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Abstract: Joint named entity recognition and relation extraction is an essential natural language
processing task that aims to identify entities and extract the corresponding relations in an end-to-end
manner. At present, compared with the named entity recognition task, the relation extraction task
performs poorly on complex text. To solve this problem, we proposed a novel joint model named
extracting Entity-Relations viaImproved Graph Attention networks (ERIGAT), which enhances
the ability of the relation extraction task. In our proposed model, we introduced the graph
attention network to extract entities and relations after graph embedding based on constructing
symmetry relations. To mitigate the over-smoothing problem of graph convolutional networks,
inspired by matrix factorization, we improved the graph attention network by designing a new
multi-head attention mechanism and sharing attention parameters. To enhance the model robustness,
we adopted the adversarial training to generate adversarial samples for training by adding tiny
perturbations. Comparing with typical baseline models, we comprehensively evaluated our model
by conducting experiments on an open domain dataset (CoNLL04) and a medical domain dataset
(ADE). The experimental results demonstrate the effectiveness of ERIGAT in extracting entity and
relation information.

Keywords: named entity recognition; relation extraction; graph attention network; adversarial training

1. Introduction

It is challenging to perform joint named entity recognition (NER) and relation extraction (RE) from
unstructured text is in the natural language processing (NLP) and information extraction domains.
As an example, given the sentence in Figure 1, the process uses different tags to mark entities and
relations during the NER and RE tasks. In this example, Harrington (Peop), Harvard University (Org),
and National War College (Org) are three entities: the entity type of Harrington is a “person,” and the
entity type of Harvard University or National War College (Org) is an “organization.” The phrase
“Work_for” denotes the relation type between Harrington (Peop) and Harvard University (Org) or
National War College (Org), respectively.

Figure 1. A marked sentence in CoNLL04.
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The traditional entity and relation extraction models can be divided into two main groups
based on their different model structures: pipeline models [1] and joint models [2–5]. The pipeline
model has a simple structure and clear logic that treats NER and RE as two independent tasks,
where the RE task is located downstream of the NER task. However, the pipeline model can easily
cause error forward-propagation, where errors generated in the NER task are passed to the RE task,
which limits model performance. In contrast to the pipeline model, the joint model treats NER
and RE as two interrelated tasks that do not have a strict upstream and downstream relationship.
Thus, errors generated by these two related subtasks can affect and adjust each other. The joint model
can achieve better performance than the pipeline model. Therefore, we adopt the joint model as our
base model.

Although the graph convolutional network (GCN) has been adopted to the joint
extraction task [6–9], it cannot effectively complete the RE task due to their GCN structure. To improve
the effectiveness of the RE task, we introduce an improved graph attention network (IGAT) in
our proposed model. The graph attention network (GAT) was first proposed by [10] to solve the
semi-supervised node classification problem on a citation network, and it achieved great success.
Nevertheless, compared with the citation network, texts contain less entity and relation information,
causing the GAT to perform poorly due to high-hop aggregation. Therefore, based on matrix
factorization, we improve the graph attention mechanism by sharing the attention parameters
and reducing the parameters of the graph convolutional layer. The proposed IGAT has excellent
advantages when processing the entity-relation graph, allowing for the efficient extraction of entity
and relation information.

In this paper, we embedded the entity and relation information into the entity-relation graph,
which is input into the IGAT to capture the entity and relation features. Afterwards, to improve the
robustness of our model, we introduced adversarial training (Ad) into our model. In the experiments,
we tested our model on two public datasets (CoNLL04 and ADE) in contrast to the baseline models,
and the metrics of precision, recall, F1-score, and overall F1 were used. The main contributions of this
paper are as follows:

• We designed a new joint model to further the current research on joint entity-relation extraction,
and it notably improves upon the traditional methods in the extraction of related information.

• We introduced the GAT into the domain of joint entity-relation extraction and improved it by
designing an efficient multi-head attention mechanism that reduces and shares parameters.

2. Related Work

The NER task [11,12] and RE task [13,14] are research hotspots for text information extraction.
Because the structural defects of the pipeline model limit its model performance, researchers have
concentrated on the joint model, which was first proposed by [1] and based on manually
designed features. The development of neural networks in the NLP domain provided the ability
to extract text features automatically based on neural networks such as the convolutional neural
network (CNN) [15,16], the recurrent neural network (RNN) [17,18], the tree-structured long
short-term memory neural network (Tree-LSTM) [19], the bidirectional long short-term memory
neural network (BiLSTM) [5,20], and the pre-training of deep bidirectional transformers for language
understanding (BERT) [21] , all of which outperform manually designed feature-based methods.
All the above neural networks can successfully extract features from texts. The RNN, LSTM and BERT
models have shown significant advantages over the other methods, particularly in the NER task.

