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Abstract: The digit ratio, an indicator of brain laterality, is the ratio of the second and fourth digits on
the left (L24) or right foot (R24). Much of the research on the digit ratio and brain laterality focuses
on primates, rather than other species such as reptiles. We tested whether the digit ratio in the
gecko Ptyodactylus guttatus was associated with behaviors attributed to brain laterality. We examined
risk-taking behavior (time spent under cover), foot preference (which foot was the first to start moving)
and the side from which geckos bypassed an obstacle, in relation to the digit ratio. Geckos with longer
fourth digits on their left hind foot (higher digit ratio) spent more time under cover. Geckos starting to
move with their left leg were much more likely to bypass obstacles from the right side, and vice versa.
This is the first evidence of laterality being associated with the digit ratio in reptiles. Comparisons
among vertebrates are needed in order to decipher the evolutionary origin of the commonalities and
peculiarities of brain asymmetry and disentangle the patterns and drivers of our evolutionary tree.
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1. Introduction

The focus of a majority of research by neurobiologists in brain asymmetries and brain laterality
has mainly been with humans and other primates. This focus is somewhat surprising given that
brain laterality was first described in fish, amphibians and reptiles [1]. Laterality studies of recent
decades found consistent evidence amongst vertebrates of similar functionality of brain laterality [1–5].
In many vertebrates, left eye bias is more frequent in hostile gestures, e.g., lizards [6–8], but also other
vertebrates [9–11], including humans [12–15], or domestic animals as dogs [16,17]. However, the eye
bias is opposite in fish [18,19]. The more frequent use of the left eye in hostile gestures as mediated by
the right brain hemisphere and subsequent hormone release is a well-studied mechanism in many
vertebrates [1]. The left eye, which is controlled by the right hemisphere or diencephalic regions of
the brain, is more specialized in vigilance towards predators. The right eye, controlled by the left
side of the brain, is more specialized for searching for food [1,2,20]. Brain lateralization is sensitive to
neonatal handling and prenatal maternal stress [19–23]. Prenatal maternal stress elevates corticoids and
testosterone levels and is considered to be reflected in higher digit ratios when comparing the second
to the fourth digit (i.e., 2/4 or longer fourth digit relative to the second digit) [24,25]. Brain laterality in
lizards is reflected in asymmetrical eyes [6–8,26,27] and leg preference [28] as well as turning bias [29].

The preponderance of tail injuries in several species of lizards [30–33], tuatara [32,34] and
snakes [35,36] is associated with left dominant asymmetry (of various morphological indices). In a
similar fashion, eye and digit asymmetries are correlated with the risk-taking strategy in the gecko
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Ptyodactylus guttatus [29]. A possible explanation is that morphological asymmetry is a proxy for brain
laterality [29,37]. Thus, an association between eye or digit asymmetry and risk strategy (manifested in
tail injury) may be derived from brain laterality. Another possible explanation is that brain asymmetry
is derived from morphological asymmetry, especially of the eyes. These competing hypotheses need to
be tested. Brain laterality and morphometry, such as hippocampus asymmetry [38,39], asymmetric
distribution of receptors in the right vs. left hemisphere [38], risk perception [40], aggression [41] and
spatial perception [42,43] are shaped by hormones during embryonic stages [44–47]. A byproduct of
this phenomenon is the associated digit ratio [44–47]. The digit ratio and digit asymmetry are often
correlated [29,37]. When the fourth digit is longer than the second digit, it has been shown to be a
marker for higher testosterone levels in humans [44–47] and lizards [48]. Similarly, digit asymmetry
is expected to be more left-biased as the fourth digit is longer on the left foot. Since eye and digit
asymmetries correlate with hormones [29], it is possible that this is another facet of the same phenomena.
Higher levels of testosterone may explain the correlation between digit asymmetry and tail injury [30],
or tail injury and eye asymmetry in snakes [35] and lizards [28]. Elevated testosterone may result in a
higher risk-taking strategy, and thus a higher rate of predation or tail injury. The exact mechanism is
not entirely clear, although as the digit ratio and digit asymmetry are markers of testosterone level,
then these same ratios and asymmetries can, therefore, indicate the level of risk strategy used in many
vertebrates, such as humans [49] and lizards [50,51].

