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Abstract: Let ST L(s) and CV L(s) denote the family of analytic and normalized functions f in the
unit disk D := {z : |z| < 1}, such that the quantity z f ′(z)/ f (z) or 1 + z f ′′(z)/ f ′(z) respectively
are lying in the region bounded by the limaçon

[
(u− 1)2 + v2 − s4]2 = 4s2

[(
u− 1 + s2)2

+ v2
]

,

where 0 < s ≤ 1/
√

2. The limaçon of Pascal is a curve that possesses properties which qualify it for
the several applications in mathematics, statistics (hypothesis testing problem) but also in mechanics
(fluid processing applications, known limaçon technology is employed to extract electrical power
from low-grade heat, etc.). In this paper we present some results concerning the behavior of f on the
classes ST L(s) or CV L(s). Some appropriate examples are given.

Keywords: univalent functions; subordination; starlike and convex functions; limaçon of Pascal

1. An Analytic Representation of a Limaçon of Pascal

A limaçon, known also as a limaçon of Pascal is a curve that in polar coordinates has the form

r = b + a cos θ, (1)

where a, b are positive real numbers and θ ∈ 〈0, 2π). This is also called the limaçon of Pascal. The word
“limaçon” comes from the Latin “limax”, meaning “snail”. Converting to Cartesian coordinates the
Equation (1) becomes (

x2 + y2 − ax
)2

= b2
(

x2 + y2
)

,

that has the following parametric form

x = (b + a cos θ) cos θ,
y = (b + a cos θ) sin θ.

If b ≥ 2a, a limaçon is convex, and if 2a > b > a has an indentation bounded by two inflection
points. If b = a, the limaçon degenerates to a cardioid. If b < a, the limaçon has an inner loop,
and when b = a/2, it is a trisectrix (but not the Maclaurin trisectrix). In Figure 1, we have plotted the
limaçon r = b + a cos θ for some different values of a and b.

An analytic description of a limaçon is given by

Ls(z) = (1 + sz)2 , (2)
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that maps the unit disk D = {z ∈ C : |z| < 1} of the complex plane C, onto a domain bounded by a
limaçon defined by

∂D(s) =

{
u + iv ∈ C :

[
(u− 1)2 + v2 − s4

]2
= 4s2

[(
u− 1 + s2

)2
+ v2

]}
,

where s ∈ 〈−1, 1〉 \ {0} (The Figure 2 shows an example of a image of D by the function Ls for
different values of s). Indeed, setting z = eiθ with 0 ≤ θ < 2π, we obtain

Ls(eiθ) =
(

1 + s eiθ
)2

= (1 + 2s cos θ + s2 cos 2θ) + i(2s sin θ + s2 sin 2θ) (3)

Let us denote u = u(θ) = <
{
Ls
(
eiθ)} and v = v(θ) = =

{
Ls
(
eiθ)}. Then

u = 1 + 2s cos θ + s2 cos 2θ, v = 2s sin θ + s2 sin 2θ (4)

Taking a parametrization

u− 1 + s2

2s
= (1 + s cos θ) cos θ,

v
2s

= (1 + s cos θ) sin θ,

we can find that the image of unit circle |z| = 1 under Ls(·) is a curve given by[
(u− 1)2 + v2 − s4

]2
= 4s2

[(
u− 1 + s2

)2
+ v2

]
,

that is the limaçon of Pascal. Furthermore, Ls is an analytic and does not have any poles in D since
s ∈ [−1, 1] \ {0}.
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Figure 1. The image of limaçon r = b+ a cos θ with b ≥ 2a, (b = 2.8, a = 1), a < b < 2a, (b = 2, a = 1.5),
b = a = 1.5 and b < a, (b = 1, a = 1.5).

