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Abstract: A mathematical model for forecasting the transmission of the COVID-19 outbreak is
proposed to investigate the effects of quarantined and hospitalized individuals. We analyze the
proposed model by considering the existence and the positivity of the solution. Then, the basic
reproduction number (R0)—the expected number of secondary cases produced by a single infection
in a completely susceptible population—is computed by using the next-generation matrix to carry
out the stability of disease-free equilibrium and endemic equilibrium. The results show that the
disease-free equilibrium is locally asymptotically stable if R0 < 1, and the endemic equilibrium is
locally asymptotically stable if R0 > 1. Numerical simulations of the proposed model are illustrated.
The sensitivity of the model parameters is considered in order to control the spread by intervention
strategies. Numerical results confirm that the model is suitable for the outbreak that occurred
in Thailand.

Keywords: mathematical model; COVID-19; stability; numerical simulations; sensitivity analysis;
prediction

1. Introduction

It is well-known that the world is battling with a new infectious disease, namely, a novel
coronavirus disease. This disease was renamed by the WHO to COVID-19 on February 2020 [1].
The disease was first found in Wuhan, Hubei, China in December 2019. The first case was found in
the Huanan seafood market, which is a seafood and wet animals market [2]. Recently, there has been
no evidence to confirm the source of this disease; it may have been a bat or a pangolin [3–6], which
are the most likely. Two enormous infectious disease problems have already happened earlier by a
coronavirus, which are SARS-CoV in 2003 and MERS-CoV in 2012 [7,8]. The direct contact with the
virus in secretion on the surfaces or breath droplets from infected humans is the main transmitted
channel of COVID-19 from human to human. Moreover, vaccine and directional treatment have not
been found to control the spreading of the disease.

Infected individuals have many symptoms such as cough, difficulty in breathing, and fever [9],
because the respiratory system can be destroyed by a coronavirus. These outbreaks have affected
people and economics around the world, since many governments used lockdown policies to reduce
the spreading of the disease. Many shops, supermarkets, department stores, and public places were
shut down to prevent people from contact with each other. Social distancing is used to maintain the
distance between people, and to stop crowded social events.
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Nowadays, the number of infected individuals is increasing every day. By data from the World
Health Organization (WHO), there are a cumulative confirmed 6, 057, 853 cases and 371, 166 deaths
as of 1 June 2020 [10]. At present, the numbers have increased to a cumulative confirmed 12, 552, 765
cases and 561, 617 deaths, reported on 12 July 2020 [11].

To understand the behavior of infectious diseases, mathematical models are investigated to
predict the transmission dynamics for controlling and planning strategies [12–15]. Several pieces of
research proposed mathematical models to forecast the spreading of infections such as HIV [16–19],
tuberculosis [20], Ebola [21–24], Dengue [14,15,25], Zika [12,26,27], MERS [28–30], and SARS [29,31,32].

Since this outbreak is a global problem, there are many mathematical models to predict the
behavior of transmission for COVID-19 [33]. In this paper, we develop a new system of differential
equations to describe the behavior of COVID-19 transmission from human to human. We consider
the dynamics of populations by using six phages of infection, these are susceptible class, latent class,
infected class, quarantine class, hospitalized class, and recovery class. An analysis of the proposed
model is investigated. We consider the invariant region, the existence of the solution, the positivity
of the solution, equilibria, the basic reproduction number, and stability of the endemic equilibria.
These help us to explain the solution to the proposed model. Moreover, we show the simulation of
the solutions and analyze the sensitivity of the parameters in the model. The main contribution is
related to considering many ways as much as possible. We also use the model to predict the behavior
of COVID-19 for real situations in Thailand.

The remainder of this paper is structured as follows: The model formulation is introduced in
Section 2, and the existence of the solution, positivity of the solution, equilibria, and stability analysis of
the model is presented in Section 3. In Section 4, numerical simulations are illustrated, followed by the
sensitivity analysis in Section 5. The case study of the model to fit with the actual data from Thailand
is presented in Section 6. Finally, conclusions are presented in Section 7.

2. Mathematical Model

In this section, we express the model formulation of COVID-19. Based on the classical SIR
model [34], SIRD model [2], SEIR model [35], and others model [36,37]—and taking into account the
behavior of the COVID-19 [38]—we proposed a new epidemiology-generalized model of COVID-19
outbreak, namely, the SLIQHR (Susceptible-Latent-Infectious-Quarantine-Hospitalized-Recovery)
model. We investigate the latent class and quarantine class which is not in the hospital in the model,
as humans in the latent class can transmit the virus to nearby people. Moreover, we consider the
parameter related to death from the infection.

