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Abstract: A plethora of higher order iterative methods, involving derivatives in algorithms,
are available in the literature for finding multiple roots. Contrary to this fact, the higher order methods
without derivatives in the iteration are difficult to construct, and hence, such methods are almost
non-existent. This motivated us to explore a derivative-free iterative scheme with optimal fourth
order convergence. The applicability of the new scheme is shown by testing on different functions,
which illustrates the excellent convergence. Moreover, the comparison of the performance shows that
the new technique is a good competitor to existing optimal fourth order Newton-like techniques.
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1. Introduction

Approximating the solution of nonlinear equations by iterative methods is an important problem in
numerical analysis and applied sciences [1–3]. In this study, we aim to explore derivative-free iterative
methods for finding a multiple root α of equation Φ(u) = 0 with multiplicity m, i.e., Φ(j)(α) = 0,
j = 0, 1, 2, . . . , m− 1 and Φ(m)(α) 6= 0.

Numerous higher order methods, either independent or based on the modified Newton’s method [4]:

uk+1 = uk −m
Φ(uk)

Φ′(uk)
, (1)

have been studied in the literature (see, for example, [5–17]). Such techniques require the information
of either first order derivatives or both first and second order derivatives. On the contrary, higher order
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derivative-free methods to handle the case of multiple zeros are seldom explored in the literature.
These methods are important in cases where the derivative Φ′ of Φ is expensive to compute. One such
method is the Traub–Steffensen iteration [18], which uses:

Φ′(uk) '
Φ(uk + βΦ(uk))−Φ(uk)

βΦ(uk)
, β ∈ R− {0},

or
Φ′(uk) ' Φ[vk, uk],

for the derivative Φ′ in Newton Formula (1). Here, vk = uk + βΦ(uk) and Φ[vk, uk] =
Φ(vk)−Φ(uk)

vk−uk
is the first order divided difference. Then, the Newton method (1) takes the form of the modified
Traub–Steffensen scheme:

uk+1 = uk −m
Φ(uk)

Φ[vk, uk]
. (2)

Very recently, Kumar et al. [19] and Sharma et al. in [20,21] proposed one-point, two-point,
and three-point derivative-free methods with second, fourth, and eighth order convergence,
respectively, to compute the multiple zeros. The number of function evaluations corresponding to
second, fourth, and eighth order methods is two, three, and four, and so, as per the Kung–Traub
hypothesis, these methods possess optimal convergence [22]. The main goal of this work is
to construct derivative-free multiple root numerical methods of good computational efficiency,
which means the iterative methods of high convergence order with the minimum number of function
evaluations. This leads us to develop a two-step derivative-free scheme with fourth order convergence.
The proposed scheme consumes only three function evaluations per full iteration, and hence, it is
optimal in the sense of the Kung–Traub hypothesis [22]. The procedure is based on the classical
Traub–Steffensen iteration (2) in the first step and the Traub–Steffensen-type iteration in the second step.

2. Development of the Scheme

In what follows, we develop an iterative scheme to compute a multiple root of equation Φ(u) = 0
with multiplicity m > 1. Let us consider the following two-step scheme based on (2):

wk = uk −m
Φ(uk)

Φ[vk, uk]
,

uk+1 = wk −
sk

α1 + α2sk

Φ(uk)

α3Φ[vk, uk] + α4Φ[wk, vk]
, (3)

where α1, α2, α3, α4 are unknown parameters and sk = m
√

Φ(wk)
Φ(uk)

. Observe that this scheme uses the
first step as the Traub–Steffensen iteration (2) and the next step as the Traub–Steffensen-like iteration.

We consider principal analytic branches of sk since it is a one-to-m multi-valued function.
Hence, it is convenient to treat it as the principal root. For example, the principal root is given by
sk = exp

[ 1
m Log

(Φ(wk)
Φ(uk)

)]
, with Log

(Φ(wk)
Φ(uk)

)
= Log

∣∣Φ(wk)
Φ(uk)

∣∣+ i Arg
(Φ(wk)

Φ(uk)

)
for −π < Arg

(Φ(wk)
Φ(uk)

)
≤ π;

this convention of Arg(p) for p ∈ C agrees with that of the Log[p] command of Mathematica [23] to be
employed later in the sections of basins of attraction and numerical experiments.