The morphometric ratio of the length of the second to fourth digits (D2/D4) on the manus
(the distal portion of the forelimb, or hand) is an external marker of another process. The digit
ratio (2D/4D) is considered to be a biomarker that reflects the balance between prenatal testosterone
(pT) and estrogen (pE). Although the onset is only in a narrow window of early ontogeny, it is
reflected in adult morphology [46,47]. There are some caveats [52] to this theory of prenatal androgen
cerebral lateralization [53], especially as regards to speech laterality, where sexual dimorphism has
not been observed. Even in studies of young children, who should have experienced fewer postnatal
influences, the digit ratio as reflecting prenatal steroids was only found to be minimal [54]. Despite this,
the second-to-fourth digit ratio is still considered as a proxy for prenatal testosterone [44–47]. Since pT
levels also affect brain development and laterality [55–57], they have been found to be positively
correlated with greater brain lateralization functions such as handedness, cognition and left hemisphere
activity [57]. Higher levels of pT are related to increased left hemisphere dominance for language [57]
and left-handedness [58]. It has been suggested that elevated levels of fetal testosterone are associated
with adult levels of circulating testosterone [56,59], and these, in turn, are related to risk-related
behavior in many vertebrates such as birds [60], humans [49], rats [61] and lizards [49,50]. In humans,
a higher digit ratio (fourth digit longer than the second) reflects higher testosterone levels and has
been linked to aggression [41,62] and with a tendency to take more financial risks [62,63]; therefore,
we hypothesize that the digit ratio could be used to evaluate risk-taking strategies in other vertebrates.
Using this hypothesis, the proportion of risk-taking individuals may be predicted from the degree
of the digit ratio at the population level. Direnzo and Stynoski [48] found that the digit ratio also
reflects hormone levels (in frogs and lizards). The only behavioral experiments relating the digit ratio
and hormone levels we are aware of was by Sion [29], which showed that in the gecko P. guttatus,
corticosterone levels increased with lower digit ratios on the left hind foot. This suggests that the
morphometric digit ratio is a marker for brain laterality in lizards in a similar way that it is a marker
for laterality in humans.

When bird eggs of the collared flycatcher (Ficedula albicollis) were administrated with testosterone,
fledglings from eggs with elevated levels of yolk testosterone—regardless of sex—had longer second
digits on their left feet than controls had; however, this was not the case for the right foot. This shows,
experimentally, that early testosterone exposure can affect the second-to-fourth digit ratio in a wild
population of vertebrates [64].

The right hand and leg are predominantly controlled by the left hemisphere and vice versa.
Handedness can thus be a proxy for brain laterality [65]. Similarly to hand preference in primates,
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we used foot preference in a lizard as a proxy for brain laterality. An association between a proxy
for brain laterality and morphometric traits was never tested in reptiles, except in [29], when geckos
with larger left eyes took more risks, and individuals with larger right eyes had a higher social status.
Sion [28] found that lateral bite marks reflect asymmetric biting behavior and brain laterality via
foot preference.

To examine the relationship between morphological and behavioral proxies of brain laterality,
we studied the gecko Ptyodactylus guttatus. We aimed to examine whether risk taking, as reflected in
the time spent under or away of cover, was associated with the digit ratio. We further tested whether
the digit ratio was correlated with behavioral laterality as reflected in leg dominance during the first
step and detour tests (on which side an animal chooses to pass an obstacle).

We hypothesized that the association of risk with brain laterality in vertebrates may tie both
phenomena of the digit ratio and digit asymmetry towards one potential solution of being derived
from brain laterality.

We predicted: (1) that the digit ratio (L24 R24) would correlate with behavioral laterality proxies
associated with testosterone; (2) geckos with higher digit ratios on the left hind foot would tend to take
higher risks; (3) left-footed individuals would tend to bypass obstacles from the right side; right-footed
individuals will pass from the left side [66]; and (4) geckos turning right would tend to stay longer
under cover, since detour direction is mediated via dopamine (higher dopamine levels equal higher
probability of turning left [66] and lower risk-taking behavior [67]).