The constant total population at time t, denoted by N(t), is separated into six subpopulation
classes. These are susceptible class (S), latent class (L), infectious class (I), quarantine class (Q),
hospitalized class (H), and recovery class (R). We have S(t) + L(t) + I(t) + Q(t) + H(t) + R(t) =
N(t). The model under assumptions can be written by the system of ordinary differential equations
as follows:

dS
dt

= Λ− a1SL− a2SI − µS,

dL
dt

= a1SL + a2SI − a3L− a4L− µL,

dI
dt

= a3L− kαI − kβI − k(1− α− β)I − εI − µI,

dQ
dt

= a4L + kβI − a5Q− a6Q− µQ,

dH
dt

= kαI + a6Q− a7H − µH,

dR
dt

= k(1− α− β)I + a5Q + a7H − µR,

(1)
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where Λ is a recruited rate; a1 and a2 are the transmission coefficient per unit of time per person in
the susceptible class contact with latent class and infectious class, respectively; a3 is the transition
rate (per unit time) from latent compartment L to infectious compartment I; a4 is the transition rate
(per unit time) from latent compartment L to quarantine compartment Q; k is the rate at which a
human leaves the infectious class by becoming quarantine and hospitalized; 1− α− β is the proportion
of populations infectious by becoming isolation from others; α is the proportion progression from
infectious class to hospitalized class; β is the rate from infectious class to quarantine class; a5 is the
transition rate (per unit time) from quarantine compartment Q to recovery compartment R; a6 is the
transition rate (per unit time) from quarantine compartment Q to hospitalized compartment H; a7 is
the rate of hospitalized class H become recovery class R; ε is the disease induced death rate; and µ is
the natural death rate. A flowchart of the SLIQHR model (1) is shown in Figure 1.

Figure 1. Flowchart of the SLIQHR (Susceptible-Latent-Infectious-Quarantine-Hospitalized-Recovery)
model.

3. Analysis of the Model

In this section, we study the invariant region of the solution of the proposed model (1),
the positivity of the solution, and the equilibria of the model. Then, the basic reproduction number
of the model is obtained. We also investigate local stability of both disease-free equilibrium and
endemic equilibrium.

3.1. Invariant Region

The invariant region is obtained from the bounded situation of the model. Here,
N(t) = S(t) + L(t) + I(t) + Q(t) + H(t) + R(t). It follows that

dN
dt

=
dS
dt

+
dL
dt

+
dI
dt

+
dQ
dt

+
dH
dt

+
dR
dt

= Λ− εI − µ N

≤ Λ− µN.

This inequality can be expressed in a general solution as

N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt,

where N(0) is the initial values, i.e., N(t) = N(0) at t = 0.
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Further, we can observe that N(t)→ Λ
µ as t→ ∞. Thus, it can be concluded that N(t) is bounded

as 0 ≤ N(t) ≤ Λ
µ . Therefore, the feasible region of the model in the non-negative region is defined as

Ω =

{
(S, L, I, Q, H, R) ∈ R6

+ : N ≤ Λ

µ

}
.

3.2. Existence of the Solution

The existence of the solution is an important tool to confirm that the solution of the proposed
model (1) exists. If the solution exists, we can find the approximate solutions or deal with its solution
to forecast the dynamics of the disease transmission.

Lemma 1 (Derrick and Groosman theorem [39]). Let Ω denote the region

|t− t0| ≤ a , ||x− x0|| ≤ 1, x = (x1, x2, . . . , xn), x0 = (x10, x20, . . . , xn0) ,

and suppose that f (t, x) satisfies the Lipchitz condition

|| f (t, x1)− f (t, x2)|| ≤ k||x1 − x2||

whenever the pairs (t, x1) and (t, x2) belong to Ω where k is a positive constant. Then, there is a constant δ ≥ 0
such that there exists a unique continuous vector solution of x(t) of the system in the interval t− t0 ≤ δ.

It is important to note that the condition is satisfied by the requirement that ∂ fi/∂xj for i, j = 1, 2, 3, . . .
are continuous and bounded in Ω.

Theorem 1. The solution of the model (1) with the initial conditions S(0) ≥ 0, L(0) ≥ 0, I(0) ≥ 0,
Q(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0 exists and is unique in R6

+ for all t ≥ 0.

Proof. The right-hand sides of the system (1) can be expressed as follows:

f1 = Λ− a1SL− a2SI − µ S

f2 = a1SL + a2SI − a3L− a4L− µ L

f3 = a3L− kαI − kβI − k(1− α− β)I − εI − µ I

f4 = a4L + kβI − a5Q− a6Q− µ Q

f5 = kαI + a6Q− a7H − µ H

f6 = k(1− α− β)I + a5Q + a7H − µR.

It is easy to obtain that ∂ fi/∂xi are continuous and |∂ fi/∂xi| < ∞ for i, j = 1, 2, ..., 6, where
x1 = S, x2 = L, x3 = I, x4 = Q, x5 = H, and x6 = R. By Lemma 1, the system (1) has a unique
solution.

3.3. Positivity of the Solution

Theorem 2. The solution of the model (1) with the initial conditions S(0) ≥ 0, L(0) ≥ 0, I(0) ≥ 0,
Q(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0 is positive in R6

+ for all t ≥ 0.

