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Abstract: In this paper, a non-binary low-density parity-check (NB-LDPC) coded high-order
continuous phase modulation (CPM) system is designed and optimized to improve power and
iterative efficiencies. Firstly, the minimum squared normalized Euclidean distance and the 99%
double-sided power bandwidth are introduced to design a competitive CPM, improving its power
efficiency under a given code rate and spectral efficiency. Secondly, a three-step method based on
extrinsic information transfer (EXIT) and entropy theory is used to design NB-LDPC codes, which
reduces the convergence threshold approximately 0.42 and 0.58 dB compared with the candidate
schemes. Thirdly, an extrinsic information operation is proposed to address the positive feedback issue
in iterative detection and decoding and the value of bit error rate (BER) can approximately be reduced
by 5× 10−3. Finally, iteration optimization employing the EXIT chart and mutual information between
demodulation and decoding is performed to achieve a suitable tradeoff for the communication
reliability and iterative decoding delay. Simulation results show that the resulting scheme provides
an approximately 3.95 dB coding gain compared to the uncoded CPM and achieves approximately
0.5 and 0.7 dB advantages compared with the candidate schemes. The resulting NB-LDPC-coded
high-order CPM for a given code rate and spectral efficiency converges earlier into a turbo cliff region
compared with other competitors and significantly improves power and iterative efficiencies.

Keywords: NB-LDPC code; CPM; iterative detection and decoding; iterative efficiency; power
efficiency

1. Introduction

Continuous phase modulation (CPM) has the advantages of a continuous phase, constant
envelope, high spectrum utilization, and excellent bandwidth efficiencies [1,2]. These characteristics
are more notable for satellite systems with less power and fewer bandwidth resources, such as
satellite navigation [3–5], satellite mesh networks [6,7], and satellite communication [8,9]. To further
enhance the power and bandwidth efficiencies, coded CPM with symbol mapping using iterative
decoding was presented. Considering the excellent properties of CPM and the serially concatenated
principles [10,11], some particularly attractive solutions have become the focus of research, such as the
convolutional [12,13], turbo [14–16], and low-density parity-check (LDPC) coded CPM [17–20].

As the serially concatenated CPM schemes in terms of convergence threshold are difficult to
approach the Shannon limit, the non-binary (NB)-LDPC [21] code is considered the outer code, which
has been the subject of numerous studies due to its excellent error correction capability. Unlike the
traditional bit-interleaved coded modulation (BICM) systems, the interleaver of a high-order CPM
works at the symbol level, which always yields a lower convergence threshold than the bit level [22].
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The NB-LDPC code and high-order CPM have the same alphabet size, so the conversion information
loss from bit to symbol caused by symbol mapping need not be considered [23].

To design and optimize coded CPM, previous works mainly focused on approaching the minimum
signal-to-noise ratio (SNR) with a certain symmetry information rate (SIR) for a particular CPM with
large block codes using large numbers of iterations [19]. This approach significantly limits the
comprehensive analysis of a family of CPM schemes and is unsuitable for real-time applications due
to excessive code length and decoding delay. Fortunately, A. G. Amat filled the gap and designed a
suitable CPM using SIR among all CPM candidates [8], however, the SIR should be calculated for
each CPM, which is a difficult task. Similarly, M. Foruhandeh used a systematic search procedure
among all the candidates to identify the appropriate CPM scheme [20], achieving a targeted spectral
efficiency and error rate, which results in considerable inconvenience in the CPM parameter design.
Benaddi, T. derives an asymptotic analysis and optimization of coded CPM systems using both
unstructured and protograph-based LDPC codes ensembles [24]. A practical system model with
global interleaving is proposed for the optimization of degree distribution of the LDPC codes, which
systematically solves the optimal system design of cascade irregular LDPC-CPM [25]. Zuohong
Xu propose a two-stage decoding scheme mainly based on parity check matrix transform, which
can efficiently improve the bit error rate performance [26]. All of the above schemes optimize the
LDPC-CPM system to some extent, but they all adopt binary coding, the design and optimization of
NB-LDPC-CPM system are still lacking. In summary, the major limitations of coded CPM optimization
include CPM parameter design, decoding delay, the positive feedback problem in iterative decoding
and the optimization of NB-LDPC.