However, the above neural network models have no effective module to capture relation
information and perform the RE task in complex texts. Research into graph convolutional network
(GCN) models has found that GCN can extract node and edge information. Paper [6,7,22] proposed
algorithms to obtain relation information based on the graph structure. Later, paper [8] designed
a method to construct an adjacency matrix based on binary relation classification, and paper [9]
obtained relations based on entity attention. Although these work applied GCN to NER and
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RE tasks, the GCN structures adopted by these models were simple (consisting of only a 1-layer
GCN) and extracted only 1-hop node information, which is insufficient to extract the relation.
Additionally, paper [8] used a hard-margin adjacency matrix to aggregate information, which caused
over-smoothing and limited the expressive ability of the GCN.

Adversarial training has been widely used as a method to improve model robustness.
This technique adds tiny perturbations and has been applied to the NLP domain. At present,
many methods of adversarial training [23–25] have been proposed in the NLP domain. Paper [23]
proposed a method for generating adversarial samples using simplified calculations that reduced the
random noise caused by the dropout operation.

To address the insufficient capacity of extraction entity and relation information, We improve
and redesign the existing model. From the models mentioned above, our model adopts BiLSTM for
entity span recognition and uses a CNN [26] and a multi-layer perceptron (MLP) [27] to obtain the
graph embedding. Then, we input the entity-relation graph into the IGAT, which is designed in this
paper to enhance the ability of the GAT to extract relation information and mitigate over-smoothing
with a simple and efficient multi-head attention mechanism that reduces and shares parameters.
To improve the robustness of our method, we adopted adversarial training to generate samples [23].
Besides, we also designed experiments to explore the relation between graph density and the depth of
the IGAT.

3. Model

The structure of the Entity-Relations via Improved Graph Attention networks (ERIGAT) is shown
in Figure 2. First, a word vector representation is obtained through the word embedding module
and then input into the entity span recognition module (BiLSTM layer) to recognize entity spans.
The loss of the entity span is calculated after identifying the entity span. Next, the graph embedding
module uses the entity span and the output of the BiLSTM layer to obtain an entity-relation graph.
Then, the entity nodes, relation nodes, and adjacency matrix are fed into the IGAT, which extracts the
entity and relation information. Finally, after the extracted information is concatenated with the node
embedding output, we can classify the entity types and the relations types.

Figure 2. The Entity-Relations via Improved Graph Attention networks (ERIGAT) structure includes
the modules of word embedding, entity span recognition, entity-relation graph embedding, IGAT,
and adversarial sample generation.
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Among the modules, the IGAT is the core of the innovation. The rest of the modules mostly use
existing methods.

After the first forward propagation, the parameters are fixed. We obtain the adversarial samples
based on the first forward propagation loss and add adversarial samples to the word embedding.
Then, after the second forward propagation, the loss values of the two forward propagations are
accumulated, and the parameters are optimized through backpropagation.

3.1. Word Embedding

The word vector representation is composed of word-level embedding and character-level
(char-level) embedding, and the process of word embedding is illustrated in Figure 3.

Figure 3. The word embedding architecture. Given the word “man,” we obtain the word-level
representation using pre-trained embedding. Moreover, the list of characters in the word is input into
CNN to obtain the char-level embedding. Finally, these two vectors are concatenated to obtain the
vector representation of “man.”

Given a sentence w = {w1, . . . , wn} as a sequence of tokens (where wi is a word), the pre-trained
word embedding model (GloVe) [28] can obtain each unique word as a vector (the word-level
embedding), then the word2vec model [29] can get the semantic information of words from
these vectors.

Besides, to capture the word morphological information, the method proposed by [30] is adopted
to extract character information using a CNN model. The character information includes prefix and
suffix information of words and other morphological information. For example, suppose “water” is
contained in a word. Based on the different subordinate positions of “water” in the word, we can
distinguish among specific entity types. For example, in CoNLL04, the entities Watergate and
Goldwater belong to the “Other” type and the “Peop” type, respectively. In ADE, the prefix “hypo”
can specify an adverse-effect entity such as hypophosphatemia or hyponatremia. Therefore, char-level
embedding provides helpful auxiliary information for word vector representation.

In this study, we comprehensively consider both of word-level and char-level embedding methods
and concatenate them to obtain a vector representation for each word.

3.2. Entity Span Recognition

The proposed model obtains the entity span based on the output of the BiLSTM and the
BIEOU scheme.

Our proposed model uses the BIEOU scheme [31] to mark the entity span, where “B”, “I”, “E”,
and “O” represent the beginning, inside, end, and outside of the entity span, respectively. The “U”
in BIEOU represents an entity that is a single word. Given two entities, New York City (Loc) and
Lincoln (Peop), we can mark them with BIE and U, respectively. The entity span recognition structure
is illustrated in Figure 4.



Symmetry 2020, 12, 1746 5 of 17

Figure 4. The entity span recognition architecture.