For the sake of clarity, we prove the results separately for different cases depending on the
multiplicity m. Firstly, we consider the case m = 2 and prove the following result:

Theorem 1. Let the mapping f : C→ C be analytic in a domain containing a multiple zero (say, α) having
multiplicity m = 2. Suppose that the starter u0 is sufficiently close to α, then the formula (3) has the convergence
order four, provided that α1 = 1

4α3
, α2 = − 1

2α3
, and α4 = 2α3.
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Proof. Let the error at the kth iteration be σk = uk− α. Developing Φ(uk) about α by Taylor’s expansion
and taking into account that Φ(α) = 0, Φ′(α) = 0 and Φ(2)(α) 6= 0, we obtain:

Φ(uk) =
Φ(2)(α)

2!
σ2

k
(
1 + N1σk + N2σ2

k + N3σ3
k + N4σ4

k + · · ·
)
, (4)

where Nn = 2!
(2+n)!

Φ(2+n)(α)

Φ(2)(α)
for n ∈ N.

Furthermore, Taylor’s expansion of Φ(vk) about α yields:

Φ(vk) =
Φ(2)(α)

2!
σ2

vk

(
1 + N1σvk + N2σ2

vk
+ N3σ3

vk
+ N4σ4

vk
+ · · ·

)
, (5)

where σvk = vk − α = σk +
βΦ(2)(α)

2! σ2
k
(
1 + N1σk + N2σ2

k + N3σ3
k + · · ·

)
.

Then, the first step of (3) yields:

σwk = wk − α

=
1
2

( βΦ(2)(α)

2
+ N1

)
σ2

k −
1

16
(
(βΦ(2)(α))2 − 8βΦ(2)(α)N1 + 12N2

1 − 16N2
)
σ3

k + O(σ4
k ). (6)

Expanding Φ(wk) about α, it follows that:

Φ(wk) =
f (2)(α)

2!
σ2

wk

(
1 + N1σwk + N2σ2

wk
+ N3σ3

wk
+ · · ·

)
. (7)

Using (4) and (7), we have:

sk =
1
2

( βΦ(2)(α)

2
+ N1

)
σk −

1
16
(
(βΦ(2)(α))2 − 6βΦ(2)(α)N1 + 16(N2

1 − N2)
)
σ2

k +
1

64
(
(βΦ(2)(α))3

− 22βΦ(2)(α)N2
1 + 4

(
29N3

1 + 14βΦ(2)(α)N2
)
− 2N1

(
3(βΦ(2)(α))2 + 104N2

)
+ 96N3

)
σ3

k + O(σ4
k ). (8)

Using (4)–(8) in the second step of (3), then some simple calculations yield:

σk+1 =
(α1(2α3 + α4)− 1)

2α1(2α3 + α4)

( βΦ(2)(α)

2
+ N1

)
σ2

k +
1

16α2
1(2α3 + α4)2

(
(βΦ(2)(α))2(4α1(α3 + α4) + α2(2α3 + α4)

− α2
1(2α3 + α4)

2) + 2βΦ(2)(α)(α1(−2α3 + α4) + 2α2(2α3 + α4) + 4α2
1(2α3 + α4)

2)N1 + 4(2α3 + α4)

× (5α1 + α2 − 3α2
1(2α3 + α4))N2

1 + 16α1(2α3 + α4)(α1(2α3 + α4)− 1)N2

)
σ3

k + ψσ4
k + O(σ5

k ), (9)

where ψ = ψ(β, α1, α2, α3, α4, N1, N2, N3).
We can obtain at least fourth order convergence by setting the coefficients of σ2

k and σ3
k

simultaneously equal to zero. The resulting equations imply that:

α1 =
1

4α3
, α2 = − 1

2α3
, α4 = 2α3. (10)

Consequently, the above error equation reduces to:

σk+1 = − 1
64

( βΦ(2)(α)

2
+ N1

)(
5(βΦ(2)(α))2 + 16βΦ(2)(α)N1 − 8N2

1 + 16N2
)
σ4

k + O(σ5
k ).

This establishes the fourth order convergence.

Theorem 2. Using the assumptions of Theorem 1, the convergence order of Scheme (3) for the case m = 3 is at
least four, if α1 = 1

3α3+α4
and α2 = − 2

3α3+α4
.
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Proof. Taking into account that Φ(α) = 0, Φ′(α) = 0, Φ
′′
(α) = 0 and Φ(3)(α) 6= 0, the Taylor series

development of Φ(uk) about α gives:

Φ(uk) =
Φ(3)(α)

3!
σ3

k
(
1 + P1σk + P2σ2

k + P3σ3
k + P4σ4

k + · · ·
)
, (11)

where Pn = 3!
(3+n)!

Φ(3+n)(α)

Φ(3)(α)
for n ∈ N.