It is easy to check that the real and an imaginary part of Ls(eiθ) is bounded. Then < {Ls(D} and
= {Ls(D)} attains its minimum and maximum on ∂D. Indeed, by Equation (4) we have

<
{
Ls

(
eiθ
)}

= 1− s2 + 2s cos θ + 2s2 cos2 θ =: g(θ). (5)

The extremum of g(θ) is attained at the critical points of the above function, equivalently

−2s(1 + 2s cos θ) sin θ = 0.
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which are θ = 0, θ = π and the solution of equation cos θ = −1/(2s), if |s| ≥ 1/2.
Clearly, the minimum value is when cos θ = −1/(2s) and the maximum value is when θ = 0
or θ = π. Thus,

1
2
− s2 ≤ <

{
Ls

(
eiθ
)}
≤ (1 + |s|)2 .

For |s| > 1/2 the critical points are θ = 0 and θ = π. Thus we have

(1− |s|)2 ≤ <
{
Ls

(
eiθ
)}
≤ (1 + |s|)2 .

In addition, from Equation (4) we have

=
{
Ls

(
eiθ
)}

= 2s sin θ + s2 sin 2θ =: F(θ).

Then F′(θ) = 2s(s cos2 θ + cos θ − s) = 0 if and only if

cos θ1,2 =
−1±

√
1 + 8s2

4s
,

| cos θ1| = |(−1 +
√

1 + 8s2)/(4s)| ≤ 1 for s ∈ [−1, 1] \ {0}. Using an elementary computation we can
find then that ∣∣∣={Ls

(
eiθ
)}∣∣∣ ≤

(
3 +
√

1 + 8s2
)3/2 (

−1 +
√

1 + 8s2
)1/2

8
.
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Figure 2. The image of D under Ls(z).

The above discussion can be summarized as follows (cf. Figure 3).

Theorem 1. Let Ls(·) be a function defined by Equation (6) with s ∈ [−1, 1] \ {0}. Then

max
z∈D
< {Ls(z)} = (1 + |s|)2

min
z∈D
< {Ls(z)} = m0(s) =


1
2
− s2 for |s| ≥ 1

2
,

(1− |s|)2 for 0 < |s| ≤ 1
2

.

|= {Ls (z)}| <

(
3 +
√

1 + 8s2
)3/2 (

−1 +
√

1 + 8s2
)1/2

8
for z ∈ D.
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Ls(D) = D(s) =
{

u + iv :
[
(u− 1)2 + v2 − s4

]2
< 4s2

[(
u− 1 + s2

)2
+ v2

]}
.
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Figure 3. The max and min value of < {Ls(z)} and = {Ls(z)}.

2. Definitions and Preliminaries

Let A denote the class of functions f (z) of the form:

f (z) = z +
∞

∑
n=2

anzn for z ∈ D, (6)

which are analytic in the open unit disk D := {z ∈ C : |z| < 1} in the complex plane C. The subclass
of A consisting of all univalent functions f in D, is denoted by S . A functions f ∈ S is said to belong
to the class ST (β), called starlike functions of order 0 ≤ β < 1, if < {z f ′(z)/ f (z)} > β, and is said to
belong to the class CV(β), called convex functions of order 0 ≤ β < 1, if <{1 + z f ′′(z)/ f ′(z)} > β [1].

The special cases occur for β = 0, and then we get the classical classes of starlike and
convex univalent functions, denoted ST := ST (0) and CV := CV(0), respectively. Let f and g
be analytic in D. Then the function f is said to subordinate to g in D written by f (z) ≺ g(z), if there
exists a self-map function ω(z) which is analytic in D with ω(0) = 0 and |ω(z)| < 1; (z ∈ D),
and such that f (z) = g(ω(z)); (z ∈ D). If g is univalent in D, then f ≺ g if and only if f (0) = g(0)
and f (D) ⊂ g(D) [2].

Let the classes G and N be defined by

G :=
{

f ∈ A : <
{

1 +
z f ′′(z)
f ′(z)

}
> −1

2
for z ∈ D

}
and

N :=
{

f ∈ A : <
{

z f ′(z)
f (z)

}
> −1

2
for z ∈ D

}
,

respectively. Then, it follows from [3] G and N are the families of univalent function, convex and
starlike in one direction, respectively.