Proof. Positivity of S(t): The first equation of system (1) given by dS/dt = Λ− a1SL− a2SI − µS
can be expressed without loss of generality as an inequality as dS/dt ≥ −(a1Λ + a2Λ + µ2)S/µ.
After applying integration by a separable method, the solution can be obtained as
S(t) ≥ S0 exp[−(a1Λ + a2Λ + µ2)t/µ]. We can conclude that S(t) ≥ 0.

Similarly, L(t), I(t), Q(t), H(t), R(t) can be shown to be positive by the same procedure.
Therefore, the solution of the model system (1) is a positive quantity in R6

+ for all t ≥ 0.
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3.4. Equilibria

Setting all equations in the system (1) to be zero and solving all variables, we get two
equilibrium points:

(i) The disease-free equilibrium (DFE)

E0 =

(
Λ
µ

, 0, 0, 0, 0, 0
)

;

(ii) The endemic equilibrium
E∗ = (S∗, L∗, I∗, Q∗, H∗, R∗) ,

where
S∗ =

AB
a1B + a2a3

,

L∗ =
Λ
A
− µB

a1B + a2a3
,

I∗ =
a3L∗

B
,

Q∗ =
a4L∗ + kβI∗

a5 + a6 + µ
,

H∗ =
kαI∗ + a6Q∗

a7 + µ
,

R∗ =
k(1− α− β)I∗ + a5Q∗ + a7H∗

µ
,

with A ≡ a3 + a4 + µ and B ≡ k + µ + ε.

3.5. The Basic Reproduction Number (R0)

The number of secondary infectious produced by one infectious individual in a completely
susceptible population is the basic reproduction number (R0). We determine R0 by using the
next-generation matrix [40].

f =

a1SL + a2SI
0

a4L + kβ I

 v =

 (a3 + a4 + µ)L
−a3L + (k + µ + ε)I

(a5 + a6 + µ)Q

.

The Jacobian matrices of f and v are given by F and V, respectively

F =

a1S a2S 0
0 0 0
a4 kβ 0

 V =

a3 + a4 + µ 0 0
−a3 k + µ + ε 0

0 0 a5 + a6 + µ


and

FV−1 =


a1S
A

+
a2a3S

AB
a2S
B

0

0 0 0
a4

A
+

kβa3

AB
kβ

B
0

 .

The eigenvalues of FV−1 are

λ1 = λ2 = 0, and λ3 =
(a1B + a2a3)S

AB
.

Therefore, the spectral radius is R0 =
(a1B + a2a3)S

AB
.
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3.6. Stability of Disease-Free Equilibrium (DFE)

Theorem 3. The disease-free equilibrium point (E0) is locally asymptotically stable if R0 < 1.

Proof. The Jacobian matrix of the model system (1) at E0 is given as

J(E0) =



−µ −a1S0 −a2S0 0 0 0
0 a1S0 − A a2S0 0 0 0
0 a3 −B 0 0 0
0 a4 kβ −(a5 + a6 + µ) 0 0
0 0 kα a6 −(a7 + µ) 0
0 0 k(1− α− β) a5 a7 −µ


.

The eigenvalues of J(E0) are

λ1 = λ2 = −µ, λ3 = −(a5 + a6 + µ), λ4 = −(a7 + µ),

λ5 =
1
2

[
(a1S0 − A− B) +

√
(a1S0 − A− B)2 − 4(AB− a1BS0 − a2a3S0)

]
,

λ6 =
1
2

[
(a1S0 − A− B)−

√
(a1S0 − A− B)2 − 4(AB− a1BS0 − a2a3S0)

]
.

Let us consider

a1S0 − A− B = R0 A− a2a3S0

B
− A− B

= −A(1− R0)−
a2a3S0

B
< −A(1− R0).

We obtain a1S0 − A− B < 0 if R0 < 1.
Next, let us consider

AB− a1BS0 − a2a3S0 = −ABR0 + AB.

= AB(1− R0).

We get AB− a1BS0 − a2a3S0 > 0 if R0 < 1.
Since all eigenvalues of J(E0) have negative real part for R0 < 1, therefore, the DFE (E0) of the

model system (1) is locally asymptotically stable if R0 < 1.

3.7. Stability of the Endemic Equilibrium

Theorem 4. The endemic equilibrium point (E∗) exists and is locally asymptotically stable if R0 > 1.