Similarly, the expansion of Φ(vk) about α yields:

Φ(vk) =
Φ(3)(α)

3!
σ3

vk

(
1 + P1σvk + P2σ2

vk
+ P3σ3

vk
+ P4σ4

vk
+ · · ·

)
, (12)

where σvk = vk − α = σk +
βΦ(3)(α)

3! σ3
k
(
1 + P1σk + P2σ2

k + P3σ3
k + P4σ4

k + · · ·
)
.

Then, using (11) and (12) in the first step of (3), we obtain:

σwk = wk − α

=
P1
3

σ2
k +

1
18
(
3βΦ(3)(α)− 8P2

1 + 12P2
)
σ3

k +
1
27
(
16P3

1 + 3P1
(
2βΦ(3)(α)− 13P2

)
+ 27P3

)
σ4

k + O(σ5
k ). (13)

The expansion of Φ(wk) about α is:

Φ(wk) =
Φ(3)(α)

3!
σ3

wk

(
1 + P1σwk + P2σ2

wk
+ P3σ3

wk
+ P4σ4

wk
+ · · ·

)
. (14)

Then, from (11) and (14), we have:

sk =
P1
3

σk +
1
18
(
3βΦ(3)(α)− 10P2

1 + 12P2
)
σ2

k +
1
27

(
23P3

1 +
3
2

P1
(
3Φ(3)(α)β− 32P2

)
+ 27P3

)
σ3

k + O(σ4
k ). (15)

Using (11)–(15) in the last step of (3), we have:

σk+1 =
1
3

(
1− 1

3α1α3 + α1α4

)
P1σ2

k +
1

18α2
1(3α3 + α4)

(
2(6α1 + α2 − 4α2

1(3α3 + α4))P2
1

+ 3α1(−1 + α1(3α3 + α4))(βΦ(3)(α) + 4P2)
)

σ3
k + ϕσ4

k + O(σ5
k ), (16)

where ϕ = ϕ(β, α1, α2, α3, α4, P1, P2, P3).
It is clear that the fourth order convergence is achieved if we set the coefficients of σ2

k and σ3
k equal

to zero. Then, some simple calculations yield:

α1 =
1

3α3 + α4
, α2 = − 2

3α3 + α4
. (17)

Now, the error Equation (16) is given by:

σk+1 =
P1

54(3α3 + α4)

(
4(3α3 + α4)P2

1 − 3(βΦ(3)(α)(3α3 − α4) + 2(3α3 + α4)P2)
)
σ4

k + O(σ5
k ).

Therefore, the theorem is established.

We state the following theorems for the cases m = 4, 5, 6 (without proof).
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Theorem 3. Using the conditions of Theorem 1, the order of convergence of Formula (3) when m = 4 is at least
four, if α1 = 1

4α3+α4
and α2 = − 2

4α3+α4
. Moreover, the scheme satisfies the error equation:

σk+1 =
1

128
(5Q3

1 − 8Q1Q2)σ
4
k + O(σ5

k ),

where Qn = 4!
(4+n)!

Φ(4+n)(α)

Φ(4)(α)
for n ∈ N.

Theorem 4. Using the conditions of Theorem 1, the order of convergence of Formula (3) when m = 5 is at least
four, if α1 = 1

5α3+α4
and α2 = − 2

5α3+α4
. Moreover, the scheme satisfies the error equation:

σk+1 =
1

125
(3R3

1 − 5R1R2)σ
4
k + O(σ5

k ),

where Rn = 5!
(5+n)!

Φ(5+n)(α)

Φ(5)(α)
for n ∈ N.

Theorem 5. Using the conditions of Theorem 1, the order of convergence of Formula (3) when m = 6 is at least
four, if α1 = 1

6α3+α4
and α2 = − 2

6α3+α4
. Moreover, the scheme satisfies the error equation:

σk+1 =
1

432
(7S3

1 − 12S1S2)σ
4
k + O(σ5

k ),

where Sn = 6!
(6+n)!

Φ(6+n)(α)

Φ(6)(α)
for n ∈ N.

Remark 1. Observing the error equation of each of the above cases, we see that the parameter β does not appear
in the equations for m = 4, 5, 6. This leads to the notion: when m ≥ 4, the error equation in each such case
would not contain the β term. We shall prove this fact in the next section.