This paper designed and optimized an NB-LDPC-coded high-order CPM to pursue high power
efficiency and improve iterative efficiency under given spectral efficiency η and code rate R for practical
considerations. Firstly, given the definite relationship between the SIR of CPM and minimum squared
normalized Euclidean distance (MSNED), the MSNED and the 99% double-sided power bandwidth
(B99%) are adopted to design a competitive CPM for a given R and η. Secondly, the code can be
designed through a three-step method based on extrinsic information transfer (EXIT) and entropy
theory when the CPM is determined. Thirdly, an extrinsic information operation is proposed in this
paper to address the positive feedback problem in iterative detection and decoding, which problem
may worsen bit error rate (BER) performance. Finally, an intensive study on proper iteration match
between demodulation and decoding by the EXIT technique and mutual information was conducted
to enhance systematic iterative efficiency and attain a suitable tradeoff between the communication
reliability and iterative decoding delay.

The rest of this paper is organized as follows: Section 2 provides the principle block diagram
of the proposed system, in which the modulation symbols are transmitted over the additive white
Gaussian noise (AWGN) channel. A detailed analysis of the design process of a competitive CPM for
particular R and η is shown in Section 3. Section 4 presents the analysis of the code design and the
potential advantages of NB-LDPC-coded high-order CPM. The extrinsic information operation method,
which curbs the positive feedback phenomenon in iterative decoding and detection, is outlined in
Section 5. The iteration optimization of demodulation and decoding using the EXIT technique and
mutual information is discussed in Section 6. Section 7 depicts the simulation results and feasibility.
Finally, we conclude this paper in Section 8.

2. System Description

The principle block diagram of NB-LDPC-coded high-order CPM is shown in Figure 1. At the
transmitter side, mapping and demapping from binary to Q-ary are required because the NB-LDPC
encoder input U and output C are non-binary. Q is assumed to be equal to the cardinality M (M-ary,
for example, quaternary and octal) of CPM. Then, the encoded sequence C is directly interleaved into
CI as the CPM modulator input. Finally, the complex signal vector S(t,α) produced by the M-ary CPM
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modulator is divided as continuous phase encoder (CPE) and memoryless modulation (MM) [27] and
transmitted over the AWGN channel.Symmetry 2020, 12, x FOR PEER REVIEW 3 of 17 
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Figure 1. Non-binary low-density parity-check (NB-LDPC)-coded high-order continuous phase 
modulation (CPM) transmitter and receiver. 

The demodulation and decoding of the receiver are accomplished through the iterations 
between CPM soft-input soft-output (SISO), which employs the maximum a posteriori (MAP)-like 
algorithm [28], and LDPC-SISO, which adopts the log-domain belief propagation (BP) with the fast 
Fourier transform algorithm [29,30]. SISO calculates the extrinsic a posterior probabilities (APPs) 
from the information and code symbol priori probabilities, and the decision device determines the 
symbol with a maximum APP in the last iteration. 

3. Competitive CPM 
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The SIR is defined as the mutual information rate under the assumption that the input 
information is independent and identically distributed. To design an excellent coded CPM, the SIR is 
generally applied to design the best CPM scheme with the lowest s 0E / N  required to achieve SIR. 
Given that CPM is a time invariant finite state machine (FSM) with complex signal outputs, the CPM 
system over an AWGN channel can be viewed as a finite state Markov channel (FSMC, Figure 2), and 
the SIR can be calculated using the algorithm developed in [31–34]. 

FSM with complex
 signal outputs

FSMC

CPM modulator
1
Nx

⊕1
Nv

AWGN channel

1
Nw

1
Ny

 
Figure 2. CPM model over an additive white Gaussian noise (AWGN) channel. 
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Figure 1. Non-binary low-density parity-check (NB-LDPC)-coded high-order continuous phase
modulation (CPM) transmitter and receiver.

The demodulation and decoding of the receiver are accomplished through the iterations between
CPM soft-input soft-output (SISO), which employs the maximum a posteriori (MAP)-like algorithm [28],
and LDPC-SISO, which adopts the log-domain belief propagation (BP) with the fast Fourier transform
algorithm [29,30]. SISO calculates the extrinsic a posterior probabilities (APPs) from the information
and code symbol priori probabilities, and the decision device determines the symbol with a maximum
APP in the last iteration.

3. Competitive CPM

3.1. SIR

The SIR is defined as the mutual information rate under the assumption that the input information
is independent and identically distributed. To design an excellent coded CPM, the SIR is generally
applied to design the best CPM scheme with the lowest Es/N0 required to achieve SIR. Given that
CPM is a time invariant finite state machine (FSM) with complex signal outputs, the CPM system over
an AWGN channel can be viewed as a finite state Markov channel (FSMC, Figure 2), and the SIR can
be calculated using the algorithm developed in [31–34].
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In Figure 2, xN
1 and vN

1 denote input information sequence and modulated sequence, respectively,
and yN

1 is the output information sequence disturbed by AWGN sequence wN
1 . Then, on the basis

of the definition of channel capacity, the mutual information rate between xN
1 = (x1, x2, . . . , xN) and

yN
1 = (y1, y2, . . . , yN) can be estimated as:

