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Abstract: Recent a few years have witnessed the rapid expansion of the peer-to-peer lending
marketplace. As a new field of investment and a novel channel of financing, it has drawn extensive
attention throughout the world. Many investors have shown great enthusiasm for this field.
However, investors are at the disadvantage of information asymmetry, which is a key issue in
this marketplace that is unavoidable and can lead to moral hazard or adverse selection. In this
paper, we propose an L1/2-regularized weighted logistic regression model for default prediction of
peer-to-peer lending loans from investors’ perspective, which can reduce the impact of information
asymmetry in the process of loan decision. Rather than solely focus on the accuracy of the prediction,
we take into consideration the different risk preferences of different investors. We try to find a trade-off
between the risk of losing principal and that of losing potential investment opportunities on the basis
of investors’ risk preferences. Meanwhile, due to the nature of peer-to-peer lending loans, we add an
L1/2-regularization term to reduce the chance of overfitting. Xu’s algorithm for L1/2-regularization
problems is applied to solve our model. We perform training, in-sample test, and out-of-sample test
with data from LendingClub. Numerical experiments demonstrate that regularization could enhance
out-of-sample the area under the Precision–Recall curve (AUPRC). By applying the proposed model,
the risk-averse investors could apply a higher penalty factor to lower the risk of losing principal at
the cost of the loss of some potential investment opportunities according to their own risk preferences.
This model can help investors reduce the impact of information asymmetry to a great extent.

Keywords: default prediction; information asymmetry; L1/2-regularization; weighted logistic regression;
peer-to-peer lending

1. Introduction

Peer-to-peer lending (also known as people-to-people lending, person-to-person lending, or social
lending), often shorted as P2PL, a form of crowdfunding, is an online practice of individuals or
businesses lending money to other individuals or businesses without going through a traditional
financial intermediary. A classical P2PL model involves three basic elements: investors (supply),
borrowers (demand), and a platform. In the modern financial market, investors have a variety of
choices, such as stocks, bonds, futures. However, P2PL enables small investments as low as $25,
which may have little chance of investment elsewhere. Meanwhile, it would help investors diversify
their traditional portfolios. Additionally, interest rates offered by P2PL are usually more competitive
than those of traditional banks while it can build connections between borrowers and investors faster
and cheaper than any bank. Compared to stock markets, P2PL investments enjoy lower volatility and
correlation. These merits make it a good alternative to traditional investments.
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However, investors in this marketplace should be extremely cautious since its special risk
characteristics. Loan applicants are individuals with all kinds of uncertainty. Default is more likely to
happen than bonds or T-bills. Information asymmetry is a key issue in this marketplace, which can
result in moral hazard or adverse selection [1]. As it comes to the loan decision, investors are at a
disadvantage to the borrower, where the borrower has near-complete information while the investors
can only access the information provided by the platform. Though P2PL platforms seek to reduce
the impact of information asymmetry via many mechanisms, investors should also take information
asymmetry into consideration in loan decision. From investors’ perspective, an effective default
prediction would help to protect their profits and principle in such a marketplace. P2PL platforms
usually provide a mass of information, thought not as much as that possessed by the borrower,
which will help investors in loan decision making.

In the next section, we will introduce the peer-to-peer lending marketplace in detail.

2. Theoretical Background

2.1. Development of Peer-to-Peer Lending in Marketplace

As a novel financial model, P2PL has attracted public attention over the past decade when many
P2PL companies came into being across the world.

The first company to offer peer-to-peer loans in the world, ZOPA, was founded in Britain
in 2005. The name, ZOPA, which stands for “zone of possible agreement”, is a negotiating term
that identifying the bounds within which agreement can be reached between the two parties [2].
Prosper Marketplace, the first P2PL company in the United States, was also founded in 2005. It began
operations in February 2006 and was the only P2PL company in the United States until May 2007, when
LendingClub was founded. In the beginning, Prosper issued loans to anyone who had the interest to
get a loan, which caused most of its investors to get negative returns. At that time, Prosper offered
only unsecured consumer loans but not small- and medium-sized enterprise (SME) loans. In 2008,
Prosper was temporarily shut down because of scrutiny by the Securities and Exchange Commission
(SEC). SEC issued a formal cease-and-desist letter to explain that Prosper should be considered as a
seller of securities and should be regulated by the SEC [3].

LendingClub was first introduced as a Facebook application. With rapid growth, it emerged as
a standalone website within a couple of months. It was the first P2PL company that registered its
offerings as securities with SEC. It offers loans from $1000 to $35,000 for individuals and from $15,000
to $300,000 for SME. Currently, LendingClub is the largest P2PL platform in the world.

In 2007, TrustBuddy, the first P2PL company in Sweden, began operations. Now it is a peer-to-peer
group that operates in five European countries under three different brand names (Geldvoorelkaar,
Crowdfunding Society and TrustBuddy).

The first P2PL company in China was also set up in the year 2007, named “Paipaidai”.
This marketplace has undergone extremely rapid growth in the past few years. In 2015, the national P2P
net loans turnover has increased 258.62% compared to the year 2014 and reached RMB 1180.6 billion
and 3844 platforms reported to be operating [4].

Funding Circle, a P2PL platform founded in the UK in August 2010, entered the US in October
2013. It only processes SME loans and operates in the US, UK, Germany, and the Netherlands.

Upstart, founded in April 2012 in San Carlos, California, by a group of ex-Googlers, was first
launched with an Income Share Agreement (ISA) product that enabled individuals to raise money
by contracting to share a portion of future income. Later, it pivoted away toward the personal loan
marketplace. Upstart operates differently in many ways from other P2PL platforms. The firm specifies
its target niche as young professionals. It applies unique grading criteria taking into consideration
not only Fair Issac Credit Organization (FICO) scores but also educational background information
and employs a so far remarkably accurate modeling system at predicting future defaults and returns.
This helps the firm enjoy the lowest default rates across the P2PL industry up to 2017.