3. Generalization of the Method

Based on the previous ideas for the case m ≥ 4, we prove the fourth order convergence of Formula (3)
by the following theorem:

Theorem 6. Using the conditions of Theorem 1, the order of convergence of Formula (3) for the case m ≥ 4
is at least four, if α1 = 1

mα3+α4
, α2 = − 2

mα3+α4
, α4 6= −mα3. Moreover, the error equation in the scheme is

given by:

σk+1 =
1

2m3 ((1 + m)T3
1 − 2mT1T2)σ

4
k + O(σ5

k ),

where Tn = m!
(m+n)!

Φ(m+n)(α)

Φ(m)(α)
for n ∈ N.

Proof. Taking into account that Φ(j)(α) = 0, j = 0, 1, 2, ..., m− 1 and Φm(α) 6= 0, then Taylor’s series of
Φ(uk) about α is:

Φ(uk) =
Φm(α)

m!
σm

k
(
1 + T1σk + T2σ2

k + T3σ3
k + T4σ4

k + · · ·
)
. (18)

Similarly, the expansion of Φ(vk) about α is:

Φ(vk) =
Φm(α)

m!
σm

vk

(
1 + T1σvk + T2σ2

vk
+ T3σ3

vk
+ T4σ4

vk
+ · · ·

)
, (19)

where σvk = vk − α = σk +
βΦm(α)

m! σm
k
(
1 + T1σk + T2σ2

k + T3σ3
k + · · ·

)
.
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From the first step of Equation (3):

σwk = wk − α

=
T1
m

σ2
k +

1
m2

(
2mT2 − (1 + m)T2

1
)
σ3

k +
1

m3

(
(1 + m)2T3

1 −m(4 + 3m)T1T2 + 3m2T3
)
σ4

k + O(σ5
k ). (20)

The expansion of Φ(wk) around α yields:

Φ(wk) =
Φm(α)

m!
σm

wk

(
1 + T1σwk + T2σ2

wk
+ T3σ3

wk
+ T4σ4

wk
+ · · ·

)
. (21)

Using (18) and (21) in the expressions of sk, we have that:

sk =
T1
m

σk +
1

m2

(
2mT2− (2+ m)T2

1
)
σ2

k +
1

2m3

(
(7+ 7m + 2m2)T3

1 − 2m(7+ 3m)T1T2 + 6m2T3
)
σ3

k +O(σ4
k ). (22)

Inserting (18)–(22) in the second step of (3), then we have:

σk+1 =
1
m

(
1− 1

mα1α3 + α1α4

)
T1σ2

k +
1

m2α2
1(mα3 + α4)

(
((m + 3)α1 + α2 − (m + 1)α2

1(mα3 + α4))T2
1

+ 2mα1(−1 + α1(mα3 + α4))T2
)
σ3

k + φnσ4
k + O(σ5

k ), (23)

where φ = φ(m, α1, α2, α3, α4, T1, T2, T3).
Make the coefficients of σ2

k and σ3
k simultaneously equal to zero to obtain fourth order convergence.

The resulting equations yield:

α1 =
1

mα3 + α4
α2 = − 2

mα3 + α4
, α4 6= −mα3. (24)

As a result, the error equation is given by:

σk+1 =
1

2m3 ((1 + m)T3
1 − 2mT1T2)σ

4
k + O(σ5

k ). (25)

Thus, the theorem is proven.

Remark 2. The new scheme (3) attains the convergence rate of order four using the conditions of Theorems 1, 2,
and 6. This rate is achieved by utilizing only three functional evaluations viz. Φ(uk), Φ(vk), and Φ(wk) per
iteration. Therefore, the scheme (3) is optimal by the Kung–Traub hypothesis [22].

Remark 3. The parameter β used in the expression of vk appears only in the error expressions of the cases
m = 2, 3 and not for m ≥ 4 (see Equation (25)). However, for the case m ≥ 4, we have seen that this parameter
is included in the coefficient of σ5

k and in the higher order terms. These terms are lengthy to evaluate in general.
Moreover, we do not need these in order to show the desired fourth order convergence.

Remark 4. For future reference, the proposed method (3) is written as:

wk = uk −m
Φ(uk)

Φ[vk, uk]
,

uk+1 = wk −
(m + 2)sk

1− 2sk

Φ(uk)

Φ[vk, uk] + 2Φ[wk, vk]
, (26)

wherein we have considered α4 = 2α3. This iterative scheme satisfies the common conditions of Theorems 1, 2,
and 6.
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4. Basins of Attraction

Our point here is to analyze the new technique by a geometrical tool, namely the basins of
attraction of the zeros of a polynomial function P(z) in the Argand plane. The examination of the
basins of attraction of roots by the iterative scheme gives a significant idea about the convergence of
the scheme. This thought was presented in [24–31]. In order to assess the basins, we take 10−3 as the
stopping condition for convergence, but to a maximum of 25 iterations. If this tolerance is not achieved
in the required iterations, the procedure is dismissed with the result showing the divergence of the
iteration function starting from z0. While drawing the basins, the following criterion is adopted: a color
is allotted to every initial guess z0 in the attraction basin of a zero. If the iterative formula beginning
at the point z0 converges, then it forms the basins of attraction with that assigned color, and if the
formula fails to converge in the required number of iterations, then it is painted with black color.