Let P∗ be the class of analytic univalent function ψ with positive real part in D, ψ′(0) > 0 and
ψ(D) with respect to ψ(0) = 1 and symmetric with respect to real axis. Ma and Minda [4] gave a
unified representation of different subclasses of starlike and convex functions using subordination
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to some function ψ ∈ P∗. The superordinate function ψ is assumed to be univalent. In this way the
classes ST (ψ) and CV(ψ) has been defined

z f ′(z)
f (z)

≺ ψ(z), 1 +
z f ′′(z)
f ′(z)

≺ ψ(z) for ψ ∈ P∗, z ∈ D. (7)

Specialization of the function ψ leads to a number of well-known function classes. For instance,
ψ(z) = (1 + z)/(1 − z) ST and CV . ψ(z) = (1 + (1 − 2β)z)/(1 − z) yields ST (β) and CV(β).
For various choices of ψ and a detailed discussion about classes we refer to the papers [5–9].

Definition 1 ([10]). Let ψ : C2 ×D→ C and the function h(z) be univalent in D. If the function p is analytic
in D and satisfies the following first-order differential subordination

ψ(p(z), zp′(z); z) ≺ h(z) for z ∈ D, (8)

then p(z) is called a solution of the differential subordination.
A function q ∈ A is said to be a dominant of the differential subordination Equation (8) if p ≺ q for all p

satisfying Equation (8). An univalent dominant that satisfies q̃ ≺ q for all dominants q of Equation (8), is said
to be best dominant of the differential subordination.

Lemma 1 ([10]). Let q be univalent in D, and let Φ be analytic in a domain D containing q(D).
If zq′(z)Φ(q(z)) is starlike, then

zp′(z)Φ(p(z)) ≺ zq′(z)Φ(q(z)) =⇒ p(z) ≺ q(z) for z ∈ D

and q is the best dominant.

This paper aims to investigate the geometric properties of functions in the classes ST L(s) and
CV L(s). In addition, we necessary and sufficient conditions for certain particular members of A to be
in the classes ST L(s) and CV L(s).

3. The Classes ST L(s) and CVL(s) and Its Properties

In the following section, we obtain certain inclusion relations and extremal functions for functions
in the classes ST L(s) and CV L(s).

Lemma 2. Let s ∈ [−1, 1] \ {0}, and Ls(z) be defined by (2). Then Ls(z) is starlike in D, moreover (Ls(z)−
1)/(2s) ∈ ST ((2− 2|s|)/(2− |s|)) and and for s ∈ [−1/2, 1/2] \ {0}, (Ls(z) − 1)/(2s) ∈ CV((1−
2|s|)/(1− |s|)). In addition, if |z| = r < 1, then

max
|z|=r
|Ls(z)| = L|s|(r) and min

|z|=r
|Ls(z)| = L|s|(−r).

Proof. A straightforward calculation shows that g ≡ (Ls − 1)/(2s) satisfies

<
{

zg′(z)
g(z)

}
= <

{
2 + 2sz
2 + sz

}
>

2− 2|s|
2− |s|

and

<
{

1 +
zg′′(z)
g′(z)

}
= <

{
1 + 2sz
1 + sz

}
>

1− 2|s|
1− |s| .

In order to prove the second part of lemma, denote for θ ∈ [0, 2π) the function

Q(θ) :=
∣∣∣Ls

(
reiθ
)∣∣∣ = 1 + s2r2 + 2sr cos θ,
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for some 0 < r < 1 and s > 0. It is easy to see that Q attains its minimum at θ = π and maximum at
θ = 0, and for s < 0 attains its minimum at θ = 0 and maximum at θ = π.

From Lemma 2 it can be seen that the smallest disk with center (1, 0) that contains Ls(z) and the
largest disk with center at (1, 0) contained in Ls(z) are the following (see Figure 4)

-1 0 1 2 3
-2

-1

0

1

2

u

v

Figure 4. The image of D under Ls(z), (1− (1− |s|)2)z + 1 and ((1 + |s|)2 − 1)z + 1 for s = 0.7.