C = lim
N→∞

1
N

I(xN
1 , yN

1 ) = lim
N→∞

1
N

[
H(xN

1 ) −H(xN
1 |y

N
1 )

]
= log2M− lim

N→∞

1
N

H(xN
1 |y

N
1 ) (1)

where H(·) is an entropy function and xN
1 is independently and uniformly distributed. The expression

H(xN
1 |y

N
1 ) must also be calculated. sN

0 is defined as the state transition sequence of the CPM. sN
0 is a

Markov random process and can only be related to xN
1 ; thus:
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H(xN
1 |y

N
1 ) = H(sN

0 |y
N
1 ) =

N∑
i=1

H(si|si−1, yN
1 ) = −

N∑
i=1

p(si|si−1, yN
1 ) log2 p(si|si−1, yN

1 ). (2)

In computing p(si|si−1, yN
1 ), Bayes’ rule transforms it to:

p(si|si−1, yN
1 ) =

p(si, yN
1 |si−1)∑

si
p(si, yN

1 |si−1)
. (3)

γ and β are introduced using the Bahl–Cocke–Jelinek–Raviv (BCJR)-like algorithm to estimate
p(si, yN

1 |si−1), and they are defined as follows [34]:

γi(si−1, si) = p(si, yi|si−1) = p(yi|si−1, si)p(si|si−1) = p(yi|vi)p(xi) =
1

√

2πσ2
exp

−‖yi − vi‖
2

2σ2

p(xi) (4)

βi−1(si−1) = p(yN
i |si−1) =

∑
si

p(si, yN
i |si−1) =

∑
si

p(yN
i+1|si)p(si, yi|si−1) =

∑
si
βi(si)γi(si−1, si) (5)

where βN(sN) is initialized as an equally likely state. Then, combining (4) and (5), p(si|si−1, yN
1 ) is

rewritten as:

p(si|si−1, yN
1 ) =

βi(si)γi(si−1, si)∑
si
βi(si)γi(si−1, si)

, (6)

with βi(si) = βi(si)/
∑

si
βi(si).

In Figure 3, the simulated SIR of CPM signals with 8M2 raised cosine (8M2RC) using various
modulation index h (h = p/q, p, and q are the co-primes.) are shown, where 8M2RC denotes a particular
CPM family with M = 8, memory length L = 2, and RC frequency pulse.
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3.2. Design Criterion

The power and spectral efficiencies are influenced by the choice of M, h, pulse shape, memory,
and code rate R. For example, a greater h, with the remaining parameters constant, typically results in
increased power efficiency but at the expense of spectral efficiency. Similarly, increasing M will increase
the spectral efficiency and decrease the power efficiency. Lowering R alone can increase the coding
gain but decrease the spectral efficiency. Thus, the combination of code and modulation parameters
for coded CPM must be chosen carefully based on these constraints.
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In practical applications, CPM demodulator complexity must be considered, which is dependent
on the total number of matched filters and trellis states. The complexity could be represented as qML

matched filters followed by the CPM-SISO detector with the trellis of PML−1 states. All the CPM
schemes subject to the constraints q ≤ 5, L < 3 and M ≤ 8 are analyzed in this paper to reduce the
implementation complexity.

In Table 1, the MSNED d2
min and B99%Tb of all candidate CPM schemes with RC and rectangle

(REC) frequency pulses under the constraints (i.e., q ≤ 5, L < 3, M ≤ 8, and h < 1) are calculated, where
Tb is the bit period, and MSNED can be expressed by [10]:

d2
min = log2 Mmin

i

{
1
Ts

∫ NTs

0
[1− cosφ(t,χi)]dt

}
(7)

with

φ(t,χi) = 2πh
∑

j

χi, j

∫ t

−∞

g(τ)dτ,χi = α−α (8)

where NTs denotes observation symbol intervals and χi is the difference between the transmitted
sequence α and the received sequence α. The values of χi, j are obtained from {0, ±2, ±4, . . . , ±2(M −
1)}. B99% can be computed indirectly by:

0.99 =

∫ B99%/2

−B99%/2
G( f )d f (9)

where G( f ) is the normalized power spectrum density of CPM and is defined as:

G( f ) = 2
{∫ LT

0 <(τ) cos 2π fτdτ+ 1−ψ( jh) cos 2π f T
1+ψ2( jh)−2ψ( jh) cos 2π f T ×

∫ (L+1)T
LT <(τ) cos 2π fτdτ

−
ψ( jh) sin 2π f T

1+ψ2( jh)−2ψ( jh) cos 2π f T ×
∫ (L+1)T

LT <(τ) sin 2π fτdτ
} (10)