We discuss the basins of attraction by applying the method (26) (choosing β = 10−2, 10−4, 10−6)
on the following two polynomials:

Problem 1. In this example, we consider the polynomial P1(z) = (z2 + 5z + 6)2, which has zeros {−3,−2}
with multiplicity two. For this situation, we utilize a square shape D ∈ C of size [−4, 4]× [−4, 4] and allot the
shading of yellow and blue to each underlying point in the attraction basin of zero “−2” and “−3”. The basins
obtained for the method appear in Figure 1 for the parameter values β = 10−2, 10−4, 10−6. Observing the
behavior of Method (3), we see that the basins become more qualitative as parameter β accepts small values.

Problem 2. Let us take the polynomial P2(z) = (z2 − 1
z + 2)3 having zeros {−0.226± 1.467i, 0.453} with

multiplicity three. To see the dynamical view, we consider a square D = [−4, 4]× [−4, 4] ∈ C with shades
of orange, yellow, and blue to each underlying point in the basins of attraction of zero “−0.226− 1.467i”,

“−0.226− 1.467i”, and “−0.453”. Basins for proposed method (3) appear in Figure 2 corresponding to parameter
values β = 10−2, 10−4, 10−6. Analyzing the shape of the basins, we see that the basins become enlarged with
smaller values of parameter β.

It is clear that the attraction basins show the convergence behavior and suitability of an iterative
scheme relying on the conditions. In the event that we pick a starter z0 in a zone where different basins
of attraction meet one another, it is difficult to foresee which root will be attained by the method that
starts in z0. Thus, the selection of z0 in such a zone is not a wise decision. The graphics show that the
dark zones and the zones with various hues are not appropriate to speculate about z0 when we need
to accomplish a specific root. The most alluring pictures show up when we have extremely perplexing
wildernesses between basins of attraction. We close this segment with a comment that the nature of the
proposed technique relies on the estimation of parameter β. The smaller the estimation of β, the better
the convergence of the method.

-4. -2. 0. 2. 4.

4.

2.

0.

-2.

β = 10−2
-4. -2. 0. 2. 4.

4.

2.

0.

-2.

-4.

β = 10−4
-4. -2. 0. 2. 4.

4.

2.

0.

-2.

-

β = 10−6

Figure 1. Basins of the new method for P1(z).
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-4. -2. 0. 2. 4.

4.

2.

0.

-2.

β = 10−2
-4. -2. 0. 2. 4.

4.

2.

0.

-2.

-

β = 10−4
-4. -2. 0. 2. 4.

4.

2.

0.

-2.

-4.

β = 10−6

Figure 2. Basins of the new method for P2(z).

5. Numerical Results

In order to check the performance and validity of the theoretical results, we apply the new method
(NM) to solve some nonlinear problems. The theoretical fourth order of convergence is verified by
using the formula of the approximate computational order of convergence (ACOC; see [32]):

ACOC =
ln |(uk+1 − uk)/(uk − uk−1)|

ln |(uk − uk−1)/(uk−1 − uk−2)|
, for each k = 1, 2, . . . (27)

The performance of NM is compared with some existing well-known optimal fourth
order methods with and without derivative evaluations. For example, we consider the
methods by Li-Liao-Cheng [8], Li-Cheng-Neta [7], Sharma-Sharma [9], Zhou-Chen-Song [10],
Soleymani-Babajee-Lotfi [12], Kansal-Kanwar-Bhatia [15], and Sharma-Kumar-Jäntschi [20]. The methods
are expressed as follows:

Li-Liao-Cheng method (LM-1):

wk = uk −
2m

m + 2
Φ(uk)

Φ′(uk)
,

uk+1 = uk −
m(m− 2)

( m
m+2

)−mΦ′(wk)−m2Φ′(uk)

Φ′(uk)−
( m

m+2
)−mΦ′(wk)

Φ(uk)

2Φ′(uk)
.