Proof. The endemic equilibrium point

E∗ = (S∗, L∗, I∗, Q∗, H∗, R∗) ,
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where

S∗ =
AB

a1B + a2a3
=

S0

R0
,

L∗ =
Λ
A
− µB

a1B + a2a3
=

Λ
A

(
1− 1

R0

)
,

I∗ =
a3L∗

B
=

a3Λ
AB

(
1− 1

R0

)
,

Q∗ =
a4L∗ + kβI∗

a5 + a6 + µ
=

Λ
(a5 + a6 + µ)AB

(a4B + a3kβ)

(
1− 1

R0

)
,

H∗ =
kαI∗ + a6Q∗

a7 + µ
=

Λ
(a7 + µ)AB

(
a3kα +

a6 (a4B + a3kβ)

a5 + a6 + µ

)(
1− 1

R0

)
,

R∗ =
k(1− α− β)I∗ + a5Q∗ + a7H∗

µ
=

a3k(1− α− β)Λ
(

1− 1
R0

)
µAB

+
a5 (a3kβ + a4B)Λ

(
1− 1

R0

)
(a5 + a6 + µ)AB

,

+
a3a7kαΛ

(
1− 1

R0

)
(a7 + µ)AB

+
a6a7 (a3kβ + a4B)Λ

(
1− 1

R0

)
(a5 + a6 + µ)(a7 + µ)AB

.

Thus, the endemic equilibrium point (E∗) exists and is positive if R0 > 1.
The Jacobian matrix of the model system (1) at E∗ is given as

J(E∗) =



−µR0
−a1S0

R0

−a2S0

R0
0 0 0

µ(R0 − 1)
a1S0

R0
− A

a2S0

R0
0 0 0

0 a3 −B 0 0 0
0 a4 kβ −(a5 + a6 + µ) 0 0
0 0 kα a6 −(a7 + µ) 0
0 0 k(1− α− β) a5 a7 −µ


.

The characteristic equation from equation det(J(E∗)− λI) = 0 is

(λ + µ)(λ + a7 + µ)(λ + a5 + a6 + µ)(pλ3 + qλ2 + rλ + s) = 0,

where
p ≡ABR0,

q ≡A2BR0 + AB2R0 + a1BΛR0 + a2a3ΛR0 − a1 ABS0,

r ≡A2B2R0 + a1ΛABR0 + a2a3ΛAR0 + a1ΛB2R0

+ a2a3ΛBR0 − a1 AB2S0 − a1µABS0 − a2a3 ABS0,

s ≡a1ΛAB2R0 + a2a3ΛABR0 − a1µAB2S0 − a2a3µABS0.

The eigenvalues of J(E∗) are

λ1 = −µ, λ2 = −(a7 + µ), λ3 = −(a5 + a6 + µ),

and the roots of pλ3 + qλ2 + rλ + s = 0.
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Let us consider

p = ABR0 > 0

q = A2BR0 + AB2R0 + a1BΛR0 + a2a3ΛR0 − a1 ABS0

= (A2BR0 − a1 ABS0) + AB2R0 + a1BΛR0 + a2a3Λ R0

≥ AB(R0 − a1S0)

= a2a3 AS0 > 0

r = a1ΛABR0 + a2a3ΛAR0 + a1ΛB2R0 + a2a3ΛBR0 − a1µABS0

= (a1B + a2a3) (A + B)ΛR0 −
a1µA2B2R0

(a1B + a2a3)

= Λ
(

a2a3(A + B)R0 + a1B2R0 + a1 AB(R0 − 1)
)

s = a1ΛAB2R0 + a2a3ΛABR0 − a1µAB2S0 − a2a3µABS0

= (a1B + a2a3)(ΛR0 − µS0)AB

= µA2B2R0(R0 − 1),

then, there is no positive real root λ by the Descartes’ rule of signs [41] provided

p > 0, q > 0, r > 0, s > 0. (2)

This means that
R0 > 1.

Since all eigenvalues of J(E0) have negative real part for R0 < 1, the endemic equilibrium point
(E∗) of the model system (1) is locally asymptotically stable if R0 > 1.

4. Numerical Simulations

In this section, the numerical results of the system (1) are carried out using Matlab with the
initial values:

S(0) = 5000, L(0) = 100, I(0) = 50, Q(0) = 0, H(0) = 0, and R(0) = 0.

Figure 2 shows a computer simulation of the system (1) with the parametric values Λ =

0.175, a1 = 1/5150, a2 = 1/5150, a3 = 0.5, a4 = 0.7, a5 = 0.1, a6 = 0.1, a7 = 0.1, k = 0.1,
µ = 0.002, α = 0.06, β = 0.02, and ε = 0.03 in which R0 < 1. The solution trajectory tends to the
disease-free equilibrium (E0), as proved in Theorem 3.
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Figure 2. Simulation results of system (1). The time series of susceptible population (S),
latent population (L), infectious population (I), quarantine population (Q), hospitalized population
(H), and recovery population (R), respectively. The solution trajectory tends toward the disease-free
equilibrium (DFE) when R0 < 1.
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Figure 3 shows a computer simulations of the system (1) with the parametric values Λ = 50,
a1 = 0.001, a2 = 0.001, a3 = 0.3, a4 = 0.4, a5 = 0.1, a6 = 0.9, a7 = 0.4, k = 0.5, µ = 0.005, α = 0.01,
β = 0.02, and ε = 0.9 in which R0 < 1. The solution trajectories tend to the endemic equilibrium (E∗),
as proved in Theorem 4.
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Figure 3. Simulation results of system (1). The time series of susceptible population (S),
latent population (L), infectious population (I), quarantine population (Q), hospitalized population
(H), and recovery population (R), respectively. The solution trajectories tend toward the endemic
equilibrium (E∗) when R0 > 1.