With:
ψ( jh) = sin Mπh/M sinπh (11)

where<(τ) denotes the autocorrelation function of CPM:

<(τ) =
1
T

∫ T

0

bτ/Tc∏
k=1−L

1
M

sin 2πhM[q(t + τ− kT) − q(t− kT)]
sin 2πh[q(t + τ− kT) − q(t− kT)]

dt (12)

where b·c is a floor rounding operator.
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Table 1. d2
min and B99%Tb of all candidate CPM schemes subject to constraints q ≤ 5, L < 3, M < 8, and h < 1.

h 4M1REC 4M1RC 8M1REC 8M1RC

1/5 B99%Tb = 0.65, d2
min = 0.97 B99%Tb = 1.06, d2

min = 1.13 B99%Tb = 0.76, d2
min = 1.46 B99%Tb = 1.15, d2

min = 1.69
1/4 B99%Tb = 0.81, d2

min = 1.45 B99%Tb = 1.25, d2
min = 1.66 B99%Tb = 0.91, d2

min = 2.18 B99%Tb = 1.36, d2
min = 2.49

1/3 B99%Tb = 0.99, d2
min = 2.35 B99%Tb = 1.49, d2

min = 2.25 B99%Tb = 1.12, d2
min = 3.50 B99%Tb = 1.78, d2

min = 3.33
2/5 B99%Tb = 1.09, d2

min = 3.06 B99%Tb = 1.67, d2
min = 2.40 B99%Tb = 1.31, d2

min = 4.60 B99%Tb = 2.09, d2
min = 3.60

1/2 B99%Tb = 1.28, d2
min = 4.00 B99%Tb = 1.95, d2

min = 2.24 B99%Tb = 1.54, d2
min = 6.00 B99%Tb = 2.52, d2

min = 3.36
3/5 B99%Tb = 1.49, d2

min = 3.50 B99%Tb = 2.26, d2
min = 2.40 B99%Tb = 1.79, d2

min = 5.24 B99%Tb = 2.96, d2
min = 3.60

2/3 B99%Tb = 1.57, d2
min = 3.57 B99%Tb = 2.49, d2

min = 2.60 B99%Tb = 1.96, d2
min = 5.37 B99%Tb = 3.31, d2

min = 3.90
3/4 B99%Tb = 1.71, d2

min = 3.72 B99%Tb = 2.81, d2
min = 2.90 B99%Tb = 2.16, d2

min = 5.58 B99%Tb = 3.68, d2
min = 4.15

4/5 B99%Tb = 1.83, d2
min = 3.84 B99%Tb = 2.98, d2

min = 3.37 B99%Tb = 2.28, d2
min = 5.72 B99%Tb = 3.89, d2

min = 4.28

h 4M2REC 4M2RC 8M2REC 8M2RC

1/5 B99%Tb = 0.44, d2
min = 0.64 B99%Tb = 0.56, d2

min = 0.88 B99%Tb = 0.57, d2
min = 0.96 B99%Tb = 0.63, d2

min = 1.32
1/4 B99%Tb = 0.53, d2

min = 0.98 B99%Tb = 0.64, d2
min = 1.33 B99%Tb = 0.68, d2

min = 1.48 B99%Tb = 0.75, d2
min = 1.99

1/3 B99%Tb = 0.69, d2
min = 1.69 B99%Tb = 0.79, d2

min = 2.16 B99%Tb = 0.87, d2
min = 2.52 B99%Tb = 0.95, d2

min = 3.30
2/5 B99%Tb = 0.81, d2

min = 2.35 B99%Tb = 0.91, d2
min = 2.91 B99%Tb = 1.02, d2

min = 3.53 B99%Tb = 1.11, d2
min = 4.36

1/2 B99%Tb = 0.99, d2
min = 3.45 B99%Tb = 1.06, d2

min = 3.71 B99%Tb = 1.26, d2
min = 5.18 B99%Tb = 1.32, d2

min = 5.56
3/5 B99%Tb = 1.15, d2

min = 4.60 B99%Tb = 1.22, d2
min = 3.75 B99%Tb = 1.49, d2

min = 6.31 B99%Tb = 1.58, d2
min = 5.63

2/3 B99%Tb = 1.26, d2
min = 4.00 B99%Tb = 1.33, d2

min = 3.47 B99%Tb = 1.64, d2
min = 6.01 B99%Tb = 1.74, d2

min = 5.20
3/4 B99%Tb = 1.39, d2

min = 4.19 B99%Tb = 1.45, d2
min = 3.71 B99%Tb = 1.84, d2

min = 6.28 B99%Tb = 1.93, d2
min = 5.56

4/5 B99%Tb = 1.47, d2
min = 4.88 B99%Tb = 1.51, d2

min = 4.11 B99%Tb = 1.95, d2
min = 6.00 B99%Tb = 2.05, d2

min = 6.16
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A definite relationship between SIR and MSNED can be presented in Table 1 and Figure 3. The SIR
curve of CPM with the highest MSNED converges earliest and corresponds to the lowest bound denoted
as the minimum Es/N0, which can be traced back from the SIR curve by the R log2 M. For instance,
the SIR of 8M2RC using h = 1/2 converges earliest, followed by h = 1/3, 1/4, and 1/5, because the
8M2RC using h = 1/2 has the highest d2

min of 5.56, followed by h = 1/3, 1/4, and 1/5. The computational
complexity of MSNED is significantly lower than SIR, which provides convenience in designing a
competitive CPM. Thus, we used B99%Tb and MSNED instead of SIR curves to design the suitable
scheme from all candidate CPM signals under a given code rate R and spectral efficiency η.

The relationship of the coded modulation systems among M, R, B99%, Ts, and η is defined as:

η =
R log2 M