2. Materials and Methods

2.1. Subjects and Housing

The Sinai fan-fingered gecko Ptyodactylus guttatus Heyden, 1827 is a phyllodactylid species
inhabiting the Sinai Peninsula of Egypt, NW Saudi Arabia, Palestine, Jordan and Israel. It is a
rupicolous, scansorial lizard [28,29,68–74] that inhabits cliffs and masonry walls where it can be
observed from a distance [28,37,68–74]. Though not usually a house gecko, it can nonetheless
sometimes be found in human settlements [28,29,68,69,72,74]. It is active during both day and night
and is very common in rocks throughout Israel. It is insectivorous and very much a “sit and wait”
ambush predator [73,75].

We caught geckos twice: 22 during 2013 according to the Israeli law, under a permit from
the Nature and Parks Authority (permit number: 2013/38003) and ethics (permit from the Hebrew
University: OPRR-A01-5011) and 16 in 2017 (permit, 2017/41498), ethics from Tel-Aviv University
(04-17-014). All geckos were captured on masonry walls in Jerusalem’s Yemin-Moshe neighborhood
(Israel, lat. 31.77◦ N, long. 35.22◦ E, alt. 750 m a.s.l.)

The geckos were housed in standard plastic terraria (49 × 7.5 × 8 cm) at room temperature and
fed with grasshoppers. Water was provided ad libitum. No food or water was provided during the
experimental sessions, which took place in separate terraria (novel environment).

We removed one animal with an abnormal outlier measurement of the fourth digit on the left foot
(L4). This animal was released back into the wild after experiments ended and we, therefore, could not
measure its L4 again (the L4 abnormal outlier was consistent on two measurements). Therefore,
tests involving L24 measurements were conducted on 37 animals and tests not involving L24 were run
on the full dataset of 38 animals.

2.2. Sex and Age

The 2013 group comprised both adults and juveniles, whereas the 2017 group consisted of only
juveniles. In 2013, we measured digit length and snout vent length (SVL), tested for foot preference
and then the geckos were shortly released back to their place of capture, up to a week later. In 2017,
the geckos were housed at Tel-Aviv University, and had the same morphometric measurements as the
2013 group, but additional behavioral tests (cover and detour tests) were conducted. Geckos in 2017
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were measured on the same day they were tested. The geckos in 2017 were identified to sex once they
attained a length of 50 mm. Male P. guttatus, which are longer than 50 mm SVL, display a paired bulge
under the base of the tail housing the hemipenes [28,29,37,69,76]. Sex is known to affect testosterone
levels, therefore, we accounted for sex in our analyses (see below), since sub-adults and juveniles
<60 mm in SVL [28,29,37,69,76] are not territorial, have shorter hibernation and display riskier foraging
strategies than adults [69,76]. We, therefore, controlled for sex using ANCOVA (P > 0.4 in all tests and
thus we dropped it) and for body size in all our analyses (see below). Of the 16 geckos, we managed to
sex 15 [77].

2.3. Measurements

All measurements were taken immediately prior to the behavioral observations, to avoid
subconscious bias. Measurements were taken using digital calipers to 0.01 mm precision. We measured
the 2nd and 4th digits on both hind feet (see Figure 1).
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Figure 1. Measurement schematic for digit length in the gecko manus. The measurement is always
from the inner side. The lines indicate measuring digits D2 and D4 on both sides of the third digit D3.

The digit ratio (2/4) was the length of the second digit divided by the fourth digit, for each hind
pes (foot) separately: R2/R4 = R24; L2/L4 = L24 (except for the outlier described above, the 4th digit
was always longer than the 2nd, and hence more complex ratios were unnecessary; [78]). The sample
size for comparing the digit ratio with the detour test was N = 37, constituted from Tables 1 and 2
(gecko 7 from Table 2 was excluded), and the sample size for comparing the digit ratio with time under
cover was N = 15 (Table 2).