For sentence w = {w1, . . . , wn}, we can obtain the embedding matrix of the sentence
X = {x1, . . . , xn} (where xi is the vector representation of wi after word embedding). Then, we input
X into the BiLSTM to extract the entity span information, which is calculated as follows:

hi = BiLSTM(xi; θspan), (1)

where hi is the concatenation of a forward and a backward context feature vector and xi is extracted by
the BiLSTM with the parameters θspan. Then, we can predict the entity span tags t̂i corresponding to
the word wi as follows:

P(t̂i|w) = softmax(Wspanhi), (2)

where Wspan is the weight parameter of the entity span. Given sentence w and its entity span target
tags, t = {t1, · · · , t|w|}, the entity span recognition loss is formulated as follows:

Lspan = − 1
|w|

|w|

∑
i=1

log P(t̂i = ti|w). (3)

3.3. Entity-Relation Graph Embedding

To extract entity and relation information with the IGAT, we need to embed the obtained entity
vector into an entity-relation graph according to the entity span information.

3.3.1. Entity Node Embedding

The entity node embedding structure is shown in the left part of Figure 5. We define an entity as e
and a set of entities as ε̂ in each sentence. Based on the entity span tags recoginzed in the last step t̂,
we can obtain the range of the entity. For example, in the left part of Figure 5, ε̂example = {e1, e2, e3},
where e1 = {h1, h2, h3}, e2 = {h5, h6}, and e3 = {h8}. We use a CNN (a single convolution layer with
a max-pooling layer) with a MLP to obtain the entity node embedding Ne ∈ Rdnode .
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Figure 5. The node embedding extractor of ERIGAT.

3.3.2. Relation Node Embedding

We define rjk as the relation between entity ej and entity ek. When initializing the relation nodes,
we assume that there is a potential relation between any two entities in a sentence (i.e., the number of
potential relations in each sentence is |ε̂|(|ε̂|−1)

2 ). To capture the impact of contextual information on
the relation, we need to embed not only information regarding the entity itself but also its contextual
information. For example, given a sentence “Rome is in Lazio province,” which contains the entities
Rome (Loc) and Lazio (Loc), it is difficult to extract the relation between the two entities without
considering the contextual information and the lack of prior knowledge. Instead, we can extract the
relation between Rome and Lazio as “Locate_in” based on the contextual information provided by “in”
and “province”.

Motivated by this idea, we use entity node embedding Nej , Nek and the context feature vectors
of the two entities. Similarly, we build context features by running another CNN with MLP.
Finally, the entities node embedding and context feature vectors are concatenated to a single vector.
We apply an MLP on the single vector to get relation node embedding Nrjk ∈ Rdnode .

3.3.3. Adjacency Matrix Embedding

To predict whether a definite relation exists between two entities, we define a binary relation tag
b with a value in {0, 1}, where 0 means there no relation exists between the two entities and 1 means
that a relation exists between the two entities. We also define the binary relation tag b̂ for prediction.
The probability of b̂ is calculated as follows:

P(b̂|rjk, w) = softmax(WadjNrjk ), (4)

where Wadj is a weight parameter. The loss value is calculated as follows:

Lrel = −∑
rjk

log P(b̂ = b|rjk, w)

# candidate relation rjk
. (5)

To obtain the entity-relation graph, we construct a symmetric relation between entity nodes
and relation nodes. For example, Figure 6 depicts the symmetric relation among Nej , Nek and Nrjk .
Then, we obtain the adjacency matrix A of the entity-relation graph using the following method:

• When P(b̂= 1|rjk, w) ≥ 0.5 , we assume that Nej and Nek have a relation with Nrjk ,
respectively, i.e., the corresponding position element in A is 1.0.

• To capture more information, we add a self-loop to the graph, i.e., the diagonal element in A is 1.0.
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• All the remaining locations are set to 0.

Figure 6. The symmetric relation between entity nodes and relation nodes in the entity-relation graph.

3.4. Improved Graph Attention Networks

Because the typical neural network models have no advantage in performing the RE task in
complex texts, to promote the effectiveness of the RE task, we applied the method proposed by [8] to
introduce the GCN into entity and relation extraction experiments, which is calculated as follows:

N(l+1)
G = σ(ÂN(l)

G W(l)), (6)

where Â = D−
1
2 AD−

1
2 and D is the diagonal node degree matrix with Dii = ∑

j
Aij. NG ∈ Rnnode×dnode

contains all the embedded nodes, where N(0)
G = NG, nnode is the number of nodes in the entity-relation

graph and dnode is the node feature dimension. We define L as the number of layers in the GCN,
l as the current layer in the GCN, and W(l) as the convolutional parameter for the l-th GCN
layer. In experiments, we found this GCN model difficult to distinguish the aggregated node
information because of its hard-margin adjacency matrix, which can easily lead to over-smoothing.
Moreover, unlike the GCN used in a citation graph, in which the feature dimension gradually decreases
as the GCN layers deepen, in the entity and relation extraction tasks, we need to preserve the same
feature dimension for each GCN layer in the entity-relation graph to obtain the feature contribution
of all the entities and relations. However, this approach would result in an enormous number of
parameters in the GCN due to the value of L× d2

node.
To mitigate over-smoothing by differentiating aggregation information, we introduce a GAT into

the joint entity and relation extraction domain for the first time. The attention coefficient of the GAT
can be obtained as follows:

Edgeij = φ([WNei ||WNej ]), (7)

where Nei is the node embedding of entity ei and Nej is one of the 1-hop adjacent nodes of Nei , and W
is a trained matrix. The symbol || denotes concatenation, and φ(·) is a mapping vector. We define
Cat as the number of attention heads and c as current attention head, where 1 <= c <= Cat and c
is an integer. Then, we can obtain the attention coefficient vector Edgei and calculate the attention
as follows:

ai=softmax(Edgei), (8)

where ai is the attention vector for Nei with 1-hop adjacent node. We can use the value of ai to set the
corresponding position element in A and obtain the attention adjacency matrix Âc(l). For each head
attention in each layer of the GAT, we initialize the trained matrix Wc(l). The GAT can be formulated
as follows:

N(l+1)
G =

Cat
||

c=1
σ(Âc(l)N(l)

G Wc(l)). (9)

Although the GAT can differentiate aggregation information and mitigate over-smoothing to some
degree with the attention mechanism, the sample aggregation can only be used for message passing.
Hence the internal relationship in the node features is ignored. Moreover, with the enormous number
of parameters and node features sparsity, the GCN or GAT causes over-fitting. According to the above
analysis, over-smoothing and over-fitting limit the depth of both the GCN and the GAT in aggregating
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node information, so that they can only aggregate 1-hop node information in the entity-relation graph,
which is insufficient for completing the entity and relation extraction task. Furthermore, a 1-layer GCN
or GAT performs poorly in extracting high-dimensional features.

To solve these problems (over-smoothing, lack of internal relationship in node features and
over-fitting caused by the sparsity), we design a new multi-head attention mechanism for the GAT,
named the improved graph attention network (IGAT), to extract the information of entity and relation
more efficiently. Using matrix factorization, we can capture relationships in nodes and internal
relationships in node features by mapping high-dimensional sparse vectors to low-dimensional dense
vectors. Furthermore, based on the attention parameters’ sharing with the convolutional layer, we can
use fewer parameters than the GCN and the GAT to obtain the same attention structure in each graph
convolutional layer. To sum up, now we can use deeper graph convolutional layers than the GCN
and the GAT to comprehensively extract the entity and relation information by enhancing feature
extraction capabilities and reducing parameters.

In IGAT, we can factorize the GAT convolutional matrix Wc(l) ∈ Rdnode×dc(l)
to pre-trained attention

parameter matrices Wc(l)
s ∈ Rdnode×dc(l)

at and Wc(l)
t ∈ Rdc(l)

at ×dc(l)
, where dc(l)

at is the attention dimension.
The convolutional layer matrix Wc(l)’s factorization formulation is as follows:

Wc(l) = Wc(l)
s Wc(l)

t . (10)

For each convolutional layer of the IGAT, we use matrix Wc(l)
s to share the attention parameters

with the convolutional layer because the matrix Wc(l)
s retains the pre-trained information after the

attention mechanism and reduces the node feature sparsity due to the reduction of the matrix
dimension. Furthermore, with the matrix multiplication of matrix Wc(l)

s and Wc(l)
t , we can keep

the same feature dimensions of each convolutional layer with GAT. Meanwhile the use of the matrix
Wc(l)

s and Wc(l)
t instead of Wc(l) can map dense node features to the new feature space to extract

deeper level node information. For example, given a matrix Wc(l) ∈ R128×128, which can be fitted
by Wc(l)

s ∈ R128×32Wc(l)
t ∈ R32×128 and the parameter quantity has obviously reduced. Unlike the

traditional eigenvalue matrix factorization, IGAT need not calculate the matrix factorization loss
since the convolutional matrix Wc(l)

s and Wc(l)
t ’s parameters are updated dynamically through back

propagation of the IGAT network. To obtain the attention parameters matrix Wc(l)
s and attention

adjacent matrix Ec(l)
G ∈ Rnnode×nnode in IGAT which is composed of attention values, first IGAT defines

Qei as a matrix composed of Nei and its 1-hop adjacent node. Then, instead of Formula (7) in GAT,
the IGAT calculates the attention value matrix for each head attention as follows:

−−→
ac(l)

ei = softmax(||ReLU(Qei W
c(l)
s )||2), (11)

where || · ||2 is the row 2-norm and
−−→
ac(l)

ei is the attention vector between Nei and its 1-hop adjacent node.