Symmetry 2020, 12, 935 3 of 19

Some other countries also opened up P2PL industry in recent years, such as Australia, India,
Israel, Canada, and Brazil.

2.2. Literature Review

Although P2PL is a relatively young field of research, it has been extensively studied in the past
decade. Since the first P2PL platform ZOPA launched, research on this new lending pattern gains
increasing attention. Wang et al. [5] provide an overview of the concepts and discussed some different
P2PL marketplace models in detail. Prosper and LendingClub gave great impetus to research on
P2PL by giving full public access to their data. Traditional research work on P2PL mainly focused
on funding success, that is, looking for the features with which loan applicants are more likely to
succeed, such as [6,7]. Among a variety of research topics on P2PL, default prediction has always been
in the spotlight since its significance for borrowers. Ajay et al. [8] propose a credit scoring model to
perform default prediction based on artificial neural networks. They are also aiming to reduce the risk
of investment failure. The numerical results show a 64.47% of the non-default loans and 74.75% of the
default loans are correctly classified for training data while 62.70% of the non-default loans and 74.38%
of the default loans are correctly classified for testing data. Jiang et al. [9] apply a tex analysis method
and latent Dirichlet allocation (LDA) model to extract soft information from text to be combined with
hard information. Then they present a prediction model based on a two-stage feature selection method.
Kim and Cho [10] consider an ensemble semi-supervised learning method taking into account both
labeled data and unlabeled data.

Other research mainly includes investment strategy designation, the role of P2PL in financial
market, information asymmetry, interest rate, etc., to name a few [11–15].

2.3. Peer-to-Peer Lending Process

For a potential borrower, the first step is to submit an application to a P2PL platform, which usually
contains the information about the borrower and the loan he would like to apply for, such as loan
amount, annual income, and Social Security Number (SSN).

After receiving the application, the platform will access the status of the potential borrower
with its own system taking into account information provided by the applicant and also the
information obtained through the applicant’s SSN, such as Fair Issac Credit Organization (FICO)
score, debt-to-income (DTI) ratio, and other credit information. Based on this information, the platform
decides whether to approve the loan. This process is usually called loan application processing.
Different platforms may differ in loan application processing scheme and also in the way to set the
interest rate.

Once a loan is approved by the platform, detailed information about the loan and the applicant
will go public online. Potential investors have a period of time to review the loan information and
make the decision to invest or not. A loan is issued if it collects enough funding within this period of
time; otherwise, the loan is dismissed and the money collected will go back to investors’ accounts.

After the loan is issued, the borrower gets the money collected and makes monthly payment to
repay. The platform charges a scheduled rate of fee for service.

Although platforms tried to provide qualified loans with complex loan application processing
systems, investors may get negative returns at the maturity of the loan due to the investment risks
involved in P2PL.

2.4. Investment Risk of Peer-to-Peer Lending

Investment in P2PL may face many types of risks, just as other financial instruments do, including
but not limited to: default risk, bankruptcy risk, regulatory risk, interest rate risk, prepayment risk,
and liquidity risk.

The main risk in P2PL is default risk, which related to the loans selected to invest, i.e., investors’
investment strategies will affect the default risk exposure of a portfolio to a great extent. Other types
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of risks may not have as much effect as default risk since the risk events may be unlikely to happen
or measured in the sense of opportunity costs. We would like to introduce several main risks to
investors below.

2.4.1. Default Risk

Default risk is the chance that borrowers may be unable to repay their loans entirely or partially,
and it is the main risk that investors in P2PL will encounter. Many works have investigated into default
prediction, see [16], including default prediction in P2PL [17–19]. However, these works depend on
meta-level phone usage data, which is not available for general investors.

2.4.2. Bankruptcy Risk of P2PL Platform

Investors of P2PL may face the risk that platforms shut down, especially when the P2PL industry
goes crazy. For example, in 2011, Quakle, a UK P2PL company closed down with a nearly 100% default
rate due to the unsuccessful attempt to measure borrowers’ creditworthiness. This type of risk is
closely related to default risk. We could go further and say bankruptcy risk of P2PL platforms mainly
caused by borrows default.

However, this type of risk is fairly low in the current stable economic environment. With the
improving regulatory enforcement, choosing a legal compliance P2PL platform could help to reduce
the bankruptcy risk of the platform to a negligible level.

2.4.3. Regulatory Risk

Regulatory risk is the risk that a change in regulations or laws which will materially impact
the whole industry. Generally, events which involve regulatory risk occur in the early years of
market establishment, when the market is premature or when notable events happen. LendingClub
temporarily shut down lending operations from April 2008 to October 2008 and Prosper did not offer
investment opportunity from October 2008 to July 2009. Both platforms were preparing to file the
registration statement with the SEC [20]. In China, at least 246 P2PL platforms were shut down during
the first half of 2016 since tightening of regulation according to a report by cnr.cn.

However, most of the time, regulatory risk is unpredictable and uncontrollable. Fortunately, it is
unlikely to happen when the market is in normal operation.

2.4.4. Interest Rate Risk

Interest rate risk is the risk that arises for fixed income securities owners from interest rates
fluctuation. As reported by SEC, all bonds are subject to interest rate risk, even if they are insured
or government guaranteed. This type of risk is mainly affected by the overall economic climate and
maturity of the security. That is, securities in the same market and with the same maturity face similar
interest rate risk. Loans on one platform in P2PL are of this kind of situation.

2.4.5. Prepayment Risk

Platforms usually allow extra payments and full prepayment. These payments could be made
any time and would be applied directly to the borrower’s principal balance. It would decrease the
total cost of the loan by reducing the principal balance and the total interest that borrowers pay on this
amount. That is, for investors, prepayment would reduce the return lower than a prospective return.