B99%Ts

=
R

B99%Tb
(13)

For the given η and R, the B99%Tb can be attained using (13). The competitive CPM scheme can
be determined by the highest d2

min among these candidate CPM signals with corresponding B99%Tb.
For example, η and R are 0.5 bit/s/Hz and 2/3, respectively, B99%Tb is approximately computed as 1.33
using (13). Table 1 shows that the 8M2RC with h = 1/2, 8M1REC with h = 2/5, and 4M2RC with h = 2/3
can approximately meet the constraint of B99%Tb, and the d2

min of the three schemes are 5.56, 4.60, and
3.47, respectively. Consequently, 8M2RC with h = 1/2 is preferred as the competitive CPM scheme due
to its highest d2

min relative to other candidates. The competing CPM schemes for other η and R can also
be selected according to (13) and Table 1.

4. Code Design and Advantages

4.1. EXIT Technique

The EXIT chart [35] is a powerful technique for predicting the iterative detection convergence
using SISO modules. Similar to the density evolution, this technique assumes extrinsic information in
SISO decoders as independent Gaussian random variables. Figure 4 depicts the extrinsic information
interaction between two SISO decoders of NB-LDPC-coded high-order CPM. CPM-SISO has two
inputs of the prior information from the interleaver and the inner codeword information from matched
filters. As the inner codeword information is connected to Eb/N0, the average mutual information of
the CPM-SISO output can be treated as a function of the average mutual information of the input ICPM

A
and Eb/N0, given by:

ICPM
E = TCPM−SISO(ICPM

A , Eb/N0) (14)
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Figure 4. Serially iterative decoder of NB-LDPC-coded high-order CPM. Figure 4. Serially iterative decoder of NB-LDPC-coded high-order CPM.

The average mutual information of the LDPC-SISO output ILDPC
E is only related to the average

mutual information of the input ILDPC
A , resulting in:

ILDPC
E = TLDPC−SISO(ILDPC

A ) (15)

where functions TCPM−SISO(·) and TLDPC−SISO(·) are defined as the EXIT characteristics of CPM-SISO
and LDPC-SISO, respectively.
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4.2. NB-LDPC Code Design

A three-step method is used in this paper to design the following NB-LDPC codes.

(1) Optimization of degree distribution based on binary parity-matrix using the EXIT technique.
The NB-LDPC code has the same Tanner graph and degree distribution property as its
corresponding binary representation, except for non-zero values; thus, the EXIT chart was
used to explore a binary sparse matrix with acceptable degree distribution. Figure 5 provides the
EXIT characteristics of different variable node (VN) and check node (CN) degrees.
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To design a suitable degree profile consisting of VN and CN degree distributions, a general
approach described in [36] was used by fixing the CN degree distribution, and then changing the
VN degree distribution to search the lowest convergence threshold. The area between the VN EXIT
curve and the inverse CN EXIT curve is the smallest without intersections. The degree distribution
corresponding to the lowest convergence threshold is optimal. This systematic search procedure can
be performed as follows:

IVN
E =

dv∑
i=2

λi J

√(i− 1)
[
J−1(IVN

A )
]2
+ 8R

Eb

N0

 (16)

ICN
E = 1−

dc∑
i=2

ρi J(
√

i− 1× J−1(1− ICN
A )) (17)

where dv and dc are the maximum VN and CN degrees, respectively; λi and ρi express the fractions of

edges connecting to VNs and CNs of degree i while satisfying
dv∑

i=2
λi = 1 and

dc∑
i=2

ρi = 1, respectively.