Next, we introduce degree information into the GAT and obtain an attention adjacency matrix Ec(l)
G

by mapping each node attention value to corresponding positions in A. Afterwards, we can get the
normalized symmetric adjacency matrix Ec(l)

G as follows:

Êc(l)
G = D−

1
2 Ec(l)

G D−
1
2 , (12)

where Dii = ∑
j

Ec(l)
G ij. Based on the above analysis, we reach the following IGAT convolutional formula:

N(l+1)
G =

Cat
||

c=1
σ(Êc(l)

G N(l)
G Wc(l)

s Wc(l)
t ). (13)
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Finally, after the information extraction of the IGAT network, we obtain the feature matrix in the
last layer as Z = N(L)

G .
The multi-head attention mechanism that aggregates node information and shares attention

parameters with the convolutional layer is shown in Figure 7.

Figure 7. How the IGAT aggregates node information.

Compared with the GCN and the GAT, the IGAT improves the ability to differentiate and
aggregate information, which mitigates over-smoothing. In addition, we reduce the parameters of the
GAT by using row 2-norm to obtain the attention coefficient instead of φ(·) and by matrix factorization
which shares the attention mechanism parameters with the convolutional layers. Using matrix
factorization, we can extract the internal relationship in node features and reduce node features sparsity.
This approach of IGAT allows for the deeper layers of the IGAT in the entity-relation graph, i.e., it can
aggregate multi-hop node information, which improves the ability to extract relation information.

3.4.1. Entity and Relation Classification Tasks

We concatenate the feature matrix Z (output by the IGAT) with the input matrix NG (input into
the IGAT) to obtain the feature matrix F for the classification task. Then, we define Fej as the feature
vector of entity ej and Frjk as the feature vector of relation rjk. We define the target tags of entities
and relations as ye and yr, respectively, and the predicted tags of entities and relations are ŷe and ŷr,
respectively. The entity tags and relations tags can be formulated as follows:

P(ŷe|ej, w) = softmax(WentFej), (14)

P(ŷr|rjk, w) = softmax(Wrel Frjk ), (15)

where Went and Wrel are weight parameters. Finally, the entity and relation loss functions can be
written as follows:

LeType = −
1
|ε̂| ∑

ej∈ε̂

log P(ŷe = ye|ej, w), (16)

LrType = −∑
rjk

log P(ŷr = yr|rjk, w)

# candidate relation rjk
. (17)

3.5. Adversarial Sample Generation

We define the loss of the model as LJoint(X; θ) after the first forward propagation,
where LJoint(X; θ) = Lspan + Lrel + LeType + LrType, and θ denotes the model parameters. To enhance
model robustness, we follow the method proposed in [23] by adding tiny perturbations to the samples
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for adversarial training. We define ηad as the perturbation added to the samples, while θ̂ is a copy
of the parameters θ in the current model, and θ is a fixed parameter set (i.e., the error in this back
propagation does not update the parameters). The perturbations are formulated as follows:

ηad = λ
g
||g|| , (18)

where g = ∇X LJoint(X; θ̂) and λ is a small bounded norm treated as a hyperparameter. Similar to [5],
we define λ = α

√
DX, where α is a perturbation parameter (set manually), and DX is the feature

dimension of X. The loss LJoint(X + ηad; θ̂) of the second forward propagation is obtained by adding
the perturbation to X. Considering the losses of both forward propagation steps, we obtain the final
loss LFinal = LJoint(X; θ) + LJoint(X + ηad; θ̂). Then, we update model parameters θ with LFinal to
complete the parameter adjustment process.

4. Experiments

In the experiments, we applied our ERIGAT method to an open domain dataset (CoNLL04) and
a medical domain dataset (ADE), and we evaluated the results with the previously proposed baseline
models to verify the validity of ERIGAT.

4.1. Datasets

We applied our ERIGAT method to accomplish the NER and RE task using data from the CoNLL04
and ADE datasets. The size of ADE is significantly larger than that of CoNLL04, so we chose these two
data sets of different sizes for the experiment.

4.1.1. CoNLL04

As shown in Table 1 (CoNLL04 in Table 1), CoNLL04 contains 1441 sentences, 1731 entities,
and 698 relations. There are four entity types (“Organization”, “Person”, “Location", and “Other”) and
five relation types (“Kill”, “Live_in”, “Located_in”, “OrgBased_in”, and “Work_for”). We divided the
CoNLL04 dataset using the division method reported in [5,32–34] making the number of sentences in
the training, verification, and test sets 910, 243, and 288, respectively.

Table 1. Statistics of the datasets.