Ls(D) ⊃
{

w ∈ C : |w− 1| < 1− (1− |s|)2} , (9)

Ls(D) ⊂
{

w ∈ C : |w− 1| < (1 + |s|)2 − 1
}

. (10)

Taking into account the properties of a function Ls given in Theorem 1 and Lemma 2, we see that
for 0 < s ≤ 1/

√
2, the function Ls ∈ P∗ (see also Figure 5). Additionally, those properties allow to

formulate the following definition.
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Figure 5. The image of D under Ls(z) where < {Ls(z)} > 0.

Definition 2. By P (Ls), with 0 < s ≤ 1/
√

2, we denote a class of all analytic functions p such that p(0) = 1
and p(z) ≺ Ls(z) in D, that is

P(Ls) = {p(z) = 1 + p1z + p2z2 + · · · , p(z) ≺ Ls(z), z ∈ D}.

It is clear that P (Ls) is a subfamily of the well-known Carathéodory class P = P ((1 + z)/(1− z)) of
normalized functions in D with positive real part.
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On the basis of the relationship between subclasses of the Carathéodory class and the notion of
classical starlikeness and convexity we also define the following classes.

Definition 3. Let ST L(s) denote the subfamily of A consisting of the functions f , satisfying the condition

z f ′(z)
f (z)

≺ Ls(z) for z ∈ D, 0 < s ≤ 1√
2

(11)

and let CV L(s) be a class of analytic functions f such that

1 +
z f ′′(z)
f ′(z)

≺ Ls(z) for z ∈ D, 0 < s ≤ 1√
2

. (12)

From Theorem 1, we obtain that for f ∈ ST L(s) (and f ∈ CV L(s), respectively), it holds

<
{

z f ′(z)
f (z)

}
> m0(s) for z ∈ D, 0 < s ≤ 1√

2

and

<
{

1 +
z f ′′(z)
f ′(z)

}
> m0(s) for z ∈ D, 0 < s ≤ 1√

2
,

where m0(s) is given in Theorem 1. Geometrically, the condition Equations (11) and (12) mean that the
expression z f ′(z)/ f (z) or 1 + z f ′′(z)/ f ′(z) lies in a domain bounded by the limaçon ∂D(s). Since a
domain Ls(D) is contained in a right half-plane, we deduce that ST L(s) (CV L(s), resp.) is a proper
subset of a starlike functions ST (convex function CV , resp.). Further properties of Ls(D) yield:

ST L(s) ⊂ ST (γ), CV L(s) ⊂ CV(γ) with 0 ≤ γ ≤ m0(s).

Additionally,

(Ls(z)− 1)/(2s) ∈
{
G for 0 < s ≤ 3

5 ,
N for 0 < s ≤ 1.

ST L(s) ⊂ N , CV L(s) ⊂ G.

For a function g ∈ A, we have the equivalence: g ∈ ST L(s) if and only if zg′(z)/g(z) ≺ Ls(z).
This gives the structural formula for functions in ST L(s). A function g is in the class ST L(s) if and
only if there exists an analytic function p ∈ P (Ls), such that

g(z) = z exp
(∫ z

0

p(t)− 1
t

dt
)

for some p with p ≺ Ls.

This integral representation supply many examples of functions in class ST L(s). For n =

1, 2, 3, . . ., we define the functions Ψs,n(z) in ST L(s) by the relation

zΨ′s,n(z)
Ψs,n(z)

= Ls(zn),

namely,

Ψs,n(z) = z exp
(∫ z

0

Ls(tn)− 1
t

dt
)
= z exp

(
2s
n

zn +
s2

2n
z2n
)

(13)

= z +
2s
n

zn+1 +
(n + 4)s2

2n2 z2n+1 + · · · .

These functions are extremal for several problems in the class ST L(s) (see Figure 6).
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Figure 6. The image of D under Ψs,n for s = 1/
√

2, n = 5, 9.