Table 1. Comparing digit ratio with asymmetric behaviors.

Lizard Sex SVL L24 R24 Foot-Preference

1 Female 68.3 0.598 0.972 0
2 Male 66.8 0.651 0.753 0.333
3 Female 66.5 0.657 0.783 −0.2
4 Female 64.4 0.672 0.62 0.5
5 Male 64.1 0.682 0.682 −1
6 Female 61.9 0.702 0.606 −0.6
7 Female 64.6 0.72 0.792 0.5
8 Female 65 0.731 0.8 0.143
9 Male 76.3 0.731 0.642 −0.5

10 Male 71.5 0.735 0.681 −1
11 Male 69 0.747 0.729 −0.2



Symmetry 2020, 12, 1490 5 of 16

Table 1. Cont.

Lizard Sex SVL L24 R24 Foot-Preference

12 Female 66.8 0.747 0.762 −1
13 Female 65 0.753 0.829 0.6
14 Female 50 0.758 0.805 −0.667
15 Female 69.3 0.773 0.651 −1
16 Male 66.6 0.783 0.688 −0.333
17 Juvenile 45.6 0.796 0.964 0.5
18 Female 49.9 0.826 0.814 0.6
19 Female 61.7 0.847 0.667 −0.6
20 Female 67.2 0.854 0.738 0
21 Female 61.1 0.87 0.708 0.6
22 Female 68.8 0.872 0.812 0.2

Table 2. Comparing digit ratio with asymmetric behaviors.

Lizard Sex SVL L24 R24 Foot-Preference Detour-Test Cover

1 Female 41.03 0.917 0.831 0 −0.333 0
2 Female 38.89 0.789 0.805 −0.333 0.333 0.667
3 Male 48.85 0.707 0.884 0 0.333 1
4 Male 36.35 0.879 0.72 0.333 −0.333 1
5 Female 37.09 0.97 0.959 0.333 −0.333 0
6 Female 43.44 0.85 0.721 0.333 −0.333 1

7 * Female 47.17 1.306 0.824 0.667 −0.667 0
8 Female 48.46 0.735 0.805 0.667 −0.667 0.667
9 Female 48.38 0.915 0.973 0 −0.333 0

10 Female 34.06 0.741 0.779 −0.667 0.667 1
11 Male 51.07 0.839 0.711 0.333 −0.667 0
12 Female 38.79 0.736 0.785 −0.333 0 1
13 Juvenile 35.45 0.779 0.798 0.667 −0.667 0
14 Female 46.57 0.727 0.981 −0.667 1 1
15 Male 27.68 0.813 0.752 −0.333 0.333 0.667
16 Female 46.73 0.774 0.752 0 0 0.667

* Gecko No. 7. was excluded, since its left digit-ratio was an abnormal outlier. The results were significant with and
without it.

2.4. Risk-Taking Strategy

To quantify the risk-taking strategy, we placed sixteen geckos, in turn, in a glass terrarium
(21 × 61 × 43 cm) with a double-corrugated red plastic sheet (26 × 12 cm) as a cover. This enabled the
gecko to hide, although the terrarium was transparent (see Figure 2).
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Figure 2. When exposed to a novel environment, the geckos can choose either an exposed position or
to hide under a double-corrugated red plastic sheet. The gecko on the left is exhibiting a risky strategy
(exposed), while the gecko on the right is exhibiting the risk-averse strategy (under cover).
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Risk-taking behavior was quantified by recording whether a gecko was observed under cover
or out of cover during six observations (at 30-min intervals) during a 3-h trial. As P. guttatus is a
classical “sit and wait” ambush predator [72,79], geckos were generally immobile when observed.
It is unlikely that geckos moved much during the time they were not observed. Thus, we quantified
risk taking as the proportions of observations in which the gecko remained under cover. Some of the
geckos remained under the cover for the entire trial, while others chose to stay out during the whole
experiment, and some changed their location between exposed and under cover. We calculated the
proportion of geckos using a risky strategy during 180 min with 30-min intervals as 1/6 of the time
up to 6/6 of the time with the same risk strategy, thus creating risk taking as a continuous variable.
Although the animals were looked at during the whole three hours, we suggest from our experience
that in such a “sit and wait” strategy [72,75], a half hour interval should suffice. We further defined
animals as risk-averse if they spent 67% or more of the time under cover (4–6 of the observations).