5. Sensitivity Analysis

We carried out sensitivity analysis [42] in order to determine the relative significance of model
parameters on disease transmission. The analysis shows the impact of parameters on the basic
reproduction number in order to control the spread of COVID-19 disease. The explicit expression of
R0 is given by

R0 =
Λ (a1(k + µ + ε) + a2a3)

µ(a3 + a4 + µ)(k + µ + ε)
.

Since R0 depends on eight parameters, all sensitivity indices can be carried out and expressed below:

γR0
Λ =

(
∂R0

∂Λ

)(
Λ
R0

)
= 1

γR0
a1 =

(
∂R0

∂a1

)(
a1

R0

)
=

a1(k + µ + ε)

a1(k + µ + ε) + a2a3

γR0
a2 =

(
∂R0

∂a2

)(
a2

R0

)
=

a2a3

a1(k + µ + ε) + a2a3

γR0
a3 =

(
∂R0

∂a3

)(
a3

R0

)
= − a3(a1(k + µ + ε)− a2(a4 + µ))

(a1(k + µ + ε) + a2a3)(a3 + a4 + µ)

γR0
a4 =

(
∂R0

∂a4

)(
a4

R0

)
= − a4

a3 + a4 + µ

γR0
k =

(
∂R0

∂k

)(
k

R0

)
= − a2a3k

(a1(k + µ + ε) + a2a3) (k + µ + ε)

γR0
µ =

(
∂R0

∂µ

)(
µ

R0

)
=

a1µ

a1(k + µ + ε) + a2a3
− µ

a3 + a4 + µ
− µ

k + µ + ε
− 1

γR0
ε =

(
∂R0

∂ε

)(
ε

R0

)
= − a2a3ε

((a1(k + µ + ε) + a2a3)(k + µ + ε))
.
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The sensitivity indices of the basic reproduction number (R0) with respect to the parameters are
shown in Table 1. The parameters that have positive indices, i.e., Λ, a1, and a2, have a positive effect on
the basic reproduction number. It means that the increase in the number of latent population (L) and
infectious population (I) with the rate a1 and a2 may lead to an outbreak. Furthermore, the parameter
in which their sensitivity indices are negative, i.e., a3, a4, k, µ, and ε, have a negative effect to minimize
the endemicity of the disease. From Table 1, we give the examples of parameters a3 and a4 effected on
all classes as shown in Figure 4 and Figure 5, respectively.

Table 1. Sensitivity indices table.

Parameters Symbol Sensitivity Indices

Λ 1
a1 0.8236331570
a2 0.1763668430
a3 −0.07342499706
a4 −0.7493755204
k −0.06294319877
µ −1.000958526
ε −0.1798043729

0 10 20 30 40 50 60

t

0

2

4

6

8

10

S
(t

)

a
3
=0.1

a
3
=0.5

a
3
=0.9

0 10 20 30 40 50 60

t

0

1000

2000

3000

4000

5000

L
(t

)

a
3
=0.1

a
3
=0.5

a
3
=0.9

0 10 20 30 40 50 60

t

0

500

1000

1500

I(
t)

a
3
=0.1

a
3
=0.5

a
3
=0.9

0 10 20 30 40 50 60

t

0

500

1000

1500

2000

2500

Q
(t

)

a
3
=0.1

a
3
=0.5

a
3
=0.9

0 10 20 30 40 50 60

t

0

200

400

600

800

1000

1200

H
(t

)

a
3
=0.1

a
3
=0.5

a
3
=0.9

0 10 20 30 40 50 60

t

0

2000

4000

6000

8000

R
(t

)

a
3
=0.1

a
3
=0.5

a
3
=0.9

Figure 4. Simulation results of system (1) focused on changes in the transition rate (per unit time) from
latent compartment L to infectious compartment I, i.e., a3.
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Figure 5. Simulation results of system (1) focused on changes in the transition rate (per unit time) from
latent compartment L to quarantine compartment Q, i.e., a4.
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6. The Case Study of Thailand

In this section, the numerical simulations of the model system (1) will be compared with
the real data, focused on the number of infectious individuals and the number of hospitalized
individuals. The real data are taken from the Department of Disease Control, Ministry of Public
Health, Thailand [43]. The confirmation of infected people is collected by COVID-19 swab test.
The starting point is 3 February 2020, when the COVID-19 disease outbreak began, and the collected
data end on the 158th day.