For instance, we have

Ψs(z) := Ψs,1(z) = z exp
(

2sz +
s2

2
z2
)
= z + 2sz2 +

5
2

s2z3 + · · · . (14)

For a function h ∈ A, we have the equivalence: h ∈ CV L(s) if and only if zh′′(z)/h′(z) ≺ Ls(z).
This gives the structural formula for functions in CV L(s). A function h is in the class CV L(s) if and
only if there exists an analytic function p with p ∈ P (Ls), such that

h(z) =
∫ z

0
exp

(∫ w

0

p(t)− 1
t

dt
)

dw.

This above integral representation supply many examples of functions in class CV L(s). Let p(z) =
Ls(zn) ∈ CV L(s), then the functions (see Figure 7)

Ks,n(z) =
∫ z

0
exp

(
2s
n

tn +
s2

2n
t2n
)

dt = z +
2s

n(n + 1)
zn+1 + · · · , (15)

for some n ≥ 1 are extremal functions for several problems in the class CV L(s). For n = 1 we have

Ks(z) := Ks,1(z) =
∫ z

0
exp

(
2st +

s2

2
t2
)

dt = z + sz2 + · · · . (16)
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Figure 7. The image of D under Ks,n for s = 1/
√

2, n = 5, 9.
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From Equation (9), a function f ∈ A is in ST L(s) if and only if∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ < L0 ≤ 1− (1− s)2 for z ∈ D. (17)

Thus we have the following result.

Proposition 1. Let 0 < s ≤ 1/
√

2. The classes ST L(s) and CV L(s) are nonempty. The following functions
are the examples of their members.

1. Let an ∈ C with n = 2, 3, . . .. Then f (z) = z + anzn ∈ ST L(s)⇐⇒ |an| ≤ 1−(1−s)2

n−(1−s)2 .

2. Let an ∈ C with n = 2, 3, . . .. Then f (z) = z + anzn ∈ CV L(s)⇐⇒ n |an| ≤ 1−(1−s)2

n−(1−s)2 .

3. Let A ∈ C. Then z/(1− Az)2 ∈ ST L(s)⇐⇒ |A| ≤ 1−(1−s)2

1+(1−s)2 .

4. Let A ∈ C. Then z/(1− Az) ∈ CV L(s)⇐⇒ |A| ≤ 1−(1−s)2

1+(1−s)2 .

5. Let A ∈ C. Then z/(1− Az) ∈ ST L(s)⇐⇒ |A| ≤ 1+(1−s)2

2+(1−s)2 .

6. Let A ∈ C. Then − ln(1−Az)
A ∈ CV L(s)⇐⇒ 0 < |A| ≤ 1+(1−s)2

2+(1−s)2 .

7. Let A ∈ C. Then z exp(Az) ∈ ST L(s)⇐⇒ |A| ≤ 1− (1− s)2.

8. Let A ∈ C. Then exp(Az)−1
A ∈ CV L(s)⇐⇒ 0 < |A| ≤ 1− (1− s)2.

Proof. The function f (z) = z + anzn is univalent, if and only if |an| ≤ 1/n. Logarithmic differentiation
of a non-zero univalent function f (z)/z in D yields:

z f ′(z)
f (z)

− 1 =
(n− 1)anzn−1

1 + anzn−1 for z ∈ D.

Thus ∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ = ∣∣∣∣ (n− 1)anzn−1

1 + anzn−1

∣∣∣∣ < (n− 1)|an|
1− |an|

for z ∈ D.

From Equation (17), the function z + anzn is in ST L(s) if and only if

(n− 1)|an|
1− |an|

≤ 1− (1− s)2.

Thus the case (1) is obtained. The second type obtained of the former and the fact that f ∈
CV L(s) if and only if z f ′ ∈ ST L(s). The argumentation of the other cases is similar to arguments (1)
and (2).

The following corollary is the consequence of Lemma 2, and Theorems in [4].

