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Abstract: Metabolic syndrome is a health condition that increases the risk of heart diseases, diabetes,
and stroke. The prognostic variables that identify this syndrome have already been defined by
the World Health Organization (WHO), the National Cholesterol Education Program Third Adult
Treatment Panel (ATP III) as well as by the International Diabetes Federation. According to these
guides, there is some symmetry among anthropometric prognostic variables to classify abdominal
obesity in people with metabolic syndrome. However, some appear to be more sensitive than others,
nevertheless, these proposed definitions have failed to appropriately classify a specific population
or ethnic group. In this work, we used the ATP III criteria as the framework with the purpose to
rank the health parameters (clinical and anthropometric measurements, lifestyle data, and blood
tests) from a data set of 2942 participants of Mexico City Tlalpan 2020 cohort, applying machine
learning algorithms. We aimed to find the most appropriate prognostic variables to classify Mexicans
with metabolic syndrome. The criteria of sensitivity, specificity, and balanced accuracy were used
for validation. The ATP III using Waist-to-Height-Ratio (WHtR) as an anthropometric index for the
diagnosis of abdominal obesity achieved better performance in classification than waist or body mass
index. Further work is needed to assess its precision as a classification tool for Metabolic Syndrome
in a Mexican population.

Keywords: metabolic syndrome; Random Forest; Youden Index; Mexico City; cohort study; waist to
height ratio

1. Introduction

Metabolic Syndrome (MetS) encompasses a group of cardiovascular risk factors that increase the
likelihood of suffering heart and other metabolic illnesses, such as cerebrovascular stroke and diabetes.

MetS was first described by Kylin in 1920 as the coexistence of hypertension, hyperglycemia,
and gout [1]. In 1940, the central obesity component was added [2]; since then, several definitions have
been used to describe it, even different names have been given, such as the X syndrome, the insulin
resistance syndrome [3] or the deadly quartet [4].

Due to the controversy regarding a worldwide definition, in 1998, an international initiative
gather-up in an attempt to achieve an agreement on this matter. The World Health Organization (WHO
1999) proposed a set of criteria [5], then the National Cholesterol Education Program’s Adult Treatment
Panel III (NCEP: ATP III-2004) [6] and the European Group on the Study of Insulin Resistance (IDF) [7]
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(Table 1). Even though these definitions agree on the essential components (glucose intolerance, obesity,
hypertension, and dyslipidemia), there is a disagreement in the cutoff points of some components as
well as in the cluster of components that should be included, an example of this is the anthropometric
indexes that have been used to define obesity and central obesity. Also, because the distribution of
adipose tissue may vary concerning age, gender and ethnicity, these proposed definitions have failed
to appropriately classify a specific population or ethnic group, such as Africans, Latin-Americans or
Japanese, among others.

On the other hand, machine learning, a sub-discipline of artificial intelligence has had a high
tendency in health research, providing methods and techniques that have been successfully applied in
a variety of medical domains and the early diagnosis of several diseases such as hypertension [8,9]
diabetes [10,11], and MetS [12,13].

One of the first medical research applying machine learning algorithms [14], used the blood
pressure data of 300 clinically healthy participants and 85 subjects with hypertension. An expert
system applying neural networks was developed to diagnose and treat high blood pressure; the final
system acieved 94% accuracy, this means that 94 out of every 100 participants were correctly diagnosed,
either positives or negatives.

The use of machine learning to predict the MetS, applying algorithms such as decision tree [15,16],
logistic regression [17], Naïve Bayes [18] and support vector machine (SVM) [19] among others, have
achieved high performance. Karimi-Alavijeh et al. [20] used a decision tree and their results showed that
SVM had a better performance, with an accuracy of 75%. Barakat et al. [21] also used SVM and other
algorithms, such as the rule-based RIPPER (JRip), Classification and Regression Trees (CART), and C5.0
tree (C5) for diagnosis of MetS; however, the SVM achieved the best performance with an accuracy of 97%.

Artificial Neural Networks (ANN) have as well obtained a high performance in the prediction
of MetS. Hirose et al. [13] predicted successfully the 6-year incidence of MetS using an ANN, with a
sensitivity of 0.93 and a specificity of 0.91. Lin et al. [17] used ANN and logistic regression models to
identify MetS in patients with second-generation antipsychotics treatment; as a result, the ANN (88.3%)
achieved the best performance in accuracy, though logistic regression (83.6%) does not differ much
from the ANN. Sedehi et al. [22] concluded that machine learning algorithms compared to logistic
regression and discriminant analysis has better performance to predict MetS with higher accuracy.