2.4.6. Liquidity Risk

Investors of P2PL would also face liquidity risk, which is the risk that stems from the lack of
marketability. In the case of LendingClub, investors should be prepared to hold any note purchased
through to its maturity. Even though there is a secondary market, Folio Investing, there is no guarantee
that investors will find buyers for their notes. This type of risk is common in most bond markets.
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Due to the risk characteristics involved, default events happen from time to time. This makes
default prediction necessary for investors, especially for this marketplace has a high level of information
asymmetry. From historical statistics, we can see that default loans are relatively few compared
to loans successfully repaid. Taken default prediction as a binary classification problem would
confront the problem of class imbalance. Meanwhile, overfitting is another problem since there
are too many features in P2PL data, especially considering the introduction of dummy variables,
while simply deleting some of them may cause loss of information. Additionally, different investors
may have different risk preferences, which makes traditional classification models impracticable for
every investor.

In this paper, from the investors’ perspective, we develop an L1/2-regularized weighted logistic
regression model for default prediction of P2PL loans. A penalty factor on the negative class is applied
to deal with class imbalance. Additionally, by adjusting this parameter, investors can weigh the risk of
losing principal and that of potential investment opportunities according to their own risk preferences.
The introduction of L1/2 regularizer help to reduce the chance of overfitting. We also give out a proof
of the convergence of Algorithm 1 for this model. Finally, we test the performance of L1/2-regularized
weighted logistic regression model by applying it to the data from LendingClub.

Algorithm 1 Xu’s Algorithm

Set the initial value β̃
0
= [1, 1, . . . , 1]> ∈ Rm+1 and the tolerance ε, where ε > 0 is a small value

much larger than machine precision. Let t = 0.
repeat

Solve

β̃
t+1

= arg min{w(β̃) +
λ

2

m

∑
i=1

1√
|βt

i |
|βi|}1,

until ‖β̃t+1 − β̃
t‖∞ < ε.

The rest of this paper is organized as follows. In Section 3, we establish the L1/2-regularized
weighted logistic regression model and explain its application in default prediction. We apply
Algorithm 1 to solve this model, and we give out a proof of the convergence result. In Section 4,
we explain the performance measure in use. We carry out numerical experiments with the data from
LendingClub to test the performance in Section 5. Finally, we come to a conclusion in Section 6.

3. Default Prediction by L1/2 Regularized Weighted Logistic Regression

Throughout the duration of a loan, there would be several types of loan statuses. Here, we only
focus on the statuses possibly at the expiration.

For LendingClub, loans may take one of the following statuses (For more details of loan
statuses on LendingClub, see https://help.lendingclub.com/hc/en-us/articles/215488038-What-
do-the-different-Note-statuses-mean-) at its predetermined maturity date.

• Fully Paid: The loan has been fully repaid, either at the expiration of the 36- or 60-month term,
or as a result of a prepayment.

• Current: The loan is up to date on all outstanding payment.
• In Grace Period: There will be a 15-day grace period if the loan past due.
• Late (16–30): The loan has not been current for 16 to 30 days.
• Late (31–120): The loan has not been current for 31 to 120 days.
• Default: The loan has past due for more than 121 days.
• Charged Off: The loan for which there is no longer a reasonable expectation of further

payments. Upon Charge Off, the remaining principal balance of the note is deducted from
the account balance.

https://help.lendingclub.com/hc/en-us/articles/215488038-What-do-the-different-Note-statuses-mean-
https://help.lendingclub.com/hc/en-us/articles/215488038-What-do-the-different-Note-statuses-mean-
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Usually, the platform has a complicated loan applications processing scheme to determine whether
to issue or reject a loan application. It helps to distinguish qualified loan applications from unqualified
ones to a great extent. For example, up to the first quarter of 2019, LendingClub has issued about
2 million loans, while more than 30 million loans have been declined which account for 93.78%
of total loan applications. However, among the issued loans, only about 0.96 million loans have
been fully paid, and about 1.1 million are with the status “Current”, which means the loan is up
to date on all outstanding payment. There are still about 0.28 million loans not likely to be paid
back with statuses “In Grace Period”, “Late (16–30)”, “Late (31–120)”, “Default”, or “Charged Off”,
which would lead to significant capital loss to investors. Detailed loan status statistics of the loans
issued up to the first quarter of 2019 are shown in Table 1 (Data are drawn from LendingClub,
https://www.lendingclub.com).

Table 1. Loan status statistics up to the 1st quarter of 2019.

Date B
Loan Status

Fully Paid Current In Grace Period Late (16–30) Late (31–120) Default Charged Off

2007–2011 42,536 36,104 0 0 0 0 0 6431
2012–2013 188,181 156,882 1573 38 26 63 3 29,596

2014 235,629 177,018 17,130 344 166 549 25 40,397
2015 421,095 269,699 74,267 1514 773 549 148 71,761

2016Q1 133,887 57,828 52,660 863 522 1688 68 20,258
2016Q2 97,854 38,441 42,841 899 345 1410 66 13,852
2016Q3 99,120 37,507 45,454 760 497 1696 81 13,125
2016Q4 103,546 35,528 53,924 948 543 1948 93 10,562
2017Q1 96,779 28,528 57,267 827 494 1888 78 7697
2017Q2 105,451 25,806 68,711 1113 606 2350 136 6729
2017Q3 122,701 23,521 88,386 1387 820 2933 127 5527
2017Q4 118,648 17,082 94,116 1255 678 2346 117 3054
2018Q1 107,864 10,004 93,464 977 581 1707 73 1058
2018Q2 130,772 6601 120,933 1146 546 1292 26 228
2018Q3 128,198 17,275 103,708 923 483 2425 3 3377
2018Q4 128,416 11,786 111,679 730 525 2146 2 1544
2019Q1 115,679 6184 107,128 549 355 1109 0 350

We train the model with loans that already past the predetermined maturity, where “Current”
means the borrower must have missed or been late for at least one payment. Throughout this paper,
we take “Fully Paid” as one category and all the others as the other category, named “Not Fully
Paid”. As shown in Table 1, the datasets are highly imbalanced. Therefore, the default prediction
turns into a binary classification problem with class imbalance. In this binary classification, we take
the status of loans as the target variable, where 1 denotes Fully Paid and 0 denotes Not Fully Paid;
while, the independent variables are chosen from features of loans accessible to investors. We will
discuss the features in detail later in Section 5.1.