Corollary 1. If f ∈ ST L(s) and |z| = r < 1, then

1. −Ψs(−r) ≤ | f (z)| ≤ Ψs(r),
2. Ψ′s(−r) ≤ | f ′(z)| ≤ Ψ′s(r),
3. |Arg{ f (z)/z}| ≤ 2sr + (s2r2)/2

Equality holds at a given point other than 0 for functions µΨs(µz) with |µ| = 1.
4. f (z)/z ≺ Ψs(z)/z (z ∈ D) ,
5. If f ∈ ST L(s), then either f is a rotation of Ψs given by Equation (14) or

{
w ∈ C : |w| ≤ −Ψs(−1)

= exp(s2/2− 2s)
}
⊂ f (D), where −Ψs(−1) = limr→1+ −Ψs(−r).

Corollary 2. If f ∈ CV L(s) and |z| = r < 1, then
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1. −Ks(−r) ≤ | f (z)| ≤ Ks(r),
2. K′s(−r) ≤ | f ′(z)| ≤ K′s(r),
3. |Arg{ f ′(z)}| ≤ 2sr + (s2r2)/2,

Equality holds at a given point other than 0 for functions µKs(µz) with |µ| = 1.
4. f ′(z) ≺ K′s(z) (z ∈ D) ,
5. If f ∈ CV L(s), then either f is a rotation of Ks given by Equation (16) or

{
w ∈ C : |w| ≤ −Ks(−1)

}
⊂

f (D), where −Ks(−1) = limr→1+ −Ks(−r).

Theorem 2. Let p be an analytic function in D with p(0) = 1. Then for z ∈ D

zp′(z)
p(z)

≺ zL′s(z)
Ls(z)

=⇒ p ∈ P(Ls) for 0 < s ≤ 1√
2

(18)

and Ls is the best dominant.

Proof. If we take Φ(z) = 1/z and q ≡ Ls, then for 0 < s ≤ 1/
√

2, the domain Φ(D) containing Ls(D)
and by Lemma 2

zq′(z)Φ(q(z)) =
zL′s(z)
Ls(z)

=
2sz

1 + sz

is starlike. Therefore, by Lemma 1 we deduce the assertion.

If we take p(z) = z f ′(z)/ f (z), p(z) = f (z)/z, p(z) = z/ f (z) and p(z) = f ′(z) in Theorem 1 we
obtain the following results.

Corollary 3. Let f ∈ A and 0 < s ≤ 1/
√

2. Then

1 + z f ′′(z)
f ′(z) −

z f ′(z)
f (z) ≺

2sz
1+sz =⇒ f ∈ ST L(s),

z f ′(z)
f (z) ≺

1+3sz
1+sz =⇒ f (z)/z ∈ P(Ls),

z f ′(z)
f (z) ≺

1−sz
1+sz =⇒ z/ f (z) ∈ P(Ls),

1 + z f ′′(z)
f ′(z) ≺

1+3sz
1+sz =⇒ f ′ ∈ P(Ls).

Theorem 3. Let p be an analytic function in D with p(0) = 1. Then for z ∈ D

zp′(z) ≺ zL′s(z) =⇒ p ∈ P(Ls) for 0 < s ≤ 1
2

(19)

and Ls is the best dominant.

Proof. If we take Φ ≡ 1 and q ≡ Ls, then the domain Φ(D) containing Ls(D) and by Lemma 2

zq′(z)Φ(q(z)) = zL′s(z) = 2sz(1 + sz) for 0 < s ≤ 1
2

is starlike. Therefore, by Lemma 1 we deduce the Theorem.

If we take p(z) = f ′(z) in Theorem 3 we obtain the following result.

Corollary 4. Let f ∈ A and 0 < s ≤ 1/2. Then

z f ′′(z) ≺ 2sz(1 + sz) =⇒ f ′ ∈ P(Ls).
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4. Conclusions

The paper presents exhaustive characteristics of the curve called limaçon of Pascal, taking into
account various parameters. Families of convex and starlike functions associated with the limaçon
of Pascal, for which standard functionals are located in the domains bounded by the limaçon curve.
Examples and properties of extremal functions in defined families were also presented.
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