Random Forest, another machine learning algorithm, has been applied in the prediction of MetS [23,24].
This algorithm performs a classification and regression process and the ranking of prognostic variables
to support the early diagnosis or prediction of a specific disease. Apilak Worachartcheewan et al. [25]
determined the prevalence of MetS and achieved an accuracy above 98%. According to related research,
the value obtained with Random Forest to predict MetS was higher than SVM and ANN.

In this study, machine learning algorithms were used to rank the health parameters to determine
the most appropriate variables for the classification of MetS in the Mexican population, using the
Mexico City Tlalpan 2020 cohort [26] data set. We look for some new information, although there
are symmetric relationships between findings in the established literature. Correlation-based Feature
Selection (CFS) was applied as well as, chi.squared filter methods to select relevant features in MetS
diagnosis. Several experiments were performed to create the predictive models, applying JRip,
C4.5 and Linear SVM classifiers. The performance among the different models was compared.

Filter methods help to identify those variables that were the most important for classification and
discard those that were not important. Their advantages are simplicity, speed, and low computational
cost. Filter methods used in this study were obtained from the FSelector R package [27].

JRip, C4.5, and Linear SVM are known for getting good results in classification tasks [28–30].
JRip and C4.5 also provide predictive models, understandable by humans. JRip and C4.5 were taken
from the RWeka R Package [31,32].

This paper is structured as follows: in Section 2, the materials and methods are introduced.
In Section 3, the experiment’s performance is presented. A discussion (Section 4) and conclusion
(Section 5) complete this paper, as well as some ideas for future works.
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Table 1. Criteria for MetS defined by the IDF, ATP III (2004) and WHO (1999) used in this study.

Risk Factors IDF ATP III WHO

Metabolic Waist circumference Three or more Glucose intolerance and/or
Syndrome plus two or more of the of the following factors: insulin resistance plus,

following factors: at least two of the following features:

Central Ethnic specific values or Waist circumference: Male: >102 cm, Waist-to-hip ratio: male (0.9),
obesity BMI ≥ 30 kg/m 2 Female: >88 cm female (0.85), or BMI > 30 kg/m 2

Raised blood ≥130/85 mmHg or ≥130/85 mmHg ≥140/90 mmHg or
pressure treatment for hypertension treatment for hypertension

Raised ≥150 mg/dL or ≥150 mg/dL ≥150 mg/dL
triglycerides treatment for dyslipidemia

Raised fasting >100 mg/dL or ≥100 mg/dL or ≥110 mg/dL or
plasma glucose previously diagnosed previously diagnosed previously diagnosed

diabetes type 2 diabetes type 2 diabetes type 2

High density Male: <40 mg/dL Male: <40 mg/dL
lipoprotein Female: <50 mg/dL, or Female: <50 mg/dL
cholesterol treatment for dyslipidemia

(HDL-C)

Microalbuminuria ≥30 mg/g
albumin/creatinine ratio

2. Materials and Methods

2.1. Data

The data set incorporated in this research was obtained from the Tlalpan 2020 cohort, and this
study is conducted by the Instituto Nacional de Cardiología Ignacio Chávez in Mexico City [26].
The data were collected from 2942 subjects, 1869 women (64%) and 1073 men (36%), aged 20–50 years.
The data set included different cardiovascular risk factors (clinical and anthropometric measurements,
lifestyle habits and biomedical evaluation).

Clinical and anthropometric measurements. Systolic and diastolic blood pressure, measurements
were made according to standard procedure JNC 7 [33], as well as Waist Circumference (WAIST), height
and weight (The International Society for the Advancement of Kinanthropometry (ISAK)) [34], Body Mass
Index (BMI) was estimated as (weight/height2), and Waist-to-Height-Ratio (WHtR) was calculated
dividing the waist by the height (waist/height) (cm/cm).

Lifestyles habits. Variable related to lifestyle habits such as alcohol consumption, smoking, and
physical activity (measured with the long version of the International Physical Activity Questionnaire
(IPAQ)) were obtained with validated questionnaires [35].