The function J(·) and its inverse function J−1(·) are defined in [33]. Equations (16) and (17) are linear
weighted sums of VN and CN EXIT curves of the given R and Eb/N0, respectively. The entire process
of searching for a suitable degree distribution must be subjected to the constraint, that is:

R = 1−

dc∑
i=2

ρi
i

dv∑
i=2

λi
i

= 1−

∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

(18)

with ρ(x) =
dc∑

i=2
ρixi−1 and λ(x) =

dv∑
i=2

λixi−1.
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(2) Construction of a parity-check matrix with a large girth. After determining the degree distribution,
the positions of non-zero elements in binary parity-check matrix Hb must be ascertained. A girth
optimization tool, called progressive edge growth [37], is adopted to avoid small circles and
achieve good girth properties when using the BP-like algorithm on the Tanner graph.

(3) Choice of non-zero elements over GF(Q). Generally, this step can be performed by substituting
the “1” elements of Hb with random non-zero elements over GF(Q), which can provide acceptable
performance in most cases. Entropy theory, which is the appropriate measure for uncertainty,
is introduced to improve the uncertainty or randomness of cycles located at the Tanner graph,
which helps obtain a low error rate. First, the cycle-searching algorithm proposed in [38] is
applied to search all small circles of Hb with lengths l = 4, 6, and even 8 if necessary, and record
the corresponding positions of non-zero elements in each circle. Next, a general method for
constructing the NB-LDPC code is employed to randomly replace all the “1” elements of Hb
with non-zero elements of GF(Q). Eventually, the entropy of each previously recorded circle is
calculated and maximized when each element takes various non-zero values over GF(Q), that is:

En = −

Q−1∑
i=1

Pri log2 Pri (19)

where Pri = ni/l and ni denote the appearance times of i in each circle with i ∈ [1, 2, · · · , Q− 1].

In the case of R = 2/3 and η = 0.5 bit/s/Hz, based on (14) and (15), the EXIT chart of the resulting
scheme using 8M2RC concatenated with designed NB-LDPC code was drawn in Figure 6, where the
convergence threshold is 0.81 dB.
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4.3. Additional Advantages

The investigation into NB-LDPC-coded high-order CPM is particularly significant for coded
modulation systems. In addition to the excellent properties in terms of continuous phase, rapidly
decaying spectrum side lobes, and constant envelope, this scheme has the following additional
advantages:

(1) Each edge of the binary LDPC code in the Tanner graph carries bit messages, but the NB-LDPC code
carries Q-ary symbol messages, thus, short girths are avoided in the Tanner graph. This reduces
the influence of short girths and stopping set on decoding convergence. Therefore, the BP
algorithm becomes closer to the maximum likelihood decoding algorithm. The NB-LDPC code,
as an outer code in coded modulation systems, provides an alternative solution in enhancing
BER performance in practical applications.
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(2) In comparison with the traditional BICM, the interleaver of the NB-LDPC-coded high-order CPM
works at the symbol level, which always yields a lower convergence threshold than bit level.
This advantage is rather significant in a serial concatenation [22].

(3) As the NB-LDPC code and CPM select the uniform M-ary in the investigated systems, the symbol
mapping issue that is likely to result in conversion information loss from bit to symbol may be
ignored. This phenomenon usually occurs in the case of M > q. Thus, more possible input code
symbols exist between the current and next phase states in the trellis diagrams. For an example
of the CPM scheme with 8M2RC using h = 1/2, the corresponding transfer diagram of the phase
states using Gray and natural mappings is shown in Figure 7.
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In this case, eight input code symbols and two phase states of 0 and π are presented. Each transfer
between the adjacent phase states exists in four possible input code symbols. Information loss in an
inappropriate symbol mapping would occur when the MAP-like algorithm in CPM-SISO is used [25],
that is:

PI(uk, j; O) = Hu j

∑
u: U j

k=u j

PI(uk; O)

log2 M∏
i=1,i, j

PI(uk,i, I) (20)