Notation: Suppose we have a sample of size n,

S = {(x1, y1), (x2, y2), · · · , (xn, yn)} ⊆ Rn × Y,

where xi = (xi1, xi2, · · · , xim)
> and n, m ∈ N+. Here, xij ∈ R represents the jth feather of the ith loan

and yi is the loan status of the ith loan taken from Y = {0, 1}, where 0 represents Not Fully Paid
(negative class) and 1 represents Fully Paid (positive class). Without loss of generality, we assume any
two loans are independent. That is, if one borrower defaults, it is not likely to affect the probability of
a default event of any other borrower.

3.1. Standard Logistic Regression

Logistic regression is a machine learning algorithm borrowed from statistics. It is an important
topic in both fields. Since y is the label, it is an indicator variable taking value from Y = {0, 1}.
Obviously, Prob(y = 1) = E[y]. Then, the conditional probability is the conditional expectation of the

https://www.lendingclub.com
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indicator, i.e., Prob(y = 1|X = x) = E[y|X = x]. Denote the p-value involved with some parameter
β ∈ Rm as p(x; β̃) = Prob(y = 1|X = x), where β̃ = [β0, β>]> = (β0, β1, · · · , βm)> ∈ Rm+1.

From the independence of xi, we have

n

∏
i=1

Prob(y = yi|X = xi) =
n

∏
i=1

p(xi; β̃)yi (1− p(xi; β̃))1−yi . (1)

In the standard logistic regression model, the conditional probability distribution of the label y
given the feature vector x can be formed as

Prob(y = 1|x) = g(β̃
>x̃) =

1

1 + exp(−β̃
>x̃)

, (2)

and
Prob(y = 0|x) = 1− g(β̃

>x̃)

= 1− 1

1 + exp(−β̃
>x̃)

=
1

1 + exp(β̃
>x̃)

,

(3)

Prob(y = 0|x) = 1− g(β̃
>x̃)

= 1− 1

1 + exp(−β̃
>x̃)

=
1

1 + exp(β̃
>x̃)

,

(4)

where x̃ = [1, x>]> ∈ Rm+1. Here, g(z) is the logistic function (also known as sigmoid function)
defined as

g(z) =
1

1 + exp(−z)
. (5)

The standard logistic regression model can be built by minimizing the negative log-likelihood
(NLL) f (β̃),

min
β̃∈Rm+1

f (β̃) = −
n

∑
i=1

[yi log(p(xi; β̃)) + (1− yi) log(1− p(xi; β̃))]. (6)

3.2. Weighted Logistic Regression

In loan default prediction, the Type I error (also known as False Positive), which happens when
a classifier incorrectly classifies a Not Fully Paid loan as a Fully Paid loan, is more serious than the
Type II error (also known as False Negative), which is the misclassification of a Fully Paid loan as a
Not Fully Paid loan. That is because the Type I error will lead to real loss of capital and it is what
we want to avoid at all cost; while the Type II error means loss of potential investment opportunities,
which is not as dangerous as the Type I error. Thus, we are more reluctant to accept Type I errors.

Since for a given sample size, the probability of making a Type I error and that of making a Type II
error cannot be reduced simultaneously, we need to judge and weight Type I and Type II errors.

Tsai, Ramiah, and Singh state that precision is a more suitable statistical measure of performance
in this situation and introduce a penalty factor θ into log-likelihood [21] as,

min
β̃∈Rm+1

w(β̃) = −
n

∑
i=1

[yi log(p(xi; β̃)) + θ(1− yi) log(1− p(xi; β̃))], (7)

where, θ > 1 is a penalty factor (weight) on the negative class.
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Obviously, for a given sample size, a high θ will decrease the probability of a Type I error, even if
meanwhile it will increase the probability of a Type II error. This modification could yield higher
precision at the cost of recall and prediction accuracy. Their numerical experiments on the data of
LendingClub also suggest that for this problem weighted Logistic Regression outperforms LibSVM,
Naïve Bayes, and Random Forest.

3.3. L1/2 Regularized Weighted Logistic Regression

Since classical logistic regression may cause over-fitting when the sample size is not large enough
compared to the dimension of features [22], i.e., n� m does not hold. The introduction of a penalty
factor on the negative class can cope with the problem of data imbalance but cannot alleviate the
problem of over-fitting.

Let us consider some techniques, such as Lp regularization, which is one of several useful
techniques to overcome this weakness [23] taking the form,

min
β̃∈Rm+1

{l(β̃) + λ‖β‖p
p}, (8)

where l(·) is a loss function; ‖β‖p = (∑m
i=1 |βi|p)1/p denotes the Lp quasi-norm. Here, λ > 0 is

the regularization parameter used to weight between the loss function l(β̃) and the regularization
term ‖β‖p

p.
Zongben et al. [22] introduce an L1/2 regularizer since it can be solved easier than L0 regularizer,

which yields the most sparse solutions but faces the problem of combinatory optimization. Meanwhile,
L1/2 regularizer is more sparse and stable than the L1 regularizer which often yields solutions less
sparse than L0 regularizer and is inefficient when the error follows a fat tail distribution. Moreover,
Xu shows the unbiasedness and Oracle properties, and presents an iteration algorithm to solve the
L1/2 regularizer.