Biochemical evaluation. Blood samples were taken after 12 h of overnight fasting and the following
laboratory tests were obtained: fasting plasma glucose (FPG), triglycerides (TGs), HDL cholesterol (HDL-C),
LDL cholesterol (LDL-C), total cholesterol (T-Cho), uric acid (UrAc), creatinine (Cre) and sodium (Na).

2.2. Methods

Random Forest. It was introduced by Breiman and Adele Cutler [36], as a predictive algorithm
that creates a set of CART classification trees and the class assigned to the instance is made by
the majority vote, this is known as a classifier assembly. This algorithm can be applied to a wide
range of prediction problems and can achieve a better prediction accuracy as compared to individual
classification trees [37]. Random Forest has two important parameters: mtry and ntree. The mtry is
the size of the random subsets of variables considered for splitting, being the default value 2

√
p for

classification and 2
3 for regression, where p is the number of variables in the data set [38]. The ntree

parameter refers to tree size. In this work, we used randomForest library [38] available too in R [39].
Random Forest provides a method called Variable Importance Measures (VIMs) to rank the

importance of variables in cases of regression or classification.
Variable Importance Measures. [40] Variable importance measures for Random Forest can be

used to rank variables by their relevance in regression or classification cases. This method has been
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successfully applied in many applications [23,37,41]. There are two ways to identify relevant features
or perform variable: (1) mean decrease of impurity (MDI), which is based on the Gini index [42],
and (2) mean decrease of accuracy (MDA) based on permutation importance. MDI is typically used in
classification [42] and is more robust than MDA [43,44]. MDA is more suitable for regression problems.

In this study, we use MDI, which typically uses Gini index (measure commonly chosen for
classification-type cases [42]), this process is given by

Jimpurity(Xk) =
∑i∈Nk (impbni− impani)

| N(k) |
(1)

where impbni is impurity before node i, impani is impurity after node i and Nk represents the set of
nodes in which a split based on Xk is made. This method is implemented by R with the function
importance (type 2) as a part of the randomForest package [45].

JRip. It is a version of the RIPPER (Repeated Incremental Pruning to Produce Error Reduction)
algorithm [46]. JRip generates a rule set to identify the categories of the instances, and at the same time
to optimize the classification error. The syntax of a rule is as follows:

if attribute1 <relational operator> value1 <logical operator>
attribute2 <relational operator> value2 < . . . > then decision-value

C4.5. [47] It creates a classification tree using training data through repeated splits. In each
repetition, the most relevant predictor variable is identified using the gain ratio as a measure and using
this variable the tree is bifurcated. This process is repeated until all training instances are classified.
In the end, only the most important predictors are used to create the classification tree. This results in
a more simplified tree.

Correlation-Based Feature Selection (CFS). [48] It assesses the capacity to predict the class
and the correlation between the features in feature subsets, aiming at maximizing the former and
minimizing the latter. As a result, the best predictive feature subset and with the least correlation
between members is found. Having a feature subset S with k features, CFS computes the goodness of
S, denoted Ms with the equation:

Ms =
krc f√

k + k(k− 1)r f f

(2)

where r f f is the average correlation of all feature-feature pairs. krc f is the average correlation of all
feature-class pairs.

Chi-Squared. This filter calculates the chi-squared statistic of each variable taken individually
concerning the class [49]. It gives a feature ranking as a result. Taken a feature f and the class c,
the chi-squared test is computed with the equation:

X2( f , c) =
N[P( f , c)P( f , c)− P( f , c)P( f , c)]2

P( f )P( f )P(c)P(c)
(3)

where N is the number of records in the data-set. P(x, y) is the joint probability of x and y. P(x) is the
marginal probability of x. For example: P( f , c) is the joint probability of f and c, P( f ) is the marginal
probability of f . f is the complement of f . c is the complement of c.

2.3. Metrics

To evaluate the classifier performance, sensitivity (SENS), specificity (SPC), and balanced accuracy
(BACC) were used and computed based on the confusion matrix, as well as on the Kappa index [50].

SENS =
TP

TP + FN
(4)
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SPC =
TN

FP + TN
(5)

BACC =

(
1
2

)(
TP
P

+
TN
N

)
(6)

where P = Positive, N = Negative, TP = True Positive, FN = False Negative, TN = True Negative and FP = False
Positive, respectively.