2.5. Laboratory Conditions

The trials were performed during daylight, at a room temperature of 23 ◦C. Each gecko was
tracked and its behavior was documented for three hours under constant lighting and temperature.
All tests were conducted at the same hour of the day and during the same season.

2.6. Foot Preference

Foot preference was defined (following [28]) as the hindfoot the gecko uses when it starts walking
in the experimental arena. The hindfoot was used because in all trials of all animals, the first leg to
move was always a hind leg.

Individuals were placed alone in an open plastic box: 58 × 49 × 41 cm. Each gecko was tested
six times and each trial (foot preference) was independent of the previous trial, since each lizard was
individually hand-placed in the same initial location. All tests were performed after dark, (P. guttatus
activity is mostly at dusk and the first few hours after dark) at room temperature (23 ◦C). Geckos were
photographed using a Canon SX 60 HS video camera. Foot preference was documented using a camera
and slow-motion analysis was used to determine which foot moved first. After each trial, the lizard
was picked up and hand-placed in the same initial location within the arena. We used the Windows
Media Player application to slow down the photographed movements. To calculate the degree of foot
preference, we used six trials for each individual. The formula for calculating the asymmetric behavior
was (R−L)/ ((R + L), so it ranged between 1 and −1.

2.7. Detour Test

The detour test was conducted in the same box as the foot preference test. The side from which
geckos bypassed an obstacle tested was not performed on the 22 geckos from 2013 (Table 1). It was
tested only on the sixteen geckos from 2017 (Table 2). We rely on previous tests of detour tests (2015)
that were not compared with the digit ratio but with eye asymmetry (2015). When compared with eye
asymmetry, the detour test was conducted and compared on both day and night with the same results
(significantly correlated and not significantly different). The detour test was conducted in an open
space and a closed arena with the same results. The factor that the lizards were sensitive to was the
environment. In a symmetric environment (open or closed), the results were consistent, but in a messy
room with many places to find cover, it was not consistent, regardless of the time or temperature (2015).

2.8. Data Analysis

Kolmogorov–Smirnov analyses were performed using the software SPSSTM 15.0 for WindowsTM
(2006). All other tests were conducted in R (version 3.6.0, The R Foundation for Statistical Computing).
The probability, set atα= 0.05, was two-tailed. All data were tested for normality (Kolmogorov–Smirnov
test). We initially conducted all tests while accounting for the effects of sex and SVL using an ANCOVA
design. Sex was not significantly related to any of the response variables in any test (−0.9 < t < 0.2 and
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P > 0.40 in all tests, detailed results not shown). We examined the effect of sex in our statistical models
(see below, i.e., with 15 animals). Sex was not associated with any of our response variables (results not
shown, all p values > 0.4), so we used the unsexed animal in subsequent tests. Hence, we repeated
all the analyses as multiple regressions with SVL as a covariate and the data pooled for both sexes.
In cases where SVL had no effect, we repeated the test as a single-predictor linear regression. We report
results of the multiple regression when SVL was a significant predictor and of the single-predictor
regression when it was not.

3. Results

3.1. Distributions of Variables

The distributions of all variables, digit ratios, time under cover, detour test and foot preference
(Figures 3–7) did not significantly depart from a normal distribution according to a one sample
Kolmogorov–Smirnov test:
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3.2. Digit Ratio vs. Time under Cover

Higher ratios of the second to fourth digit on the left foot (L24) were associated (see Figure 8)
with more time spent under cover (slope = 0.0159± 0.0070, t = 2.28, P = 0.0399, R2 = 0.29) but R24 was
not (slope = 0.0049 ± 0.0090, t = 0.46, P = 0.65; SVL was not significantly related to the digit ratio in
either test).
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If we compare the digit ratio to a binary variable (in addition to the linear regression), in or out of
cover, it is significant for the left digit ratio (L24). Exposed out of cover, we get a higher average of the
digit ratio using a t-test:

Out of cover N = 10, mean = 0.775 ± 0.057, under cover N = 5, mean = 0.884 ± 0.075, t13 = 3.152,
P = 0.008.