In Figure 6, the confirmed cases of infectious class simulated from the model (red solid line)
fitted well to the reported COVID-19 cases data (blue circle) with R2 = 0.866. The confirmed cases of
hospitalized class simulated from the model (red solid line) is nearly close to the real data (blue circle)
with R2 = 0.880, as shown in Figure 7.
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Figure 6. The number of confirmed cases of infectious individuals per day.
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Figure 7. The number of confirmed cases of hospitalized individuals per day.

7. Conclusions and Discussion

We have proposed the epidemiology-generalized model of COVID-19 outbreak which is
composed of the susceptible (S), latent (L), infectious (I), quarantine (Q), hospitalized (H),
and recovery (R) populations. The model is developed from the past models, for example, the SIR
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model and SEIR model. This outbreak has some properties different from previous SARS and MERS
outbreaks. The major difference from others is the latent class. After humans get 2019-nCoV (novel
coronavirus 2019), the symptoms do not appear for at least 14 days, which is a long time to transmit
the virus to nearby humans. This is the major problem of COVID-19 that causes the disease to spread
around the world. Our proposed model gives a fitted approximation of the data from Thailand with
forecast of the confirmed infectious and hospitalized cases. The basic reproduction number (R0)

which is obtained from the model analysis provides the condition for considering the stability of the
equilibrium. The sensitivity analysis of the parameters in the model provides that the quarantine and
hospitalized classes are the best way to control the transmission of the disease because the change of
model parameters a3 and a4 let us know the quarantine policy is a suitable way to reduce the spreading
of COVID-19 outbreak. From the results, we can say that the proposed model may be a suitable tool
for predicting the outbreak.

Author Contributions: Conceptualization, D.P. and K.T.; data curation, K.T.; formal analysis, K.T.; investigation, D.P.,
K.T. and I.C.; methodology, I.C.; software, K.T.; resources, D.P.; validation, D.P., K.T. and I.C.; visualization, K.T. and
I.C.; writing—original draft, D.P. and K.T.; writing—review & editing, I.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research project was financially supported by Mahasarakham University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Coronavirus Disease 2019 (Covid-19): Situation Report. Available online:
https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-
2019-ncov-on-11-february-2020 (accessed on 1 July 2020).

2. Fanelli, D.; Piazza, F. Analysis and forecast of covid-19 spreading in china, italy and france. Chaos Solitons
Fractals 2020, 134, 1–5. [CrossRef] [PubMed]

3. Randhawa, G.; Soltysiak, M.; Roz, H.; de Souza, C.; Hill, K.; Kari, L. Machine learning using intrinsic
genomic signatures for rapid classification of novel pathogens: Covid-19 case study. PLoS ONE 2020, 15,
e0232391. [CrossRef] [PubMed]

4. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Chen, H.D. A pneumonia outbreak associated
with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [CrossRef] [PubMed]

5. Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.J.; Zhang, Z. Isolation of sars-cov-2-related coronavirus
from malayan pangolins. Nature 2020, 583, 286–289. [CrossRef]

6. Zhang, T.; Wu, Q.; Zhang, Z. Probable pangolin origin of sars-cov-2 associated with the Covid-19 outbreak.
Curr. Biol. 2020, 134, 1–5. [CrossRef]

7. World Health Organization. Consensus Document on the Epidemiology of Severe Acute Respiratory
Syndrome (Sars). Available online: https://www.who.int/csr/sars/WHOconsensus.pdf (accessed on
12 July 2020).

8. World Health Organization. Middle East Respiratory Syndrome Coronavirus (Mers-Cov). Available online:
https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-
(mers-cov) (accessed on 12 July 2020).

9. Atangana, A. Modelling the spread of Covid-19 with new fractal-fractional operators: Can the lockdown
save mankind before vaccination? Chaos Solitons Fractals 2020, 136, 109860. [CrossRef]

10. World Health Organization. Coronavirus Disease 2019 (Covid-19): Situation Report. 133. Available
online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-
sitrep-133.pdf (accessed on 12 July 2020).

11. World Health Organization. Coronavirus Disease 2019 (Covid-19): Situation Report. 174. Available
online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-
sitrep-174.pdf (accessed on 12 July 2020).

12. Suparit, P.; Wiratsudakul, A.; Modchang, C. A mathematical model for zika virus transmission dynamics
with a time-dependent mosquito biting rate. Theor. Med. Model. 2018, 15, 1–11. [CrossRef]

https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019 -ncov-on-11-february-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019 -ncov-on-11-february-2020
http://dx.doi.org/10.1016/j.chaos.2020.109761
http://www.ncbi.nlm.nih.gov/pubmed/32308258
http://dx.doi.org/10.1371/journal.pone.0232391
http://www.ncbi.nlm.nih.gov/pubmed/32330208
http://dx.doi.org/10.1038/s41586-020-2012-7
http://www.ncbi.nlm.nih.gov/pubmed/32015507
http://dx.doi.org/10.1038/s41586-020-2313-x
http://dx.doi.org/10.1016/j.cub.2020.03.022
https://www.who.int/csr/sars/WHOconsensus.pdf
 https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
 https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
http://dx.doi.org/10.1016/j.chaos.2020.109860
 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-sitrep-133.pdf
 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-sitrep-133.pdf
 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-sitrep-174.pdf
 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200712-covid-19-sitrep-174.pdf
http://dx.doi.org/10.1186/s12976-018-0083-z