2.4. Statistical Analysis

The statistical analysis was performed with the Stata package, version 13.0. The distribution
of numerical variables was tested with Shapiro France Test (P > 0.05). Mann-Whitney U test and
Chi-squared or exact Fisher tests were used to compare the studied groups (with and without MetS).
An alpha index of ≤0.05 was considered statistically significant.

3. Results

In this study, we used a data set from a cohort study called Tlalpan 2020 (the study protocol for
this cohort was published elsewhere [26]). The ATP III criteria were applied (see Table 1) to identify
influential cardiovascular risk factors and classify participants with or without MetS. Figure 1 shows a
general diagram of our proposed model, where the first step was to identify the variable importance
of all data set applying Random Forest, chi-squared and CFS. The results obtained indicate the most
important variables (features), which were used to train different models using Random Forest, C45,
and JRip. Models were created using 30 independent iterations, as it is the typical number used in the
literature for fair comparisons among experiments [51,52]. Then, their performance was compared
considering balanced accuracy, sensitivity, and specificity.

Train 
data

Variable 
importance

Feature 
selection

Chi.squared
Random Forest

CFS

Train Model

Build Model

Model

Random Forest
C45
JRip

Model 
Comparison

Test 
data

Iteration 30 times

Figure 1. Diagram to define best cutoff points to predict MetS in Tlalpan 2020.
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The prevalence of MetS according to ATP III criteria was 20.5% (603 participants), and no significant
differences were identified between sexes (with MetS: women 20.6% vs. men 20.4%, without MetS:
women 79.4% vs. men 79.6%).

The median and interquartile range (IQR) of anthropometric, clinical, and biochemical parameters
are shown in Table 2. Participants with MetS were significantly older than those without MetS and
showed higher values of all anthropometric and clinical parameters. Concerning biochemical parameters,
MetS participants had substantially higher values than those without MetS.

Table 2. Description of anthropometric, clinical and biochemical parameters between MetS and
non-MetS groups.

Metabolic Syndrome p Value
Yes No

(N = 603 (20.5%)) (N = 2339 (79.5%))

Anthropometric and Clinical parameters *

Age (years) 42 (36–47) 38 (29–45) 0.0000
Weight (Kg) 81 (71.0–92.8) 66 (58.5–76) 0.0000
Height (m) 1.61 (1.55–1.68) 1.61 (1.56–1.68) 0.6407
BMI (Kg/m2) 31.1 (28.27–33.4) 25.5 (23.1–28) 0.0000
WC (cm) 100 (94–108) 86 (80–94) 0.0000
WHtR (cm/cm) 0.62 (0.59–0.66) 0.53 (0.49–0.58) 0.0000
SBP (mmHg) 111.3 (104.7–120) 105.3 (98–112.7) 0.0000
DBP (mmHg) 77.3 (70.7–82.7) 70.7 (64.7–76.7) 0.0000

Biochemical parameters *

FPG (mg/dL) 102 (94–108) 91 (86–96) 0.0000
CHOL (mg/dL) 188.1 (169.4–211.8) 178.3 (158.7–201.7) 0.0000
LDL-C (mg/dL) 123.4 (105.3–144.1) 115 (97.3–135.9) 0.0000
HDL-C (mg/dL) 38.2 (33.9–44) 49.6 (42.4–58) 0.0000
TGs (mg/dL) 194.1 (157.6–255.7) 108 (79.7–145.5) 0.0000
Uric Acid (mg/dL) 5.8 (4.8–6.8) 5.1 (4.3–6) 0.0000
Creatinine (mg/dL) 0.76 (0.66–0.89) 0.77 (0.67–0.90) 0.0410
Sodium (mmol/L) 140.9 (140–141.6) 140.9 (140–141.6) 0.0780

Lifestyle **

Smoking habit
- Never 214 (35.5) 899 (38.4)
- Former 227 (37.6) 921 (39.4) 0.0500
- Present 162 (26.9) 519 (22.2)
Alcohol consumption
- Yes 376 (62.4) 1644 (70.3)
- No 227 (37.6) 695 (29.7) 0.0000
Physical Activity
- Low 80 (13.2) 257 (11.0)
- Medium 276 (45.8) 1054 (45.0) 0.2000
- High 247 (41.0) 1028 (44.0)

* Numerical data were expressed as the median (interquartile range (IQR)) and ** categorical as the number
of cases and its corresponding percentage (n (%)). BMI: body mass index, WC: waist circumference, WHtR:
Waist-to-Height-Ratio, SBP: systolic blood pressure, DBP: diastolic blood pressure, HR: heart rate, FPG: fasting
plasma glucose, CHOL: total cholesterol, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density
lipoprotein cholesterol, TGs: triglycerides.