For the right digit ratio, the result is not significant using a t-test:
Out of cover N = 10, mean = 0.799 ± 0.080, under cover N = 5, mean = 0.855 ± 0.111, t13 = 1.129,

P = 0.279.

3.3. Foot Preference vs. Detour Test

Geckos starting to move with the left foot were much more likely to bypass obstacles from the right
side (see Figure 9), and vice versa (slope = −0.822 ± 0.099, t = 8.28, P < 0.0001, R2 = 0.83), as predicted.
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3.4. Detour Test vs. Time under Cover

There was no association between time spent under cover and the tendency to bypass an obstacle
from the right or left (slope = 0.62 ± 0.49, t = 1.26, P = 0.23).

All results are qualitatively the same with either 14 or −15 animals (i.e., removal of the single
juvenile had no effect). However, when converting each variable to a binary unit, either below or above
average, the correlation is significant (see Figure 10), using a non-parametric Spearman correlation:
N = 16, rs = 0.683, P = 0.004.
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4. Discussion

In this study, we showed a significant correlation between the digit ratio and risk strategy in
lizards and between the digit ratio and foot preference. Moreover, similarly to humans, the longer
the fourth digit was compared to the second, the higher the risk was [62,63]. It is a pilot study and,
further, we strive to compare more behavioral patterns to the digit ratio in more reptiles and other
vertebrates. Lizards show patterns of brain laterality, similar and consistent with what we know from
other vertebrates, such as the left eye preference in aggression gestures [6–8,26]. In many vertebrates,
including lizards (opposite in fish), the right eye preference and right eye lateralization (left brain
hemisphere) are specialized for predatory responses to prey [80,81]. This is consistent with many other
vertebrates [1,4]. The digit ratio, i.e., longer fourth digit as a biomarker for a higher level of testosterone
for both prenatal stages and adults, was tested significantly for humans [44,45,47], for mice [46],
rats [82], lizards and amphibia [48]. Some studies focus on pets or domesticated animals to study brain
laterality [80], to neutralize the influence of the capturing procedure on the affective state of the tested
animal and the consequent activation of the right hemisphere. We chose to address wild geckos and
not pet geckos, since we chose to compare our results to those of other studies on Ptyodactylus guttatus
from the wild that seem to manifest brain laterality as relating to foot preference [28], risk strategy [29]
or digit ratio [29]. However, it should be pointed out and compared differentially and cautiously
whether a wild animal was born in captivity or alternatively tested close to its capture as in this study,
or months or even years later, since differences should be tested between wild animals that were born
in captivity or habituated to their captivity and between wild animals shortly after capture.

The hypothesis that a morphometric trait, such as the digit ratio or digit asymmetry, reflects (or is
affected by) brain laterality in lizards [29], or rats [82], as the digit ratio does in humans [44,63,83,84],
should be tested in vertebrates other than primates. Only after mapping similarities and dissimilarities
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would we be able to make a solid statement on the matter. However, this study case is the first step
towards it. Higher left-side (but not right-side) digit ratio was correlated with risk-taking behavior
(time under cover) but not with the preferred direction of bypassing an obstacle in a detour test.
This pattern of a left morphometric-biased trait correlating with risk (indirectly via higher tail injury)
is shown in lizards and Sphenodon digit asymmetry [30,32], and it is consistent with a left-biased
digit ratio (longer fourth hind digit compared to the right one). Further, the detour test was highly
significantly associated with foot preference—this association explaining over 80% of the variance.
This further supports the efficacy of the detour test as an appropriate laterality index for lizards
(as shown in other vertebrates) [37,82,85]. The digit ratio (2/4) reflects financial risk in humans [60,61] as
longer fourth digits (relative to the second digit) reflect a tendency for higher risk taking. We obtained
a similar result with the lizards, as staying under cover was associated with having much shorter
fourth digits (relative to the relatively longer second digit: 0.775 vs. 0.91 on average).