Symmetry 2020, 12, 1404 13 of 14

13. Bocharov, G.; Volpert, V.; Ludewig, B.; Meyerhans, A. Mathematical Immunology of Virus Infections;
Springer International Publishing AG: Cham, Switzerland, 2018.

14. Sardar, T.; Chattopadhyay, J. A mathematical model of dengue transmission with memory. Commun. Nonlinear
Sci. Numer. Simul. 2015, 22, 511–525. [CrossRef]

15. Wu, C.; Wong, P.Y. Dengue transmission: Mathematical model with discrete time delays and estimation of
the reproduction number. J. Biol. Dyn. 2019, 13, 1–25. [CrossRef]

16. Sazonov, I.; Grebennikov, D.; Kelbert, M.; Meyerhans, A.; Bocharov, G. Viral Infection Dynamics
Model Based on a Markov Process with Time Delay between Cell Infection and Progeny Production.
Mathematics 2020, 8, 1207. [CrossRef]

17. Zheltkova, V.; Argilaguet, J.; Peligero, C.; Bocharov, G.; Meyerhans, A. Prediction of PD-L1 inhibition effects
for HIV-infected individuals. PLoS Comput. Biol. 2019, 15, E1007401. [CrossRef]

18. Shcherbatova, O.; Grebennikov, D.; Sazonov, I.; Meyerhans, A.; Bocharov, G. Modeling of the HIV-1 Life
Cycle in Productively Infected Cells to Predict Novel Therapeutic Targets. Pathogens 2020, 9, 255. [CrossRef]
[PubMed]

19. Romanyukha, A.A.; Nosova, E.A. Modeling Spread of HIV as a Result of Social Maladjustment. Autom. Remote
Control 2012, 73, 2071–2082. [CrossRef]

20. Avilov, K.K.; Romanyukha, A.A.; Borisov, S.E.; Belilovsky, E.M.; Nechaeva, O.B.; Karkach, A.S. An approach
to estimating tuberculosis incidence and case detection rate from routine notification data. Int. Tuberc.
Lung Dis. 2015, 19, 288–294. [CrossRef]

21. Jiang, S.; Wang, K.; Li, C.; Hong, G.; Zhang, X.; Shan, M.; Li, H.; Wang, J. Mathematical models for devising
the optimal ebola virus disease eradication. J. Transl. Med. 2017, 1–10. [CrossRef]

22. Rhoubari, Z.; Besbassi, H.; Hattaf, K.; Yousfi, N. Mathematical modeling of ebola virus disease in bat
population. J. Transl. Med. 2018, 1–7. [CrossRef]

23. Berge, T.; Lubuma, J.-S.; Moremedi, G.; Morris, N.; Kondera-Shava, R. A simple mathematical model for
ebola in africa. J. Biol. Dyn. 2017, 11, 42–74. [CrossRef]

24. Deepa, O.S.; Nallamalli, S.; SinghNaik, L.; Teja, G. Mathematical model for transmission of ebola. Procedia Comput.
Sci. 2015, 48, 741–745. [CrossRef]

25. Carvalho, S.; da Silva, S.; da Cunha Charret, I. Mathematical modeling of dengue epidemic: Control methods
and vaccination strategies. Theory Biosci. 2019, 138, 223–239. [CrossRef]

26. Bonyah, E.; Okosun, K. Mathematical modeling of zika virus. Asian Pac. J. Trop. Dis. 2016, 6, 673–679.
[CrossRef]

27. Biswas, S.; Ghosh, U.; Sarkarb, S. Mathematical model of zika virus dynamics with vector control and
sensitivity analysis. Infect. Dis. Model. 2020, 5, 23–41. [CrossRef] [PubMed]

28. Tang, S.; Ma, W.; Bai, P. A novel dynamic model describing the spread of the mers-cov and the expression of
dipeptidyl peptidase 4. Comput. Math. Methods Med. 2017, 1–6. [CrossRef] [PubMed]

29. Liang, K. Mathematical model of infection kinetics and its analysis for Covid-19, sars and mers. Infect. Genet.
Evol. 2020, 82, 1–7. [CrossRef] [PubMed]

30. Lamwong, J.; Tang, I.; Pongsumpun, P. Mers model of thai and south korean population. Curr. Appl.
Sci. Technol. 2018, 18, 1–13.