Li-Cheng-Neta method (LM-2):

wk = uk −
2m

m + 2
Φ(uk)

Φ′(uk)
,

uk+1 = uk − α1
Φ(uk)

Φ′(wk)
− Φ(uk)

α2Φ′(uk) + α3Φ′(wk)
,

where

α1 = − 1
2

( m
m+2

)mm(m4 + 4m3 − 16m− 16)
m3 − 4m + 8

,

α2 = − (m3 − 4m + 8)2

m(m4 + 4m3 − 4m2 − 16m + 16)(m2 + 2m− 4)
,

α3 =
m2(m3 − 4m + 8)( m

m+2
)m

(m4 + 4m3 − 4m2 − 16m + 16)(m2 + 2m− 4)
.
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Sharma-Sharma method (SSM):

wk = uk −
2m

m + 2
Φ(uk)

Φ′(uk)
,

uk+1 = uk −
m
8

[
(m3 − 4m + 8)− (m + 2)2

( m
m + 2

)m Φ′(uk)

Φ′(wk)

×
(

2(m− 1)− (m + 2)
( m

m + 2

)m Φ′(uk)

Φ′(wk)

)] Φ(uk)

Φ′(uk)
.

Zhou-Chen-Song method (ZM):

wk = uk −
2m

m + 2
Φ(uk)

Φ′(uk)
,

uk+1 = uk −
m
8

[
m3
(m + 2

m

)2m(Φ′(wk)

Φ′(uk)

)2
− 2m2(m + 3)

(m + 2
m

)m Φ′(wk)

Φ′(uk)

+ (m3 + 6m2 + 8m + 8)
] Φ(uk)

Φ′(uk)
.

Soleymani-Babajee-Lotfi method (SM):

wk = uk −
2m

m + 2
Φ(uk)

Φ′(uk)
,

uk+1 = uk −
Φ′(wk)Φ(uk)

q1(Φ′(wk))2 + q2Φ′(wk)Φ′(uk) + q3(Φ′(uk))2 ,

where

q1 =
1

16
m3−m(m + 2)m,

q2 =
8−m(m + 2)(m2 − 2)

8m
,

q3 =
1

16
(m− 2)mm−1(m + 2)3−m.

Kansal-Kanwar-Bhatia method (KM):

wk = uk −
2m

m + 2
Φ(uk)

Φ′(uk)
,

uk+1 = uk −
m
4

Φ(uk)

(
1 +

m4 p−2m
(

pm−1 − Φ′(wk)
Φ′(uk)

)2
(pm − 1)

8(2pm + m(pm − 1))

)

×
(4− 2m + m2(p−m − 1)

Φ′(uk)
− p−m(2pm + m(pm − 1))2

Φ′(uk)−Φ′(wk)

)
,

where p = m
m+2 .

Sharma-Kumar-Jäntschi method (SM-1):

wk = uk −
Φ(uk)

Φ[vk, uk]
,

uk+1 = wk −
(
sk + m s2

k + (m− 1)yk + m sk yk
) Φ(uk)

Φ[vk, uk]
.
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Sharma-Kumar-Jäntschi method (SM-2):

wk = uk −
Φ(uk)

Φ[vk, uk]
,

uk+1 = wk +
sk + m s2

k − (m− 1)yk(m yk − 1)
m yk − 1

Φ(uk)

Φ[vk, uk]
,

where yk =
m

√
Φ(wk)
f (vk)

.

The calculations were executed in the programmable package of the Mathematica software [23]
with higher precision. The results of the new method were obtained by choosing a value of 0.01 for
the parameter β. The numerical results shown in Tables 1–4 include: (i) the number of iterations (k)
that are needed to converge to the required solution such that |uk+1 − uk|+ |Φ(uk)| < 10−100, (ii) the
estimated error |uk+1 − uk| in the first three iterations, (iii) the approximated computational order of
convergence (ACOC) using Formula (27), and (iv) the elapsed CPU time to run the program measured
by the Mathematica command “TimeUsed[ ]”.

The following numerical examples were selected for testing:

Example 1. Consider the van der Waals equation:

(
P +

a1n2

V2

)
(V − na2) = nRT,

which shows the nature of a real gas by the inclusion of parameters a1 and a2 in the ideal gas equation. The volume
V in terms of the remaining parameters can be found by the equation:

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n2 = 0.

For a given a set of values of a1 and a2 of a particular gas, one can find values of n, P, and T, so that the
equation has three roots. For a particular set of values, we have:

Φ1(u) = u3 − 5.22u2 + 9.0825u− 5.2675.