Dataset Sentence Entity Relation Entity Type Relation Type Training Validation Test

CoNLL04 1441 1731 698 4 5 910 243 288
ADE 4271 10,652 6682 2 1 3417 427 427

4.1.2. ADE

The original ADE dataset contains 6821 sentences, but many are repeats. To obtain data
information more efficiently, we deduplicated the dataset and unified the entities and relations in
duplicate sentences into one sentence. We also removed approximately 130 relations with overlapping
entities. For example, lithium is a drug related to lithium intoxication. As shown in Table 1 (ADE in
Table 1), after preprocessing, ADE included 4271 sentences, 10,652 entities, and 6682 relations. There are
two entity types (“Drugs” and “Adverse_effects”) and one relation type (“Effect”). We followed the
division method in [5,33,35,36] to divide the ADE dataset, and the numbers of sentences in the training,
validation, and test sets were 3417, 427, and 427, respectively.

4.2. Evaluation

In this study, we used “Strict” standard to evaluate the model results. For the NER task,
“Strict” means that a predicted entity is judged to be correct only if both the entity span and the
entity type are correct. For the RE task, “Strict” means that the predicted relation is judged as correct
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only if both the entity span and the relation type are correct. For example, given an entity and relation
<Rocky Mountains, Located_In, Montana>, the Rocky Mountains is judged to be correct if the entity
span words “Rocky” and “Mountains” are selected, and the corresponding entity type is “Location”.
The relation between the two entities is determined to be correct only if both Rocky Mountains and
Montana are selected, and the relation type is “Located_in”.

To comprehensively evaluate our model, we adopted precision (P), recall (R), F1-score and overall
F1-score as metrics to evaluate the results. Here, Overall = F1e+F1r

2 , where F1e is the F1-score of the
NER task, and F1r is the F1-score of the RE task.

4.3. Experiment Setting

Table 2 lists the hyperparameter settings of the ERIGAT model when optimal performance was
achieved for the two datasets.

Table 2. The hyperparameters of ERIGAT model.

Hyperparameters CoNLL04 ADE

Word-Level Embedding 100 100
Char-Level Embedding 50 50

BiLSTM Layers 1 1
BiLSTM Hidden 128 128

CNN-Kernel Sizes 2, 3 2, 3
CNN-OutputChannels 25 25

MLP [50, 128] [50, 128]
IGAT Layers 2 3

Attention Heads 1 2
Attention Dimension 32 16

IGAT Hidden 128 64, 64
α 0.002 0.002

Learning Rate 0.3 0.3
epoch 400 400

The encoding dimensions for the word-level and char-level embeddings are 100 and
50, respectively.

We obtain a word encoding dimension of 150 after concatenation. We set the number of hidden
layers of the BiLSTM to 1 and the hidden layer dimension to 128.

In the proposed model, a CNN configured with the same parameters is used to extract information.
The number of convolution kernels is 2, with sizes of 2 and 3, respectively, and the output channel is
25. For the MLP layer, which constructs the entity and relation nodes, we set the input dimension to 50
and the output dimension to 128.

In particular, due to the different graph scales constructed by CoNLL04 and ADE, we adopted
different parameter settings when using the IGAT model. For CoNLL04, we set the number of the
IGAT layers to 2, the number of attention heads to 1, the attention dimension to 32, and the dimension
of the IGAT hidden layer to 128. For ADE, we set the number of the IGAT layers to 3, the number of
attention heads to 2, the attention dimension to 16, and the dimensions of IGAT hidden layer to 64
and 64.

For the adversarial sample generation, we set the perturbation parameter α to 0.002.
Finally, we adopted AdaDelta [37] to optimize the parameters, and the learning rate was set to 0.3.

4.4. Baseline Models

We compared our ERIGAT model with several baseline models in different categories, including
SpERT, MLLSTM, MHS, MHS-Ad, MTQA, CNNE, and CNN-LSTM, each of which is described below.

SpERT: This model [21] introduces the pre-trained Bert model as the core for joint entity
recognition and relation extraction.
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MLLSTM: This is a multi-layer LSTM (MLLSTM) model [32] that performs end-to-end RE based
on globally optimized features. This model uses multi-layer LSTM to extract entity and relation
features and introduces an external syntax analyzer to integrate sentence information.

MHS: The multi-head selection (MHS) model [33] does not rely on NLP tools and manual features.
The use of the LSTM to extract features from the embedded word representation transforms the NER
and RE tasks into a multi-head selection problem.

MHS-Ad: The multi-head selection with adversarial training (MHS-Ad) model [5] introduces
adversarial training into the MHS model to enhance model robustness.

MTQA: The multi-turn QA (MTQA) model [34] uses a multi-turn question answering mechanism
that transforms the NER and RE tasks into a context. The MTQA model introduces machine reading
comprehension to extract information from text.

CNNE: The CNN extractor (CNNE) model [35] is a discrete joint model that improves CNN
model performance through information integration methods. The CNNE model uses a CNN-based
feature extractor to extract text information.

CNN-LSTM: Based on the CNNE model, the CNN-LSTM model [36] introduces an LSTM
that extracts text information from the CNN output and optimizes the model parameters by
sharing parameters.