31. Herrera, G.; Fernandez-Merodo, J.; Mulas, J.; Pastor, M. A landslide forecasting model using ground based
sar data: The portalet case study. Eng. Geol. 2013, 105, 220–230. [CrossRef]

32. Goulard, M.; Laurent, T.; Thomas-Agnan, C. About predictions in spatial sar models: Optimal and almost
optimal strategies. Spat. Econ. Anal. 2017, 12, 304–325. [CrossRef]

33. Ndaïrou, F.; Torresa, D.M. Mathematical modeling of covid-19 transmission dynamics with a case study of
wuhan. Chaos Solitons Fractals 2020, 135, 1–6. [CrossRef]

34. Postnikov, E. Estimation of Covid-19 dynamics “on a back-of-envelope”: Does the simplest sir model provide
quantitative parameters and predictions? Chaos Solitons Fractals 2020, 135, 109841. [CrossRef]

35. Sarkar, K.; Khajanchi, S.; Nieto, J. Modeling and forecasting the covid-19 pandemic in india. Chaos Solitons
Fractals 2020, 139, 110049. [CrossRef]

36. Shereen, M.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. Covid-19 infection: Origin, transmission, and
characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [CrossRef]

37. Arino, J.; Portet, S. A simple model for Covid-19. Infect. Dis. Model. 2020, 5, 309–315. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cnsns.2014.08.009
http://dx.doi.org/10.1080/17513758.2018.1562572
http://dx.doi.org/10.3390/math8081207
http://dx.doi.org/10.1371/journal.pcbi.1007401
http://dx.doi.org/10.3390/pathogens9040255
http://www.ncbi.nlm.nih.gov/pubmed/32244421
http://dx.doi.org/10.1134/S0005117912120119
http://dx.doi.org/10.5588/ijtld.14.0317
http://dx.doi.org/10.1186/s12967-017-1224-6
http://dx.doi.org/10.1155/2018/5104524
http://dx.doi.org/10.1080/17513758.2016.1229817
http://dx.doi.org/10.1016/j.procs.2015.04.210
http://dx.doi.org/10.1007/s12064-019-00273-7
http://dx.doi.org/10.1016/S2222-1808(16)61108-8
http://dx.doi.org/10.1016/j.idm.2019.12.001
http://www.ncbi.nlm.nih.gov/pubmed/31911957
http://dx.doi.org/10.1155/2017/5285810
http://www.ncbi.nlm.nih.gov/pubmed/28894474
http://dx.doi.org/10.1016/j.meegid.2020.104306
http://www.ncbi.nlm.nih.gov/pubmed/32278147
http://dx.doi.org/10.1016/j.enggeo.2009.02.009
http://dx.doi.org/10.1080/17421772.2017.1300679
http://dx.doi.org/10.1016/j.chaos.2020.109846
http://dx.doi.org/10.1016/j.chaos.2020.109841
http://dx.doi.org/10.1016/j.chaos.2020.110049
http://dx.doi.org/10.1016/j.jare.2020.03.005
http://dx.doi.org/10.1016/j.idm.2020.04.002
http://www.ncbi.nlm.nih.gov/pubmed/32346663


Symmetry 2020, 12, 1404 14 of 14

38. Van Bavel, J.J.; Baicker, K.; Boggio, P.S.; Capraro, V.; Cichocka, A.; Cikara, M.; Drury, J. Using social and
behavioural science to support Covid-19 pandemic response. Nat. Hum. Behav. 2020, 4, 460–471. [CrossRef]
[PubMed]

39. Derrick, N.; Grossman, S. Differential Equation with Application; Addision Wesley Publishing Company, Inc.:
Reading, MA, USA, 1976.

40. van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]

41. Bhaskar, A.; Song, Y. Descartes’ rule of signs and the identifiability of population demographic models from
genomic variation data. Ann. Stat. 2014, 42, 2469–2493. [CrossRef] [PubMed]

42. Chitnisa, N.; Hymanb, J.; Cushing, J. Determining important parameters in the spread of malaria through
the sensitivity analysis of a mathematical model. Bull. Math. Biol. 2008, 70, 1272–1296. [CrossRef]

43. Ministry of Public Health, Department of Disease Control. COVID-19 Situation Reports. Available online:
https://covid19.ddc.moph.go.th/en (accessed on 1 July 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41562-020-0884-z
http://www.ncbi.nlm.nih.gov/pubmed/32355299
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1214/14-AOS1264
http://www.ncbi.nlm.nih.gov/pubmed/28018011
http://dx.doi.org/10.1007/s11538-008-9299-0
https://covid19.ddc.moph.go.th/en
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Model
	Analysis of the Model
	Invariant Region
	Existence of the Solution
	Positivity of the Solution
	Equilibria
	The Basic Reproduction Number (R0)
	Stability of Disease-Free Equilibrium (DFE)
	Stability of the Endemic Equilibrium 

	Numerical Simulations
	Sensitivity Analysis
	The Case Study of Thailand
	Conclusions and Discussion
	References