This function has three zeros: one is a simple zero α = 1.72 and the other is a repeated zero α = 1.75
of multiplicity two. The methods were tested for initial guess u0 = 2.3 to find the desired zero α = 1.75.
The computed results are given in Table 1.

Example 2. Let λ, c, T, k, and h be wavelength of the radiation, the speed of light, the absolute temperature of
the black body, Boltzmann’s constant, and Planck’s constant, respectively. Then, the Planck law of radiation [33]
to find the energy density in a black body is given as:

φ(λ) =
8πchλ−5

ech/λkT − 1
. (28)

One wants to determine the wavelength λ corresponding to the maximum energy density φ(λ).
From Equation (28), it follows that:

φ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5
)
= L.M. (say)

A maximum for φ will occur for M = 0, that is if:

(ch/λkT)ech/λkT

ech/λkT − 1
= 5.
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Setting u = ch/λkT, the above equation assumes the form:

1− u
5
= e−u. (29)

The following function can be obtained by considering the above case three times:

Φ2(u) =
(

e−u − 1 +
u
5

)3
. (30)

The trivial zero u = 0 is not taken for discussion. The non-trivial zero can be guessed somewhere near
u = 5, since for u = 5, the left-hand side of (29) is zero and the right-hand side is e−5 ≈ 6.74× 10−3. In fact
the expected root α ≈ 4.96511423174427630369 is obtained with the starter u0 = 5.4. Thereby, the wavelength
(λ) for the maximum energy density is:

λ ≈ ch
4.96511423174427630369(kT)

.

The numerical results are displayed in Table 2.

Example 3. The problem of isentropic supersonic flow around a sharp expansion corner is considered.
The mathematical expression between the Mach number before the corner (i.e., M1) and after the corner
(i.e., M2) is defined by (see [34]):

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2
− tan−1

(M2
1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

,

where b = γ+1
γ−1 , γ being the specific heat ratio of the gas.

Given that M1 = 1.5, γ = 1.4 and δ = 100, we solve the equation for M2. This case results in:

tan−1
(√5

2

)
− tan−1(

√
u2 − 1) +

√
6
(

tan−1 (√u2 − 1
6

)
− tan−1

(1
2

√
5
6

))
− 11

63
= 0,

where u = M2.
Let us consider this equation four times, and so, the required function is:

Φ3(u) =
[

tan−1
(√5

2

)
− tan−1(

√
u2 − 1) +

√
6
(

tan−1 (√u2 − 1
6

)
− tan−1

(1
2

√
5
6

))
− 11

63

]4
.

This function possesses zero α ≈ 1.8411027704926161 with multiplicity four. The required zero is
calculated using starter u0 = 1.5. The results obtained by the methods are displayed in Table 3.

Example 4. Lastly, the standard test function defined by:

Φ4(u) = u(u2 + 1)(2eu2+1 + u2 − 1) cosh3
(πu

2

)
,

is considered. The function Φ4 has multiple imaginary zero α = i of multiplicity five. We select the initial value
u0 = 1.3i to obtain the required zero of the function. The numerical results so produced are shown in Table 4.
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Table 1. Numerical results of the methods for Φ1(u). ACOC, approximate computational
order of convergence; LM-1, Li-Liao-Cheng method; LM-2, Li-Cheng-Neta method; SSM,
Sharma-Sharma method; ZM, Zhou-Chen-Song method; SM, Soleymani-Babajee-Lotfi method; KM,
Kansal-Kanwar-Bhatia method; SM-1, Sharma-Kumar-Jäntschi method; SM-2, Sharma-Kumar-Jäntschi
method; NM, new method.

Methods k |u2− u1| |u3− u2| |u4− u3| ACOC CPU

LM-1 6 6.59× 10−2 4.67× 10−3 3.77× 10−6 4.000 0.0776
LM-2 6 6.59× 10−2 4.67× 10−3 3.77× 10−6 4.000 0.0942
SSM 6 6.72× 10−2 5.05× 10−3 5.32× 10−6 4.000 0.0782
ZM 6 6.99× 10−2 5.90× 10−3 1.09× 10−5 4.000 0.0634
SM 6 6.59× 10−2 4.67× 10−3 3.77× 10−6 4.000 0.0935
KM 6 6.50× 10−2 4.39× 10−3 2.49× 10−6 4.000 0.0624

SM-1 6 7.17× 10−2 6.50× 10−3 1.86× 10−5 4.000 0.0724
SM-2 6 5.79× 10−2 2.75× 10−3 3.01× 10−7 4.000 0.0745
NM 5 5.59× 10−2 2.36× 10−3 1.22× 10−7 4.000 0.0615

Table 2. Numerical results of the methods for Φ2(u).