Variable Importance and Prediction Model

As a first step, we identify the most important variables of the data set using Random Forest
algorithm to construct the corresponding model, where the number of trees (ntree) varied between
100 to 1000 (ntree = 100, 200, 300, 500, 800, and 1000) and the mtry value varied between 1 to 10,
applying the grid search method proposed by Hsu et al. [53]. Also, 10-fold cross-validation with ten
repeats to train the model was used to ensure all data. Once the training process was finished and the
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best parameters were found and applied, the variable importance was obtained. Figure 2 shows the
features attained by the model, where the best value in mtry was 10 and in ntree was 1000, to achieve a
balanced accuracy of 0.9675 and a standard deviation (SD) of 0.0006.

SBP

CREA

SEX

WAIST

DBP

BMI

HDL.C

WhtR

TGs

FPG

0 20 40 60 80 100 120 140

Variable Importance

MeanDecreaseGini

Figure 2. Variable Importance in the complete data set. FPG: glucose, TGs: triglycerides, WHtR:
Waist-to-Height-Ratio, HDL.C: high-density lipoprotein cholesterol, BMI: body mass index, DBP:
diastolic blood pressure, WAIST: waist circumference, CREA: Creatinine SBP: systolic blood pressure,
CHOL: Total cholesterol, LDL.C: low-density lipoprotein.

In Figure 2, the variable importance is shown. FPG displayed the highest value of importance,
followed by TGs, WHtR, and HDL.C; then there was a second group (BMI, DBP, and waist) and
SEX, CREA and SBP showed the lowest values. Three of the four variables within the first group are
considered to be indicators used by ATP III to identify MetS. However, the anthropometric index that
ATP III uses to identify abdominal obesity is the waist. In our results, this index showed a lower value
of importance than WHtR and even than BMI. Therefore, considering the role that abdominal obesity
has as a cardiometabolic risk factor, the importance of each of the three anthropometric indexes (WHtR,
BMI and waist) was tested. We performed experiments where WEIGHT, HEIGHT, and BMI, waist or
WHtR were eliminated depending on the case, and a separate algorithm was built applying Random
Forest and chi.squared.

Table 3 shows the variable importance of BMI, WHtR and WAIST using Random Forest. WHtR
was placed in the second position with a value higher (146.4299) than BMI (118.7353) and WAIST
(118.6575), which were placed in the third position.
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Table 3. Variable Importance by Random Forest.

BMI_RF WhtR_RF WAIST_RF

Variable attr_importance Variable attr_importance Variable attr_importance
FPG 161.24255 FPG 154.933891 FPG 164.075832
TGs 133.419239 WhtR 146.429954 TGs 128.552016
BMI 118.735349 TGs 130.930428 WAIST 118.657588
HDL.C 85.128492 HDL.C 86.519673 HDL.C 96.989354
DBP 41.962949 DBP 40.292102 SEX 45.629925
CREA 25.827319 SEX 19.934242 DBP 41.41832
SEX 19.913751 SBP 17.330333 CREA 18.910847
SBP 19.120117 CREA 17.207579 SBP 14.264248
CHOL 13.730005 CHOL 13.408404 URIC 10.246256
URIC 13.240346 URIC 11.439449 CHOL 9.573875
LDL.C 12.541307 LDL.C 9.80734 LDL.C 7.160062
AGE 9.899638 SODIUM 8.417866 SODIUM 6.650695
SODIUM 9.205347 AGE 7.628182 AGE 5.868129
TOBACCO 3.266133 TOBACCO 2.863531 TOBACCO 1.640314
PHYSICAL_ACT 3.056807 PHYSICAL_ACT 2.193845 PHYSICAL_ACT 1.387089
ALCOHL 1.570261 ALCOHL 1.266757 ALCOHL 1.125397

Table 4, shows the variable importance of BMI, WHtR and WAIST, using chi.squared. Even though
the three anthropometric indexes were placed in the third position, WHtR achieved a higher value
(0.5118) than WAIST (0.5068) and BMI (0.4975). As for the last six variables for which the importance
was 0, it means that they are not important for diagnosing MetS according to chi.squared filter, therefore
they can be discarded from the models.