Hence, by taking advantages of L1/2 regularizer, our objective is

min
β̃∈Rm+1

{w(β̃) + λ‖β‖1/2
1/2}. (9)

Zongben et al. [22] also present an iteration algorithm which transforms the solution of the
L1/2 regularizer into a series of convex weighted Lasso. Here, we apply this algorithm to solve the
default prediction by a modification of the termination criterion. However, we use 1

2 ∑m
i=1

1√
|βt

i |
|βi| to

approximate the L1/2 regularizer instead of ∑m
i=1

1√
|βt

i |
|βi| which would help to correct the proof in

their work.
In order to avoid the error of 1

0 , 1√
|βt

i |
has been replaced by 1√

|βt
i |+σ

, where σ ≥ 0 is an arbitrary

small number.
In the iterative process, some of βt

i , t ≥ 1, i = 1, · · · , m may become zero.

Theorem 1. Given θ ≥ 0, β̃
t+1

= arg min{h(β̃) := w(β̃) + λ
2 ∑m

i=1
1√
|βt

i |
|βi|} converges to the set of

stationary points of h∗(β̃) := w(β̃) + λ‖β‖1/2
1/2.

Proof. From the definition of p,

p(xi; β̃) =
1

1 + exp(−β̃
>x̃i)

,

we have

w(β̃) =
n

∑
i=1

[θ(1− yi)β̃
>x̃i + (θ + (1− θ)yi) log(1 + exp (−β̃

>x̃i))].
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Then, the gradient and Hessian matrix of the function w(β̃) are as below,

∇w(β̃) =
n

∑
i=1

[θ(1− yi)x̃i − (θ + (1− θ)yi)
1

1 + exp (β̃
>x̃i)

x̃i],

and

∇2w(β̃) = (θ + (1− θ)yi)
exp (β̃

>x̃i)

(1 + exp (β̃
>x̃i))2

x̃i x̃>i .

Since θ ≥ 0, we have ∇2w(β̃) � 0. That is, ∇2w(β̃) is positive semi-definite.
Now, we define a function ŵ(·, ·) associated with w(·) as,

ŵ(β̃
+

, β̃
−
) =

n

∑
i=1

[θ(1− yi)(β̃
+ − β̃

−
)>x̃i + (θ + (1− θ)yi) log(1 + exp (−(β̃

+ − β̃
−
)>x̃i))],

where, β+ = max(β, 0) and β− = −min(β, 0), are the positive part and negative part of β, respectively.
Obviously, it holds, β = β+ − β−, |β| = β+ + β−, and

ŵ(β̃
+

, β̃
+
) = w(β̃). (10)

Similarly, we have the gradient and Hessian matrix of ŵ(·, ·) as,

∇ŵ(β̃
+

, β̃
−
) =

[
∇w(β̃)

−∇w(β̃)

]
,

and

∇2ŵ(β̃
+

, β̃
−
) =

[
∇2w(β̃) −∇2w(β̃)

−∇2w(β̃) ∇2w(β̃)

]
.

From the positive definiteness of ∇2w(β̃), we have ∇2ŵ(β̃
+

, β̃
−
) � 0. Thus, the function ŵ(·, ·)

is convex in (β̃
+

, β̃
+
), i.e.,

ŵ(β̃
+

, β̃
−
) ≥ ŵ((β̃

−
, β̃

+
) +∇ŵ(β̃

(t+1)+
, β̃

(t+1)−
)>
(

β̃
t+ − β̃

(t+1)+

β̃
t− − β̃

(t+1)−

)
. (11)

Denote h(β̃) = w(β̃) + λ
2 r(β) and h∗(β̃) = w(β̃) + λr∗(β), where r(β) = ∑m

i=1
1√
|βt

i |
|βi| and

r∗(β) = ‖β‖1/2
1/2 = ∑m

i=1 |βi|1/2. Similarly, we define functions r̂(·, ·) associated with r(·) and r̂∗(·, ·)
associated with r∗(·) as,

r̂(β+, β−) =
m

∑
i=1

1√
|βt

i |
(β+

i + β−i ), (12)

and

r̂∗(β+, β−) =
m

∑
i=0

(β+
i + β−i )

1/2. (13)

Clearly, we have,
r̂(β+, β−) = r(β), (14)

and
r̂∗(β+, β−) = r∗(β). (15)
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Further, we define ĥ(·, ·) associated with h(·) and ĥ∗(·, ·) associated with h∗(·) as,

ĥ(β̃
+

, β̃
−
) = ŵ(β̃

+
, β̃
−
) +

λ

2
r̂(β+, β−), (16)

ĥ∗(β̃
+

, β̃
−
) = ŵ(β̃

+
, β̃
−
) + λr̂∗(β+, β−). (17)

Thus, it holds
ĥ(β̃

+
, β̃
−
) = h(β̃), (18)

and
ĥ∗(β̃

+
, β̃
−
) = h∗(β̃). (19)

Hence,

β̃
t+1

= arg min h(β̃) = arg min{w(β̃) +
λ

2
r(β)}. (20)

(β̃
(t+1)+

, β̃
(t+1)−

) = arg min ĥ(β̃
+

, β̃
−
)

= arg min{ŵ(β̃
+

, β̃
−
) +

λ

2
r̂(β+, β−)}.

(21)

From the optimality condition of (β̃
(t+1)+

, β̃
(t+1)−

), we have

∇ĥ(β̃
+

, β̃
−
)|
(β̃

(t+1)+ ,β̃(t+1)−
)

= ∇ŵ(β̃
(t+1)+

, β̃
(t+1)−

) +
λ

2
∇r̂(β(t+1)+, β(t+1)−) = 0.