Methods k |u2− u1| |u3− u2| |u4− u3| ACOC CPU

LM-1 4 1.95× 10−5 1.17× 10−22 1.51× 10−91 4.000 0.8274
LM-2 4 1.95× 10−5 1.17× 10−22 1.51× 10−91 4.000 1.1072
SSM 4 1.95× 10−5 1.17× 10−22 1.53× 10−91 4.000 1.1076
ZM 4 1.96× 10−5 1.18× 10−22 1.58× 10−91 4.000 1.1066
SM 4 1.95× 10−5 1.18× 10−22 1.54× 10−91 4.000 1.2947
KM 4 1.95× 10−5 1.16× 10−22 1.44× 10−91 4.000 1.0952

SM-1 3 2.76× 10−6 8.00× 10−27 0 4.000 0.3284
SM-2 3 2.24× 10−6 2.59× 10−27 0 4.000 0.3375
NM 3 2.42× 10−6 3.93× 10−27 0 4.000 0.3124

Table 3. Numerical results of the methods for Φ3(u).

Methods k |u2− u1| |u3− u2| |u4− u3| ACOC CPU

LM-1 4 1.07× 10−3 1.14× 10−14 1.46× 10−58 4.000 1.6382
LM-2 4 1.07× 10−3 1.13× 10−14 1.43× 10−58 4.000 1.7935
SSM 4 1.07× 10−3 1.12× 10−14 1.35× 10−58 4.000 1.9031
ZM 4 1.07× 10−3 1.10× 10−14 1.23× 10−58 4.000 1.8720
SM 4 1.07× 10−3 1.08× 10−14 1.16× 10−58 4.000 1.9655
KM 4 1.07× 10−3 1.19× 10−14 1.82× 10−58 4.000 1.9026

SM-1 4 2.64× 10−5 6.95× 10−21 3.34× 10−83 4.000 1.4802
SM-2 4 2.62× 10−5 2.27× 10−21 1.29× 10−85 4.000 1.4922
NM 4 2.63× 10−5 4.57× 10−21 4.18× 10−84 4.000 1.4656

Table 4. Numerical results of the methods for Φ4(u).

Methods k |u2− u1| |u3− u2| |u4− u3| ACOC CPU

LM-1 4 3.04× 10−4 3.16× 10−15 3.68× 10−59 4.000 1.4512
LM-2 4 3.04× 10−4 3.16× 10−15 3.70× 10−59 4.000 2.2314
SSM 4 3.04× 10−4 3.17× 10−15 3.76× 10−59 4.000 2.2615
ZM 4 3.04× 10−4 3.18× 10−15 3.84× 10−59 4.000 2.3088
SM 4 3.04× 10−4 3.23× 10−15 4.14× 10−59 4.000 2.7610
KM 4 3.04× 10−4 3.11× 10−15 3.40× 10−59 4.000 2.2926

SM-1 4 3.23× 10−5 2.14× 10−19 4.16× 10−76 4.000 0.7223
SM-2 4 3.22× 10−5 8.04× 10−21 3.10× 10−83 4.000 0.7407
NM 4 3.09× 10−5 1.11× 10−19 1.83× 10−77 4.000 0.5931
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It can be seen from the numerical results displayed in Tables 1–4 that the proposed
method supported the theoretical results proven in Sections 2 and 3 and, like existing methods,
possessed consistent convergence. Moreover, the CPU time consumed by the methods as shown
in the tables proved computationally efficient nature of the new technique as compared to the
CPU time of the considered existing methods of the same order. The main aim of applying the
new derivative-free method on different nonlinear equations was purely to show its accuracy and
consistency. Similar numerical testing, carried out for a number of problems of different types,
confirmed the above conclusions to a good extent.

6. Conclusions

In the study, we proposed a derivative-free numerical method with optimal fourth order
convergence for approximating the repeated roots of nonlinear equations. The analysis of the
convergence under standard hypotheses proved the convergence order four. The method was
employed to solve nonlinear problems including those arising from real-world applications.
The performance was compared with existing techniques (with and without derivatives) of the same
order. The testing of the numerical results showed the presented derivative-free method as a good
competitor of the already established fourth order techniques that use derivative information in the
algorithm. We conclude this work with a remark: the derivative-free method presented here can be a
better choice compared to existing Newton-type schemes in the cases where derivatives are difficult to
obtain or expensive to compute.
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