Table 4. Variable Importance by Chi.squared.

BMI_chi.squared WhtR_chi.squared Waist_chi.squared

Variable attr_importance Variable attr_importance Variable attr_importance
FPG 0.536249993 FPG 0.536249993 FPG 0.536249993
TGs 0.518863961 TGs 0.518863961 TGs 0.518863961
BMI 0.49751679 WhtR 0.511873169 WAIST 0.506820302
HDL.C 0.439123538 HDL.C 0.439123538 HDL.C 0.439123538
DBP 0.320697596 DBP 0.320697596 DBP 0.320697596
SBP 0.269691951 SBP 0.269691951 SBP 0.269691951
URIC 0.198714284 URIC 0.198714284 URIC 0.198714284
AGE 0.159260928 AGE 0.159260928 AGE 0.159260928
CHOL 0.123288978 CHOL 0.123288978 CHOL 0.123288978
LDL.C 0.117543224 LDL.C 0.117543224 LDL.C 0.117543224
SEX 0 SEX 0 SEX 0
TOBACCO 0 TOBACCO 0 TOBACCO 0
ALCOHL 0 ALCOHL 0 ALCOHL 0
PHYSICAL_ACT 0 PHYSICAL_ACT 0 PHYSICAL_ACT 0
CREA 0 CREA 0 CREA 0
SODIUM 0 SODIUM 0 SODIUM 0

Once the importance of the variables was obtained with Random Forest (see Table 3) and chi.squared
(Table 4), the models for each anthropometric index (WHtR, WAIST, and BMI) using Random Forest,
C45 and JRIP as classifiers were developed.

In Table 5, the performance of the 30 models developed for each anthropometric index (WHtR,
WAIST, and BMI) using Random Forest, C45 and JRIP as classifiers are shown. The classifier that
performed best was the Random Forest for the three anthropometric indexes; however, WAIST showed
the highest importance. On the other hand, C45 and JRIP obtained lower importance for the three
anthropometric indexes, and the highest importance was observed for the WHtR.
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Table 5. Performance of the models constructed for each case (WhtR, WAIST and BMI).

Variable Classifiers Attribute
Selection Method

Balanced
Accuracy

SD
Balanced Accuracy Sensitivity SD

Sensitivity Specificity SD
Specificity

WhtR
RF (mtry = 9 ntree = 800) RF 0.9403 0.0018 0.9669 0.0010 0.9137 0.0037
C45 CFS 0.8655 0.0182 0.9524 0.0110 0.7786 0.0420
JRIP CFS 0.8606 0.0182 0.9546 0.0139 0.7667 0.0469

WAIST
RF (mtry = 10 ntree = 300) RF 0.9772 0.0025 0.9813 0.0015 0.9731 0.0050
JRIP CFS 0.8388 0.0323 0.9331 0.7444 0.0863
C45 CFS 0.8043 0.0309 0.9593 0.0205 0.6493 0.0797

BMI
RF (mtry = 9 ntree = 300) RF 0.9101 0.0032 0.9645 0.0019 0.8557 0.0061
JRIP CFS 0.8475 0.0154 0.9443 0.0141 0.7507 0.0391
C45 CFS 0.8354 0.0233 0.9519 0.0154 0.7189 0.0573
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Since ATP III is one of the most used guidelines in Latin America to define the MetS, we constructed
three models, one to measure the performance of variables used by ATP III (see Table 6), another to
measure the same ATP III variables, replacing WAIST for WHtR (see Table 7) and the last one to
measure the same ATP III variables using the BMI instead of WAIST.

Tables 6–8 show sensitivity, specificity, and the balanced accuracy, as well as their respective
standard deviations of the average performance for the 30 models generated for each case. In the case
of the model using ATP III variables (Table 6), the best performance was attained by Random Forest
with a Balanced Accuracy of 0.8754 and an SD of 0.0036, followed by JRip (0.8723, 0.0203). The worst
average performance was attained by SVM linear with a cost = 100, where the Balanced Accuracy was
0.7561 and the SD was 0.0136. The model in which WAIST was replaced with WHtR achieved the best
performance with JRip with a balanced accuracy of 0.8926 and an SD of 0.0142, followed by Random
Forest (0.8905, 0.0022), the worst average performance was attained by SVM linear with a cost = 50
(0.7812, 0.0154).