(22)

Thus, combining Equations (11) and (22), we have

w(β̃
t
) ≥ w(β̃

t+1
) +

λ

2
∇r(βt+1)>(β̃

t+1 − β̃
t
), (23)

and

ŵ(β̃
t+

, β̃
t−
) ≥ ŵ(β̃

(t+1)+
, β̃

(t+1)−
) +

λ

2
∇r̂(β(t+1)+, β(t+1)−)>

(
β̃
(t+1)+ − β̃

t+

β̃
(t+1)− − β̃

t−

)
. (24)

In order to show the concavity of r̂∗ with respect to (β+, β−), we can easily compute the gradient
based on its definition in Equation (13) as follows,

∇r̂∗(βt+, βt−) =



1
2 ·

1√
βt+

1 +βt−
1

...
1
2 ·

1√
βt+

m +βt−
m

1
2 ·

1√
βt+

1 +βt−
1

...
1
2 ·

1√
βt+

m +βt−
m


∈ R2m. (25)

Since we know that,



Symmetry 2020, 12, 935 11 of 19

∂2r̂∗(β+, β−)

(∂β+
i )

2
=

∂2r̂∗(β+, β−)

(∂β−i )
2

=
∂2r̂∗(β+, β−)

∂β+
i ∂β−i

= −1
4
(β+

i + β−i )
− 3

2

:= − ai
4

,

(26)

where, ai = (β+
i + β−i )

− 3
2 ≥ 0, i = 1, · · · , m. Then, the Hessian of r̂∗ is,

∇2r̂∗(β+, β−) =



− a1
4 − a1

4
. . . . . .
− am

4 − am
4

− a1
4 − a1

4
. . . . . .
− am

4 − am
4


∈ R2m×2m (27)

and ∀u = (u1, · · · , um)>, v = (v1, · · · , vm)> ∈ Rm,

(u>, v>)∇2r̂∗(β+, β−)(u>, v>)> = −1
4

m

∑
i=1

ai(ui + vi)
2 ≤ 0. (28)

Therefore, r̂∗ is concave with respect to (β+, β−).
It follows directly from the concavity of r̂∗ that

r̂∗(β(t+1)+, β(t+1)−) ≤ r̂∗(βt+, βt−) +∇r̂∗(βt+, βt−)>
(

β(t+1)+ − βt+

β(t+1)− − βt−

)
, (29)

which, in view of Equations (14) and (25), implies that

r∗(βt+1) = r̂∗(β(t+1)+, β(t+1)−)

≤ r̂∗(βt+, βt−) +
m

∑
i=1

(β
(t+1)+
i − βt+

i ) + (β
(t+1)−
i − βt−

i )

2
√

βt+
i + βt−

i

= r∗(βt) +
1
2

m

∑
i=1

|βt+1
i | − |β

t
i |√

βt+
i + βt−

i

≤ r∗(βt) +
1
2

m

∑
i=1

|βt+1
i | − sign(fit+1

i )fit
i√

βt+
i + βt−

i

= r∗(βt) +
1
2


1√
|βt

1|
sign(fit+1

1 )

...
1√
|βt

m |
sign(fit+1

m )


> βt+1

1 − βt
1

...
βt+1

m − βt
m


= r∗(βt) +

1
2
∇r(βt+1)>(βt+1 − βt).

(30)

Multiplying λ on both sides of Equation (30) and subtracting from Equation (23), we have
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h∗(β̃
t+1

) = w(β̃
t+1

) + λr∗(βt+1)

≤ w(β̃
t
) + λr∗(βt)

= h∗(β̃
t
).

(31)

From the definition of h∗, we can see h∗(β̃) ≥ 0, ∀β̃ ∈ Rm+1. That is, h∗ is monotonically
decreasing function and bounded below. As stated in [22], by the LaSalleś Invariance Principle,
{β̃t

, t = 0, 1, 2, · · · } converges to the set of stationary points of h∗(β̃) as t→ ∞.

4. Performance Measure: Accuracy, Precision, and Recall

Since assessing the performance of a classifier is crucial in evaluating a classification model,
we need to choose one or more proper performance measures.

For binary classification, a confusion matrix is usually used [24]. It summarizes the classification
performance of a classifier in four categories: true positive (TP), false positive (FP), false negative (FN),
and true negative (TN), as shown in Table 2. TP and TN outcomes are those classified correctly while
FP and FN represent Type I error and Type II error, respectively.

Table 2. Confusion Matrix.

Actual
Predicted

Positive Class Negative Class

Positive class true positive (TP) false negative (FN)
Negative class false positive (FP) true negative (TN)

A variety of common evaluation metrics can be derived from the confusion matrix, such as:

Accuracy =
TP + TN

TP + FP + TN + FN
, (32)

and
Error Rate =

FP + FN
TP + FP + TN + FN

. (33)

For imbalanced data, the application of accuracy and error rate results in a poor performance for
the minority class, see [25].

Later, to cope with measure of classifiers for imbalance data, people develop some other evaluation
metrics, to name a few, recall (also known as true positive rate (TPR), sensitivity), precision (also
known as positive predictive value (PPV)), false positive rate (FPR), defined as:

Recall =
TP

TP + FN
, (34)

Precision =
TP

TP + FP
, (35)

False Positive Rate =
FP

FP + TN
. (36)

Thereafter, based on these metrics, the receiver operating characteristic (ROC) curve, the area
under the ROC curve (AUROC, or just AUC), the Precision–Recall (PR) curve and the area under
the PR curve (AUPRC) are developed. The ROC curve is a two-dimensional plot of classifier
performance, which is obtained by plotting the TPR vs. the FPR for every possible classification
threshold. It is useful for visualizing and evaluating the overall classification performance. To facilitate
comparison, AUROC has been proposed, which summarizes the classification performance into a
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single number. The PR curve is an alternative of the ROC curve that can visualize the performance of
binary classification while AUPRC is its counterpart of AUROC.