Besides, to illustrate the advantages of the IGAT approach in extracting entities and relations,
we devised a comparison experiment that substitutes the original GCN and original GAT models for
the IGAT in the complete ERIGAT model, and these variations of ERIGAT are named ERGCN and
ERGAT, respectively. Moreover, to verify the effectiveness of adversarial training, we also test the
proposed model without adversarial sample generation part, named ERIGAT-No Ad.

4.5. Results and Analysis

Full results and analysis for the performance of our model, as well as other recent work,
are shown below.

4.5.1. CoNLL04 Dataset Experimental Results

Table 3 lists the experimental results of the ERIGAT model and the baseline models for
the CoNLL04 dataset. The experimental results show that using only an LTSM (MLLSTM,
MHS, and MHS-Ad) to extract entity and relation information fails to achieve high performance,
and the overall value reaches only 76.70. In particular, with respect to relation information extraction,
the LSTM performance is poor. It is challenging for LSTM to deal with relation information above
the entity level. Meanwhile, although the overall value of MTQA is improved to 78.24 due to its
multi-turn question answering mechanisms, this improvement stems mainly from the NER portion,
which suggests that the model’s ability to process relation information is still unstable. Benefits from
the huge semantic information in Bert, the SpERT can achieve better performance in entity and relation
extraction tasks.

Table 3. Experimental results of the ERIGAT and the baseline models for CoNLL04.

Models Entity P Entity R Entity F1 Relation P Relation R Relation F1 Overall

MLLSTM [32] - - 85.60 - - 67.80 76.70
MHS [33] - - 83.04 - - 61.04 72.04

MHS-Ad [5] - - 83.61 - - 61.95 72.78
MTQA [34] 89.00 86.60 87.78 69.20 68.20 68.70 78.24
SpERT [21] 85.78 86.84 86.25 74.75 71.52 72.87 79.56

ERGCN 86.77 81.04 83.81 73.90 61.83 67.33 75.57
ERGAT 90.00 83.12 86.43 74.83 62.32 68.01 77.22

ERIGAT-No Ad 90.07 85.02 87.47 76.63 68.14 72.14 79.81
ERIGAT 90.04 85.57 87.75 77.06 68.79 72.70 80.22
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Moreover, compared with MHS and MHS-Ad, ERGCN (1-layer GCN) improves the ability to
extract relation information. Although its Entity F1 value is similar to MHS and MHS-Ad, its Relation
F1 value increases by approximately 6, which indicates that ERGCN is useful for extracting relation
information to some extent. ERGAT (2-head attention and 1-layer GCN) uses differentiated aggregation
node information by the attention mechanism and improves the overall performance with a value
of 77.22. Compared with ERGAT, ERIGAT (1-head attention and 2-layer GCN) further improves the
Entity F1 and Relation F1 values and achieves the best performance of any model, which suggests
that ERIGAT aggregates node information better than other models as it deepens the layers of the
IGAT by improving the attention mechanism. In addition, the extracted information is not limited to
1-hop adjacent nodes. Thus, the IGAT can extract more in-depth information from additional nodes
through the deeper model layers. Compared with SpERT, the ERIGAT can achieve higher performance
with less semantic information, which shows that the ERIGAT is strong to extract entity and relation
information. In short, the ERIGAT processes entity and relation information more effectively than
other models, which achieves the best overall performance at 80.22.

4.5.2. ADE Dataset Experimental Results

Table 4 lists the experimental results of the proposed ERIGAT model and baseline models for
the ADE dataset. The results show that both the CNN and the LSTM are good at extracting entity
information (word information and context information) in sentences but are poor at extracting relation
information. In addition, in terms of performance improvement, the Relation F1 value of the ERIGAT
model outperforms those of MHS and MHS-Ad by approximately 10 on CoNLL04 (5 relation types)
and 3∼4 on ADE (1 relation type). This suggests that the ERIGAT model is better at processing the
complex relation types in entity-relation graphs. Additionally, the entity-relation graph embedded for
ADE is larger than that for CoNLL04, which causes the number of attention heads and layers of the
IGAT to increase. Since ADE is a medical dataset, only ∼73% (CoNLL is ∼97%) of the words can be
found in GloVE. In this case, compared with SpERT (∼79%), the ERIGAT is not high in terms of Entity
F1 due to less semantic information is used. Although the entity F1 is lower than SpERT, our relation
F1 still exceeds SpERT and other baseline models, which suggests that our new multi-head attention
mechanism is strong in extracting relation information. Comprehensive consideration of overall value,
the ERIGAT has achieved competitive performance.

Table 4. Experimental results of the ERIGAT and the baseline models for ADE.