Table 6. Results of model performance using ATP III variables.

Classifiers Avg Balanced
Accuracy

SD
Balanced Accuracy Avg Sensitivity SD

Sensitivity Avg Specificity SD
Specificity

Random Forest 0.8754 0.0036 0.9512 0.0007 0.7996 0.0072
Jrip 0.8723 0.0203 0.9428 0.0164 0.8018 0.0513
C4.5 0.8592 0.0207 0.9525 0.0130 0.7658 0.0488
knn (k = 44 d = 2) 0.7696 0.0136 0.9633 0.0090 0.5758 0.0305
SVM Linear c = 100 0.7561 0.0137 0.9562 0.0093 0.5561 0.0305

Table 7. Results of model performance using ATP III variables, replacing WAIST with WhtR.

Classifiers Avg Balanced
Accuracy

SD
Balanced Accuracy Avg Sensitivity SD

Sensitivity Avg Specificity SD
Specificity

Jrip 0.8926 0.0142 0.9483 0.0132 0.8370 0.0333
Random Forest 0.8905 0.0022 0.9534 0.0012 0.8275 0.0044
C4.5 0.8775 0.0187 0.9573 0.0105 0.7977 0.0434
knn (k = 44 d = 1) 0.8004 0.0114 0.9733 0.0072 0.6275 0.0247
SVM Linear c = 50 0.7812 0.0154 0.9575 0.0099 0.6050 0.0323

Table 8. Results of model performance using ATP III variables, replacing WAIST with BMI.

Classifiers Avg Balanced
Accuracy

SD
Balanced Accuracy Avg Sensitivity SD

Sensitivity Avg Specificity SD
Specificity

Jrip 0.8691 0.0168 0.9421 0.0144 0.7960 0.0420
Random Forest 0.8650 0.0033 0.9407 0.0020 0.7894 0.0060
C4.5 0.8534 0.0185 0.9518 0.0133 0.7551 0.0450
knn (k = 44 d = 1) 0.7809 0.0139 0.9729 0.0062 0.5889 0.0315
SVM Linear c = 50 0.7694 0.0153 0.9568 0.0083 0.5821 0.0330

Finally, the model using ATP III variables, replacing WAIST with BMI, achieved the best performance
model with JRip with a balanced accuracy of 0.8691 and an SD of 0.0168, followed by Random Forest
(0.8650, 0.0033), the worst average performance was attained by SVM linear with a cost = 50 (0.7694, 0.0153).

The executed experiments showed that the model using the ATP III variables with WHtR instead
of WAIST achieved the best performance, whereby could be a useful index for the identification of
MetS in a Mexican population, along with the variables already proposed by ATP III.

4. Discussion

In this study, a set of health parameters was ranked applying Random Forest and compared
with chi.squared and CFS filter methods to obtain the variable importance. These results showed that
the main prognostic variables of MetS in our cohort of the Mexico City population according to its
importance were: FPG, TGs, WHtR, HDL-C, and BMI, four out of these five variables are among those
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proposed by the WHO, IDF and ATP III criteria for the classification of people with MetS; however, not
taking into consideration its predictability importance. Other studies have also found these prognostic
variables; however, using different classification methods [15,20,54].

An interesting result was that WHtR was considered the third variable in order of importance,
which is an important finding especially concerning the obesity epidemic in our country [55], and its
relationship with cardiovascular disease, which is the first cause of morbidity and mortality worldwide
and in Mexico.

Abdominal obesity has become an indicator of cardiometabolic risk. Therefore, significant efforts
have been made to find the proper anthropometric measurement that reflects the accumulation of fat
tissue in the abdominal area and can be easily obtained without high technology equipment.

It is also true that anthropometric indexes are importantly influenced by age, gender, and ethnicity,
among other factors, and therefore, finding the appropriate one could be an overwhelming task.
BMI has been used as an indicator of body fatness; however, it does not reflect abdominal obesity.
Furthermore, BMI might scale to height with other power than 2, and therefore erroneous conclusions
might be made regarding the adipose composition in people with different heights [56].

In recent years, abdominal obesity indexes such as BMI, WAIST, and recently the WHtR have
been proposed as indicators of a high cardiometabolic risk [57,58].