As shown in Table 1, the data set is highly imbalanced. To balance between the risk of losing
principal with potential investment opportunities, we care both the recall and precision. Therefore,
AUPRC is more informative [25] in this case. Accuracy is also presented and we explain why it is not
suitable here.

5. Experiments

We present the numerical results based on the historical loan information and data
from LendingClub.

5.1. Data Description

LendingClub regularly updates the status of loans currently listed in data set available to
download on a monthly basis and adds new loans data quarterly. In the data, the features include
not only standard hard financial information commonly used by bank, such as annual income,
debt-to-income ratio, FICO score range, but also non-standard information, such as description
of the purpose of raising the loan, professional title. There are 151 features available in total. For more
details of features available, we refere to the data dictionary provided by LendingClub (Data dictionary
can be downloaded at https://resources.lendingclub.com/LCDataDictionary.xlsx). The number of
features available may change over time.

The target variable of this experiment is loan status, while independent variables are carefully
chosen from these 151 features. We take only the features can be described numerically into account,
including numeric features and categorical features. Free text fields, such as emp_title, purpose,
are removed. We finally take 62 features into consideration. To name a few,

• dti: Data to income ratio, a ratio calculated using the borrower’s total monthly debt payments on
the total debt obligations, excluding mortgage and the requested LendingClub loan, divided by
the borrower’s self-reported monthly income;

• emp_length: Employment length in years. Possible values are between 0 and 10 where 0 means
less than one year and 10 means ten or more years;

• fico_range_high: The upper boundary range the borrower’s FICO at loan origination belongs to;
• fico_range_low: The lower boundary range the borrower’s FICO at loan origination belongs to;
• last_fico_range_high: The upper boundary range the borrower’s last FICO pulled belongs to;
• last_fico_range_low: The lower boundary range the borrower’s last FICO pulled belongs to;
• funded_amnt: The total amount committed to that loan at that point in time;
• last_pymnt_amnt: Last total payment amount received;
• max_bal_bc: Maximum current balance owed on all revolving accounts;
• inq_fi: Number of personal finance inquiries;
• zip_code: The first 3 numbers of the zip code provided by the borrower in the loan application;
• home_ownership: The home ownership status provided by the borrower during registration

or obtained from the credit report. This is a categorical variable and possible values are: RENT,
OWN, MORTGAGE, OTHER.

Here, we transform categorical features into binary features with dummy variables since they
cannot be entered directly into a regression model and meaningfully interpreted. For more details
about dummy variables, we refer to [26]. In addition, normalization of features is recommended to put
different variables on the same scale in case there may be some features with far greater values than
others, for instance, loan amount and annual income.

In this experiment, we choose data from the loans that already past the predetermined maturity.
We consider loans with a 36-month maturity issued from 2013 to the first quarter of 2016 (2016Q1).
The training sample size is 1000, while the testing sample size is 300. After gathering the data we
first need to clean and prepare the data. Upon addressing missing data, special attention should be

https://resources.lendingclub.com/LCDataDictionary.xlsx
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paid since we may introduce bias at this step if the data are not missing at random. We transform
date information to time length from the date to the day we perform this experiment. In particularly,
the feature emp_length seems numeric, since it ranges from 0 to 10. However, since 0 means less
than one year and 10 means ten or more years, it is actually a categorical feature. We transform such
categorical features into binary features with dummy variables by replace a feature of c categories with
c− 1 dummy variables. Then, we apply normalization. Later, highly correlated predictors should be
removed in order to reduce multicollinearity. Finally, we split the data into training sample set and
testing sample set for in-sample tests and out-of-sample tests, separately.

As mentioned above, the datasets we considerate are highly imbalanced. Table 3 shows the
imbalance ratios of sample sets, defined as the ratio of the number of instances in major class to the
number of examples in the minority class. Here, the major class is Fully Paid; the minority class is Not
Fully Paid.

Table 3. Imbalance ratio.

Dataset
Imbalance Ratio

2013 2014 2015 2016Q1

Train 5.250005 3.854367 2.521127
In-sample test 5.666653 3.109588 2.797469

Out-of-sample test 3.285712 2.191488 3.285712

5.2. Numerical Results

This section contains training, in-sample test, and out-of-sample test results for the year 2013,
2014, and 2015. We performed in-sample tests with instances sampled from the training sample set,
while we conducted out-of-sample tests with examples sampled from the next period.

Here, we chose five different values for the penalty factor on the negative class, θ = 1, 2, 3, 4, 5,
based on the imbalance ratio of the dataset and five different values for the regularization parameter,
λ = 0, 10−10, 10−8, 10−6, 10−4, based on the value of loss function and the regularization term.
When θ = 1 and λ = 0, the model reduces to a standard logistic regression.

Figures 1–3 show the AUPRC, accuracy, precision, and recall results of training, in-sample test,
and out-of-sample test for 2013, 2014, and 2015. We also present the AUPRC results in Table 4.

From these scatter plots, we can see accuracy performs poorly for imbalanced data. Tests with
nearly the same accuracy may be far different in the number of FP samples and that of FN samples.
Accuracy only shows the percentage of samples correctly classified and do not distinguish between FP
and FN samples, which makes it simply does not work in our case.

As mentioned above, the probability of making a Type I error and that of making a Type II error
cannot be reduced simultaneously for a given sample. Recall and precision in general change in
opposite directions. As shown in the figures, for a fixed λ, precision results tend to increase with the
increase of θ at the cost of the reduction in recall. Investors that are more risk-averse could apply a
higher θ to keep the principal safer, while it may cause loss of investment opportunities.