With:
PI(uk; O) = HuHu

∑
e: u(e)=u

Ak−1[sS(e)]PI[ck; I]Bk[sE(e)] (21)

where Hu, Hu, and Hu j are normalization constants; PI(c; I) is the inner codeword probability of the
input; PI(u; I) is the inner information probability of the input; PI(u; O) denotes the inner information
probability of the output; and Ak(·) and Bk(·) are obtained through forward and backward recursions,
respectively [28]. On the basis of (20), knowing the identities of the other bits is necessary in deciding
on a certain bit. For instance, it is assumed that current and next phase states are 0 and π, separately,
there are four possible input code symbols (001, 101, 011, 111) when the natural mapping is used as
shown in Figure 7. It is hard to decide whether the first bit is 0 or 1 when the other bits are either 01 or
11. In the Gray mapping case, the decoder can make the appropriate decision on the first bit when
the couples of other two mapped bits are different. Consequently, symbol mapping must be chosen
carefully for BICM systems with high-order CPM.
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NB-LDPC code has many advantages in comparison to binary coding, however, the decoding
complexity restricts its development. Since the decoding algorithm of LDPC code is at the symbol
level, the decoding complexity will increase rapidly with the increase of Q. In the check-node update
of BP decoding, an asymptotical complexity of O (Qˆ2) for log-decoding or O (Q log2(Q)) for fast
fourier transform (FFT) decoding is present. Hence, in comparison to binary coding, the per-bit
decoding complexity is (at least) increased by a factor of Q. In practical application, the decoding
algorithm can adopt Log-FFT-BP. First, a large number of convolution operations are converted into
multiplication operations in frequency domain, and then multiplication operations are converted into
addition operations in log domain, which can effectively reduce the decoding complexity.

5. Positive Feedback Issue

For the turbo-like receivers, an unwanted phenomenon called positive feedback, where BER
performance worsens with increasing iterations, commonly occurs. A similar phenomenon also occurs
in the investigated system, and this is a much more serious phenomenon, especially for low Eb/N0

due to the insufficient interleaving length and the high possibility of burst errors.
A method of extrinsic information operation is introduced to improve iterative convergence,

thereby effectively avoiding the undesired phenomenon. As shown in Figure 1, the extrinsic information
from one SISO decoder must be operated and then transmitted into the other SISO decoder, that is:

P∗I(u
i, O)= exp

(
ψ(PI(ui, O)).× ln PI(ui, O)

)
(22)

P∗O(c
i, O)= exp

(
ψ(PO(ci, O)).× ln PO(ci, O)

)
(23)

where PO(c, O) is the outer codeword probability of the output, and ψ(·) is written as:

ψ(Ω) = a× exp(−b| ln Ω|) (24)

where a and b are satisfied with a ∈ [0.6, 0.9] and b ∈ [0.001, 0.01], respectively.
Figures 8 and 9 show the comparisons between the iterative convergence of the NB-LDPC code

for 8M2RC using the proposed method and the original approach when Eb/N0 is 0.4 and 1.2 dB,
where a and b are set to 0.9 and 0.01, respectively. As can be seen from Figure 8, the proposed method
can be effectively curbing the positive feedback phenomenon at low Eb/N0, the value of BER can
be reduced approximately by 5× 10−3 compared with the original method. Figure 9 reveals that the
proposed method is capable of accelerating the iterative convergence, improving power efficiency and
enhancing the transmission reliability (BER reduce approximately by 2.5× 10−3 compared with the
original method) at medium-high Eb/N0.
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6. Optimization Design for Iterative Efficiency

LDPC decoding is an iterative detector using BP or a modified BP algorithm. Thus, the NB-LDPC-
coded CPM systems have two iterative decoding structures at the receiver. The iteration choice
has profound effects on iterative decoding performance. However, large numbers of iterations
between demodulation and decoding are generally used to achieve excellent BER performance, which
adversely increases computational complexity and iterative decoding delay. To improve iterative
efficiency, we propose iteration optimization using the EXIT chart and mutual information between
demodulation and decoding to achieve the suitable tradeoff for the communication reliability and
iterative decoding delay.

The optimized NB-LDPC code for the 8M2RC scheme with η = 0.5 bit/s/Hz and R = 2/3
was investigated as an instance. The corresponding EXIT curves of the optimized NB-LDPC code
with various inner iterations are shown in Figure 10. Inner iterations have no significant impact on
convergence threshold because more iterations barely improve the BER performance at low Eb/N0.
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The EXIT curves for NB-LDPC code become steeper with increasing inner iterations, implying a
larger iterative space of the CPM-SISO and LDPC-SISO decoder EXIT curves, resulting in an easier
convergence with fewer outer iterations. However, the improved trend is no longer evident in five or
more inner iterations. Hence, the optimized inner iteration of this design is set to five times.
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Once the inner iterations were determined, the optimization of the outer iterations was investigated
as follows. Fewer outer iterations are required to achieve a high BER performance with increasing
Eb/N0 in a turbo cliff region. Thus, a limit exists on how to design suitable outer iterations for various
Eb/N0. Mutual information is effective for better understanding the convergence of SISO decoders.
A greater amount of mutual information means a more accurate identification of SISO decoders on
information symbols. The mutual information of the outer codeword probability of the LDPC-SISO
output at the nth iteration is defined as:

MI(n) = log2 Q−
1
N

N∑
i=1

Q−1∑
q=0

Pn
O(c

i
q, O) × log2

1
Pn

O(c
i
q, O)

(25)

where Pn
O(c

i
q, O) is the probability of an event wherein the ith element in the symbol vector c equals q.