Models Entity P Entity R Entity F1 Relation P Relation R Relation F1 Overall

CNNE [35] 79.50 79.60 79.55 64.00 62.90 63.45 71.55
CNN-LSTM [36] 82.70 86.70 84.65 67.50 75.80 71.41 78.03

MHS [33] - - 86.40 - - 74.58 80.49
MHS-Ad [5] - - 86.73 - - 75.52 81.13
SpERT [21] 89.26 89.26 89.25 78.09 80.43 79.24 84.25

ERGCN 87.34 81.92 84.54 82.37 68.64 74.88 79.71
ERGAT 90.60 82.55 86.39 83.72 71.19 76.95 81.67

ERIGAT-No Ad 90.71 85.41 87.98 84.57 75.12 79.56 83.77
ERIGAT 90.73 85.92 88.27 84.81 75.86 80.09 84.17

Meanwhile, considering the results of the model on the CoNLL04 and ADE datasets, we can
conclude that the performance of ERIGAT (CoNLL04 is 80.22% and ADE is 84.17%) is better than
ERIGAT-No Ad (CoNLL04 is 79.81% and ADE is 83.77%), which reflects that increasing the robustness
of the model by adversarial training can improve the performance of the ERIGAT model. Furthermore,
compared with ERGAT (CoNLL04 is 77.22% and ADE is 81.67%), the performance of ERIGAT has
been significantly improved, which suggests that the IGAT is effective.
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4.5.3. Experiment of Graph Density and IGAT Depth

Moreover, we also designed an ERIGAT experiment on entity-relation graphs with different graph
densities. We define ρG as the graph density, which is formulated as follows:

ρG =
2× Numberr

Numbere + Numberr
, (19)

where Numbere denotes the number of entity nodes, and Numberr denotes the number of
relation nodes.

Table 5 lists the number of sentences in CoNLL04 (where the average graph density is 0.57) at
different graph density intervals. We set the range ID (RI) as the serial number of each interval and
graph density (GD) as the interval density with a step size of 0.15. NS is the number of sentences
in the corresponding interval. To ensure consistency for the number of experimental sentences,
we randomly selected 85 sentences in each interval, including 61 for training, 11 for verification
and 13 for testing. Then, we set up four sets of comparative experiments, in which the number of
attention heads in the graph was fixed to 1 and the number of IGAT layers was varied from 1 to 4.
Subsequently, we calculated the average values for five experiments.

Table 5. The sentence distribution according to graph density on CoNLL04.

RI GD NS

1 0.15 ≤ ρG < 0.30 85
2 0.30 ≤ ρG < 0.45 352
3 0.45 ≤ ρG < 0.60 386
4 0.60 ≤ ρG < 0.75 448
5 0.75 ≤ ρG < 0.90 99
- Other 71

The results are shown in Figure 8. We find that the IGAT (1-layer) is suitable for extracting data
at low graph densities, i.e., entity-relation graphs with sparse relations. However, as the number of
relations increases, it becomes difficult for a 1-layer IGAT to extract node information from high-hop
neighborhoods, resulting in performance degradation. In contrast, a deeper IGAT, such as an IGAT
(4-layer) tends to experience over-smoothing when repeatedly aggregating low-hop node information,
resulting in poor performance. However, for high-hop adjacent nodes, the deeper IGAT can capture
more node information. Consequently, the model performance gradually improves as the GD increases.
Moreover, the IGAT (2-layer) performs best in interval 3, with a density close to the average density
of CoNLL04 (0.57). In contrast, the IGAT (3-layer) performs best in interval 4, with a density close
to the average density of ADE (0.77), which is consistent with the experimental results on CoNLL04
and ADE.

Combined with the above analysis, we can find the number of layers (network expression capacity)
of an IGAT processing the entity-relation graphs is affected by the following factors:

• Internal factors: the stronger the ability of the graph neural network to differentiate and
aggregate node information, the less smooth the information will be after aggregation.
Besides, proper parameter size is crucial. These two internal factors determine the depth of
the IGAT.

• External factors: in this research, as reflected by model performance, we find that the depth of the
IGAT is influenced by the GD, i.e., a deeper IGAT performs better when processing high-density
entity-relation graphs.
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Figure 8. Performances of ERIGAT models with different numbers of IGAT layers at different graph
density intervals, where the RI is range ID and the Overall is the average of Entity F1-score and
Relation F1-score.

5. Conclusions

In this paper, we proposed a new joint model named ERIGAT, that introduces the GAT into
the entity-relation joint extraction domain for the first time. Using matrix factorization, we also
improved the GAT by sharing the attention parameters and reducing the number of parameters,
thus differentiating information aggregation and mitigating the over-smoothing problem experienced
by the previous GCN and GAT. The ERIGAT can effectively extract multi-hop node information,
especially relation node information, due to the ability to increase the layer depth of the GCN.
The experimental results show that the ERIGAT model has several advantages for joint entity and
relation extraction, and has achieved high performance on the CoNLL04 and ADE datasets.

In future work, we will try to introduce the graph reasoning to build a symmetrical relation
between entity nodes and relation nodes in the entity-relation graph. Furthermore, we will attempt to
use the structure information of the entity-relation graph to improve model performance.
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