We found that left-footed geckos did not differ in their risk-taking strategy from right-footed
geckos. This is counter-intuitive since we would expect left-footed to be risk-averse, due to asset
protection [86,87]. Left-footed gecko individuals usually have a higher social status [28], and therefore
have more to lose. We thus expected them to take fewer risks. Interestingly, this is opposite to what
we know of humans, as left-handed people are known to take higher risks [88,89]. The result of the
digit ratio correlating with foot preference is interesting in two aspects: we did not expect it, since it is
not described in the literature. Moreover, it strengthens the hypothesis that the digit ratio is derived
from or associated with brain laterality. Our results support the hypothesis that digit ratios reflect
brain laterality in vertebrates other than Homo sapiens. In birds, fledglings from eggs with elevated
yolk testosterone, regardless of their sex, had higher ratios of the 2/4 digit ratio on their left but not
on their right feet than controls [64]. This coincides with our results for lizards with a marker for
testosterone (digit ratio) [48] and we think this is not coincidental. There is an advantage in elevating
the testosterone level during continuous stress. Any elevation in testosterone level results in more
developed muscle tissue, better running speed and stronger bite force [90]. Thus, in dire straits of
continuous stress, better running speed is an advantage for either running away from predators or
running after prey. However, the more risks they take, the more injuries we expect they will get.

A follow-up study with a testosterone measure and with more taxa is needed to determine if our
results reflect a fundamental phenomenon in vertebrates or are due to mere chance. We think this
is not a coincidence. The results we obtained in this controlled lab experiment are consistent with
observations in the wild of risk-taking strategy and eye asymmetry of adult geckos [29]. We found
that risk is correlated with the digit ratio in young (sub-adult) geckos in the lab. More importantly,
the morphometric variable, the D2/D4 digit ratio, which is a known and accepted proxy of brain
laterality in humans, is also a brain laterality proxy in the lizard Ptyodactylus guttatus. The implications
of the digit ratio as a proxy for brain laterality in general and risk-taking strategy in particular may
have practical value if proven in future studies.

We suggest testing more vertebrates, in particular reptiles, concerning possible correlations
between the digit ratio and risk strategy, not only because of the accumulating evidence of tail injury
(reflecting higher risk) and fourth digit asymmetry, but also since recent studies show the plasticity
of the reptilian brain and the link between risk behavior and brain asymmetry in lizards [78,88,89].
If the result that the digit ratio and risk behavior are indeed correlated is consistent, we speculate it
may be reflecting the levels of stress they deal with. Thus, longer fourth digits would be expected
to predominate in stressful environments and shorter ones in stable environments. We suggest the
notion that reptiles are an ideal model for brain research, since there is a growing literature on the
flexibility of the reptilian brain [91,92] and there is a working theory supported by anecdotal reports of
the supposition that the strength and direction of lateralization are dependent on experience [81].

Similarly to the cheap, simple tool of the detour test to measure brain laterality [68], if a
morphometric trait such as the digit ratio, digit asymmetry or eye asymmetry can inform on the
risk-taking strategy at the population level, it could be a cheap and useful ecological tool to assess
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the stability of the environment or level of disturbance. This speculation can support the motivation
to further study and test it. A simple demonstration of a correlation between brain laterality and a
morphometric trait is not unprecedented [93]. The asymmetric distribution of scales (sub-lamellae
scales) on the right vs. left hind foot may explain Figure 9 [93]. In an insular population of wild
geckoes [93], the geckos lift first from the substrate the hindlimb that has the lowest ability to stick to the
substrate. We think it is important to study the differences and similarities of different taxa pertaining
to brain asymmetries, particularly in non-humans, and especially on wild animals. It may enable
us to decide if these similarities are imposed by brain architecture [28] or derived from a common
evolutionary path [94,95].
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