Since the number of features taken into consideration is considerable, overfitting may happen
under the standard logistic regression. Regularization could help to reduce the chance of, or the
amount of, overfitting. As shown in Table 4, we present the AUPRC results of training, in-sample test,
and out-of-sample test for 2013, 2014, and 2015. For a fixed θ, a higher regularization parameter λ in
general yields higher out-of-sample AUPRC.
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Table 4. AUPRC results of training, in-sample test, and out-of-sample test for 2013, 2014, and 2015.

θ λ
2013 2014 2015

Training In-Sample Test Out-of-Sample Test Training In-Sample Test Out-of-Sample Test Training In-Sample Test Out-of-Sample Test

1.0 0 0.9952 0.8783 0.8170 0.9889 0.7938 0.7440 0.9771 0.7752 0.8074
1.0× 10−10 0.9952 0.8783 0.8197 0.9888 0.7947 0.7445 0.9776 0.7745 0.8068
1.0× 10−8 0.9952 0.8798 0.8179 0.9889 0.7977 0.7422 0.9773 0.7731 0.8127
1.0× 10−6 0.9951 0.8836 0.8221 0.9890 0.7993 0.7446 0.9773 0.7735 0.8183
1.0× 10−4 0.9936 0.9048 0.8332 0.9875 0.7969 0.7684 0.9748 0.8058 0.8478

2.0 0 0.9956 0.8792 0.8210 0.9895 0.7933 0.7446 0.9790 0.7744 0.8094
1.0× 10−10 0.9957 0.8791 0.8171 0.9896 0.7935 0.7450 0.9789 0.7755 0.8095
1.0× 10−8 0.9956 0.8801 0.8205 0.9895 0.7963 0.7428 0.9789 0.7736 0.8137
1.0× 10−6 0.9957 0.8853 0.8232 0.9895 0.7981 0.7408 0.9789 0.7749 0.8204
1.0× 10−4 0.9955 0.9019 0.8345 0.9893 0.8031 0.7640 0.9786 0.7989 0.8438

3.0 0 0.9958 0.8793 0.8237 0.9898 0.7881 0.7453 0.9793 0.7730 0.8125
1.0× 10−10 0.9958 0.8790 0.8181 0.9896 0.7926 0.7442 0.9792 0.7745 0.8113
1.0× 10−8 0.9958 0.8799 0.8235 0.9898 0.7962 0.7413 0.9792 0.7705 0.8153
1.0× 10−6 0.9959 0.8861 0.8230 0.9897 0.7965 0.7437 0.9792 0.7780 0.8203
1.0× 10−4 0.9956 0.8975 0.8370 0.9897 0.8028 0.7627 0.9791 0.7954 0.8466

4.0 0 0.9959 0.8786 0.8213 0.9898 0.7928 0.7422 0.9794 0.7707 0.8112
1.0× 10−10 0.9959 0.8790 0.8239 0.9898 0.7882 0.7454 0.9793 0.7717 0.8117
1.0× 10−8 0.9959 0.8805 0.8218 0.9898 0.7957 0.7431 0.9795 0.7736 0.8162
1.0× 10−6 0.9958 0.8876 0.8268 0.9898 0.7965 0.7420 0.9794 0.7814 0.8211
1.0× 10−4 0.9956 0.8998 0.8348 0.9897 0.7994 0.7613 0.9790 0.7936 0.8464

5.0 0 0.9959 0.8791 0.8236 0.9898 0.7937 0.7454 0.9794 0.7710 0.8120
1.0× 10−10 0.9959 0.8791 0.8226 0.9898 0.7891 0.7423 0.9795 0.7750 0.8124
1.0× 10−8 0.9960 0.8803 0.8218 0.9898 0.7961 0.7421 0.9793 0.7705 0.8160
1.0× 10−6 0.9959 0.8874 0.8252 0.9898 0.7965 0.7421 0.9794 0.7825 0.8214
1.0× 10−4 0.9956 0.8983 0.8341 0.9895 0.7976 0.7607 0.9790 0.7934 0.8477

The first column, θ, is the penalty factor on the negative class. The second column, λ, is the regularization parameter. Column 3–5, 6–8, 9–11 show the AUPRC results of training,
in-sample test, and out-of-sample test, for 2013, 2014, 2015, respectively.
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Figure 1. Area under the Precision–Recall curve (AUPRC), accuracy, precision, and recall results of
training, in-sample test, and out-of-sample test for 2013.
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Figure 2. AUPRC, accuracy, precision, and recall results of training, in-sample test, and out-of-sample
test for 2014.
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Figure 3. AUPRC, accuracy, precision, and recall results of training, in-sample test, and out-of-sample
test for 2015.

6. Discussion

The objective of this paper was to provide a method for investors in the P2PL marketplace to
perform default prediction, where there exists a high-level of information asymmetry. We considered
LendingClub since the availability of historical data. Since investors in P2PL are mostly individuals
and small businesses. When involved in P2PL marketplace, investors are frequently adversely affected
by the information asymmetry. Additionally, not every investor has a solid background in investment
or quantitative finance. This makes a relatively easy and straightforward model needed.

We propose an L1/2-regularized weighted logistic model. Via only adjusting the penalty factor θ

and the regularization parameter λ, investors can find a trade-off between the risk of losing principal
and that of losing potential investment opportunities according to their own risk preferences and
lessen the chance of, or amount of, overfitting in the meantime.

Numerical experiment shows that a higher regularization parameter yields better out-of-sample
AUPRC and investors that are more risk-averse could lower the risk of losing principal at the cost of
potential investment opportunities by increasing the penalty factor on the negative class according
to their own risk preferences. This default prediction could help investors protect their profits and
principle in the disadvantage of information asymmetry.

7. Limitations and Further Research

Since we solve the proposed model with an iterative algorithm, it has the shortcomings of longer
calculation, especially when the sample size is large. Further, high performance computing could be
applied to improve computing efficiency.
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