b
a

)3
[(

ḃ
b

)2

+

(
2
3

ω2

)2
]
−
(

2
3

ω1

)2
.

From these results, one has the following equation of state:

ρb +
6π

B2 p2
b =

Λ2

8πG

(
b
a

)3
, (20)

which describes a kind of Chapligyn gas. This gas has been discussed extensively in cosmology in
connection with the dark energy problem [47–50].

As a final remark, note that the previous model has a straightforward description in terms of a
Hamiltonian system with modified Poisson Brackets. Indeed, the mechanical system described by the
Lagrangian in (14) can also be described by the Hamiltonian

H =
N
2

(
p2

1 + p2
2 + ω2

1x2
1 + ω2

2x2
2

)
, (21)

with the Poisson’s bracket algebra[
xi, xj

]
= 0,

[
xi, pj

]
= δij,

[
pi, pj

]
= εij B. (22)

Note that x has dimensions of (energy)−1/2 while p has its inverse dimensions. Then, B has dimensions of
(energy)+1 and, therefore, the magnetic-like field is B/

√
G.

3. Noncommutative Phase Space Classical Cosmology

We observe that it is still possible to consider a more general deformation of the Poisson’s algebra by
taking a full noncommutative phase space. That is, the introduction of a noncommutative parameter in
the bracket between coordinates.

Two energy scales are then present in this scenario, namely the Planck energy EP = G−
1
2 and the

“magnetic energy” B
1
2 (or, equivalently, the Planck and magnetic lengths), defined through the modified

Poisson bracket structure.
In order to explore this system, we restrict ourselves to the case with ω1 = ω2 ≡ ω and rewrite (21) as

H = NH, (23)

where the constraint reads now
H =

ω

2

(
p̄2

1 + p̄2
2 + x̄2

1 + x̄2
2

)
, (24)

with original phase space variables {xi, pj} rescaled according to xi → x̄i =
√

ωxi = x̄ and pj → p̄j =

pj/
√

ω.
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The modified Poisson brackets structure, in view of our previous discussion is[
x̄i, x̄j

]
= εij Ḡ, (25)[

x̄i, p̄j
]

= δij, (26)[
p̄i, p̄j

]
= εij B̄, (27)

where Ḡ and B̄ are the rescaled Newton’s constant and magnetic-like seed, respectively, according to
Ḡ =

√
G ω and B̄ = B

ω =
√

GBseed/ω with Bseed = B/
√

G
The equations of motion for the variables x̄i turn out to be

¨̄xi + Ω2 x̄i −B εij ˙̄xj = 0, (28)

where

Ω2 = ω2(1− ḠB̄) = ω2 (1− GBseed) , (29)

B = ω(B̄ + Ḡ) =
√

G
(

Bseed + ω2
)

. (30)

Comparing Equations (28) with (15) (with ω1 = ω2 = ω for the last case), we see that an effective
magnetic-like background field, given by

B/
√

G = Bseed + ω2, (31)

is generated.
While Ω2 can be seen as an effective cosmological constant, the new contribution B/

√
G might be

considered as an effective magnetic seed in the universe, even though it will be necessary to incorporate
matter in this model in order to see how this new term affects the dynamics of charged particles,
for example.

Note that, as in noncommutative quantum mechanics [51–53], there are two phases with GB > 1 and
GB < 1, respectively, separated by a critical point at GB = 1.

If we demand GBseed � 1, then

Bseed ≈ Beff +
3
4

Λ.

This formula provides a simple and direct link between the magnetogenesis [54,55] and the
cosmological constant problem.

Note that the modified Poisson brackets in (25)–(27) can be mapped onto a canonical form under a
non-canonical change of variables {x̄i, p̄j} → {Xi, Pj}, where the new Hamiltonian is still diagonal [51,53].
Thus,H can be written as

H
N

=
1
2

(
P2

1 + Ω2
+X2

1

)
+

1
2

(
P2

2 + Ω2
−X2

2

)
, (32)

where variables {X1, P1} and {X2, P2} are canonically conjugated, while the variables of the sector labeled
as ‘1’ have zero Poisson bracket with those of sector ‘2’. The frequencies in (32) are [51,53]

Ω± = ±ω

[√
1 +

1
4
(B̄− Ḡ)2 ∓ 1

2
(B̄ + Ḡ)

]
, (33)

≈ ±


√√√√ω2 +

(√
GBeff

2

)2

∓
√

GBeff

2

 , (34)
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where, in the last line, we used the fact that Bseed − ω2 = Beff − 2ω2 ≈ Beff when ω2 ≈ −3Λ/4 = Ω2.
With the same approximations, we finally obtain Ω2

± ≈ ω2.

4. Conclusions

In this work, we have presented a model of cosmology with two metrics in a full non-commutative
phase space. We have shown that, besides the appearance of a term acting like dark energy, there is also a
term that could be interpreted as a source of magnetic field. This interpretation is based in the analogy
with the description of particles in the presence of a static, external, magnetic field, but, in the present
model, it must be taken cautiously since this analogy occurs in the gravitational field space rather than the
spacetime. Future investigation must be done, in particular, for the study of charged particles evolving in
this model of universe, a problem that will be considered in future works.

We should observe also that there are differences between the quantum Hall effect approach and
the magnetogenesis as discussed in [43,54,55]. Indeed, as argued in [43], the causal connection between
two spacetime regions takes place in the presence of an external constant magnetic-like field (at first sight
presumably from the formation of some galactic halo). This external magnetic-like field would be very
small, but not necessarily a magnetic seed. The magnetic seed would be created much earlier, as can be
seen from the magnetic displacement (30).

However, this posses some intriguing questions: Is B a real magnetic field?, What is the mechanism
responsible for the creation of this B? At first glance, it is interesting to think that the origin of this
field could be similar to that of the magnetic field produced by a magnet and, therefore, of purely
quantum origin.
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