If the difference in mutual information between the current and previous iterations is extremely small,
then their BER performance is comparable, and the improved performance is no longer remarkable
with the following outer iterations. Therefore, an iterative stopping criterion can be estimated as:

MI(n) −MI(n− 1) < ε (26)

where ε is an extremely small value (for example, ε= 10−5). If the current iteration satisfies this criterion
at a certain Eb/N0, it is assumed to be the optimal outer iteration, and the next iteration detection is
terminated immediately.

7. Simulation Results

In this section, BER simulations for various schemes with η = 0.5bit/s/Hz and R = 2/3 are
presented. Figure 11 depicts the BER performance of the optimized NB-LDPC code for 8M2RC with
various inner iterations at fixed 20 outer iterations. The BER curves using various inner iterations
almost coincide within approximately 0.8 dB. This finding indicates that the BER performance at low
Eb/N0 cannot be improved by increasing the iterations again. Conversely, when the Eb/N0 exceeds
the convergence threshold into the turbo cliff region, the BER performance significantly improved as
the number of inner iterations increases. However, the improved effect was no longer outstanding
after five inner iterations, in perfect agreement with the EXIT chart analysis.
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Figure 12 presents the BER simulations of the resulting scheme (8M2RC) and other candidate
schemes (8M1REC and 4M2RC) using the proposed methods for η = 0.5bit/s/Hz and R = 2/3, as well
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as their original counterparts with or without extrinsic information operation. In this analysis, a and b
were set to 0.9 and 0.01, respectively. To ensure a fair comparison, the VN degree distribution was
maintained with that of the resulting scheme.
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The vertical lines represent their convergence thresholds achieved from the EXIT chart. The interleaver
length is 1152 symbols.

In Figure 12, the convergence thresholds of all the schemes are reported. The resulting schemes
step into the turbo cliff region 0.42 and 0.58 dB earlier and show higher power efficiency compared
with 8M1REC and 4M2RC candidate schemes. The resulting scheme provides an approximately
3.95 dB coding gain compared to the uncoded 8M2RC, while achieving approximately 0.5 dB and
0.7 dB advantages over those of 8M1REC and 4M2RC schemes for the BER of 10−3, respectively.
The schemes with extrinsic information operation always converge to a smaller BER at the turbo cliff
region compared to those without extrinsic information operation and it can achieve approximately
0.1 dB advantages. In addition, Figure 13 shows that these optimized schemes using five inner iterations
and ε = 1e−5 have fewer average outer iterations with increasing Eb/N0 and exhibit negligible BER
performance degradation with respect to their original counterparts with a total of 140 iterations
(seven inner iterations ×20 outer iterations). These optimized schemes attain a suitable tradeoff of the
communication reliability and iterative decoding delay and enhance systematic iterative efficiency.
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8. Conclusions

The design of the CPM parameter, decoding delay, and the positive feedback problem in iterative
decoding are the main factors that limit the development of the coded CPM system. To address
the above problems, NB-LDPC-coded high-order CPM systems were designed and optimized in
this paper. A novel design method based on the MSNED and B99% was introduced to explore a
competitive CPM scheme using particular η and R under the constraint of implementation complexity.
A three-step method based on the EXIT chart and entropy theory was used to design the NB-LDPC
code to reduce the convergence threshold, which reduces the convergence threshold by approximately
0.42 and 0.58 dB compared to the candidate schemes. A method of extrinsic information operation was
proposed to address the positive feedback phenomenon existing in iterative detection and decoding.
The simulation results showed that the proposed method not only effectively inhibits positive feedback
phenomenon at low Eb/N0 but also accelerate iterative convergence at medium–high Eb/N0, and
the value of BER can be reduced by approximately 5× 10−3. An improper iteration match between
demodulation and decoding was addressed using the EXIT technique and mutual information to
improve the iterative efficiency and attain a suitable tradeoff of the communication reliability and
the iterative decoding delay. Finally, simulation results show that the resulting NB-LDPC-coded
high-order CPM scheme provides an approximately 3.95 dB coding gain compared to the uncoded
CPM and achieves approximately 0.5 and 0.7 dB advantages compared with the candidate schemes.
The resulting scheme using the proposed method attains the convergence threshold earlier compared
with other competitors and further improves power and iterative efficiencies.
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