A systematic review that included seventy-eight cross-sectional and prospective studies analyzed
the predicting capability of WHtR, WAIST, and BMI to identify the risk of diabetes and CVD, and found
that WHtR, WAIST, and BMI are useful predictors for this matter, furthermore, balance and adjusted
data suggested that WHtR and WAIST are stronger predictors than BMI [59]. Browning et al. [59]
suggest that “Keep your waist circumference to less than half your height”, could be a suitable cutoff
point for all ethnic groups.

In a more recent systematic review and meta-analysis, Ashwell et al. [57], aimed to differentiate
the screening potential of WHtR and WAIST for adult cardiometabolic risk (hypertension, diabetes,
dyslipidemia, MetS, and overall cardiovascular outcomes) and found that WHtR had significantly
higher discriminatory power compared with BMI. However, most importantly, statistical analysis of
the with-in study showed that WHtR was a better predictor than WAIST for hypertension, diabetes,
cardiovascular disease, and all outcomes in both genders.

The predictive capability of WHtR has been tested in several populations [58,60–63].

Comparing WHtR, WAIST, and BMI

To compare the importance value of WHtR, WAIST, and BMI separately in the complete data set
we applied Random Forest and chi.squared. The results showed that WHtR is the most important
variable since it obtained the highest values with Random Forest (see Table 3) and chi.squared (Table 4).
Likewise, in the results shown in Table 5, WHtR achieved the best performance in balanced accuracy,
sensitivity, and specificity with C45 and JRip, using CFS as a feature selection method, even if WAIST
achieves better performance with Random Forest.

The ATP III guidelines are the most used to diagnose MetS; however, ethnic and regional
characteristics need to be recognized to adjust the parameters for the diagnosis of abdominal obesity.
Thus, the performance of WHtR and BMI using the variables of ATP III except for the WAIST was
proved. The results in Table 6 show the performance of the model using only ATP III variables, where
Random Forest achieves the highest value (0.8754). In Table 7, BMI reached the best performance
with JRip (0.8691); however, it fails to reach the value obtained by WAIST. The values attained
by WHtR showed the best performance using all classifiers, highlighting Random Forest with the
highest values. This shows that for our study, using data from the Mexico City Tlalpan 2020 cohort
participants, the WHtR in combination with the variables of ATP III (except for the waist) achieves a
better performance in classification than the WAIST and BMI.
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5. Conclusions

Machine learning algorithms have become a useful prognostic tool in medicine [64] to predict different
medical outcomes such as treatment response to (chemo)radiotherapy [65], study metabolomic [66], and to
identify the association between microbes, metabolites and abdominal pain in children with irritable
bowel syndrome [67]. In our case, we used Random Forest to rank health parameters evaluating the
prediction performance of the algorithm by accuracy (97%), sensitivity (97%) and specificity (93%).
Even though the results of Apilak Worachartcheewan et al. [25] are similar to ours, they obtained
an accuracy of 98% using Random Forest to determine MetS prevalence. However, when using
other algorithms, such as SVM, results have shown an important variability, for instance, Karimi
Alavijeh et al. [20] achieved an accuracy of 75%, while Barakat et al. [21] achieved an accuracy of
97%. Similar results were published using ANN; Hirose et al. [13] reported a sensitivity of 93% and
a specificity of 91%. Lin et al. [17] achieved a lower accuracy (88.3%) using the same technique and
83.6% applying logistic regression. However, it is necessary to emphasize that an adequate feature
selection and feature ranking significantly impacts the performance and computational burden of
machine learning algorithms [11].

In this study, we only included a population living in Mexico City. Nevertheless, MetS encompasses
chronic degenerative diseases with a significant genetic burden. Also, Mexico is a country with a wide
variety of ethnic groups. Therefore, it will be essential to include populations from other regions of
Mexico to have these ethnicities, cultures, customs, lifestyles, diet, and anthropometric characteristics
represented and to develop an algorithm that can be applied throughout Mexico to detect and predict
the MetS.

Finally, machine learning algorithms have potential applicability in medicine for diagnosis, being
Random Forest the most useful algorithm for prediction and ranking variables; in our Tlalpan 2020
cohort, FPG, TGs, WHtR, HDL-C, BMI, DBP, and WAIST were the most important variables to diagnose
(or predict) MetS, these results were similar to those found in other cohorts [15,25,54]. Likewise, results
using JRip, C4.5, Knn, SVM and Random Forest, showed that WHtR could be a useful index for the
identification of MetS, along with other variables proposed by ATP III.
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