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Abstract: The ever-growing interest in and requirement for green energy have led to an increased
focus on research related to forecasting solar irradiance recently. This study aims to develop forecast
models based on deep learning (DL) methodologies and multiple-site data to predict the daily solar
irradiance in two locations of India based on the daily solar radiation data obtained from NASA’s
POWER project repository over 36 years (1983–2019). The forecast modeling of solar irradiance
data is performed for extracting and learning the symmetry latent in data patterns and relationships
by the machine learning models and utilizing it to predict future solar data. The goodness of fit
and model performance are compared with rolling window evaluation using mean squared error,
root-mean-square error and coefficient of determination (R2) for evaluation. The contributions of this
study can be summarized as follows: (i) time series models based on deep learning methodologies
were implemented to forecast the daily solar irradiance of two locations in India in consideration of
the historical data collected by NASA; (ii) the models were developed on the basis of single-location
univariate data as well as multiple-location data; (iii) the accuracy, performance and reliability of the
model were investigated on the basis of standard performance evaluation metrics and rolling window
evaluation; (iv) the feature importance of the nearby locations with respect to forecasting target
location solar irradiance was analyzed and compared based on the solar irradiance data obtained
from NASA over 36 years. The results indicate that the bidirectional long short-term memory (LSTM)
and attention-based LSTM models can be used for forecasting daily solar irradiance data. According
to the findings, the multiple-site data with solar irradiance historical data improve upon the forecast
performance of single-location univariate solar data.

Keywords: recurrent neural network; gated recurrent unit; long short-term memory; convolutional
neural network; attention mechanism; solar irradiance; forecast

1. Introduction

1.1. Motivation of the Study

Climate changes in recent times and the high demand for electricity have led to the requirement
of power generation from green and renewable sources, solar energy being one of them. Solar energy,
which is an abundant sustainable energy resource, causes the least harm to the environment, turning the
Sun into a major source of energy [1]. This solar power can be harnessed either through concentrated
power plants or photovolatic (PV) power plants. Here, we deal with the PV power plants; their
performance is mainly related to the factors of electrical parameters of its components (PV panels,
inverters), characteristics of the installation (orientation, tilt angle) and meteorological conditions [2].
The meteorological factor affecting the power produced by a PV field is mainly the absorbed solar
irradiance. There is, in fact, a linear correlation between the PV modules’ maximum power and the
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solar irradiance [3]. The value of this solar irradiance being high or low depends on the geographical
location and time along with the orientation of the panel that is relative to both the Sun and the sky [4].
As such, solar power tends to have a chaotic and intermittent behavior. In this study, the aim is to
forecast irradiance optimally and in a generalized manner, as we face a problem similar to that of solar
power forecasts [5]. The solar irradiance forecasting is performed on historical data from two locations
in India for protection of the environment as well as energy security. The main aim is to achieve an
increase in the amount of renewable or green energy contribution to the power generated.

1.2. Problem Statement

The PV system is required for the conversion of solar energy to electricity. However, having the
environmentally friendly characteristic cannot guarantee the acceptance of PV as an alternative to
conventional energy sources. The techno-economical study for viability of any PV system requires
accurately estimating the energy yield with an appropriate mathematical model. Different models
were proposed for the prediction of PV module performance. However, these models mostly have a
complicated structure requiring detailed knowledge of the parameters which are normally unavailable
in the manufacturer’s data sheet. Therefore, such models are not suitable for output power calculation.
It is the ambient temperature and solar irradiance meteorological data that govern the output of a
PV system. Therefore, reliable temperature and radiation data should be readily available for the
design of a techno-economically viable photovoltaic system. Because of the difficulties in installation,
calibration, maintenance and high cost for measurement of these data, they are either not available or
are only partially available at the installation site. Hence, the demand exists for the development of
alternative ways to predict them [6,7]. Solar irradiance is also characteristically variable; because of
this, competent strategies of forecasting are required for enabling greater penetration of solar power.
Influence of location, weather and other meteorological factors also make forecasting solar irradiance
a challenging task. Therefore, for successful integration of solar energy with traditional generation
supplies, the ability to accurately forecast solar irradiance is essential.

1.3. Related Work

There are basically three types of forecasting techniques: numerical weather prediction,
image-based prediction and statistical and machine learning (ML) methods ranging for a period
of short-term, medium-term and long-term predictions. Solar irradiance data are time series
data, i.e., ranging for a period of time in sequential manner, and traditionally, linear forecasting
methods were widely used because they were well understood, easy to compute and provided stable
forecasts. Autoregression (AR) [8], the moving-average model (MA), autoregressive with exogeous
inputs (ARX) [9], autoregressive moving-average (ARMA) [10], autoregressive moving-average with
exogeous inputs (ARMAX) [11], autoregressive integrated moving average (ARIMA) [12], seasonal
autoregressive integrated moving average (SARIMA) [13], autoregressive integrated moving-average
with exogeous inputs (ARIMAX) [14], seasonal autoregressive integrated moving-average with
exogeous inputs (SARIMAX) [15] and generalized autoregressive score (GAS) [16,17] are the traditional
forecast models. Belmahdi et al. [18] proposed the ARMA and ARIMA models for forecasting the
global solar radiation parameter. The models showed improvement in terms of forecast error; however,
only the solar radiation parameter was considered. The geographical or meteorological parameters
were not employed. These are mostly linear over the previous inputs or states; hence, they are
not adapted to many real-world applications. One major limitation is their pre-assumed linearity form
of the data that cannot capture complex nonlinear patterns. The challenges also include lower forecast
accuracy and less scalability for big data. Yagli et al. [19] performed a study using satellite-derived
irradiance data from multiple locations on 68 machine learning models. The research proposed that
multilayer perceptron (MLP) models were one of the best performers and, for assessment of model
performance, resulted in a daily or short evaluation period as advised. Following this, the neural
network models used here were focused for day-ahead forecasting. The neural network models (NN)
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work on nonlinear transforming layers with data not required to be necessarily stationary. Neural
networks are also strongly capable of determining the complex structures in data, working as an
efficient tool for reconstruction of a noisy system driven by data, which is why they are suitable
for complex and variable time series forecasting. These are suited for modeling problems which
require capturing dependencies and are capable of preserving knowledge as they progress through
the subsequent time steps in the data. The authors of [20] proposed an approach for prediction of solar
irradiance using deep recurrent neural networks with the aim of improving model complexity and
enabling feature extraction of high-level features. The proposed method showed better performance
than the conventional feedforward neural networks and support vector machines. The recurrent
neural network (RNN) [21] architecture is a special type of neural network accounting for data node
dependencies by preserving sequential information in an inner state, which allows the persistence
of knowledge accrued from subsequent time steps. However, the RNN is prone to vanishing and
exploding gradients. This led to the development of RNN variants such as long short-term memory
(LSTM) networks [22], bidirectional LSTM and gated recurrent units (GRU) as extensions of the
RNN architecture by replacing the conventional perceptron architecture with memory cell and gating
mechanisms that regulate information flow across the network. These variants are widely used for the
task of solar irradiance forecasting. The authors of [23] stated that LSTM is a powerful approach for time
series forecasting; they used it for day-ahead prediction of solar irradiance. The study proved the LSTM
model to be robust; it outperformed other forecast mechanisms such as gradient boosting regression,
feedforward neural networks and the persistence model. The authors of [24] proposed a mechanism
for hourly day-ahead prediction of solar irradiance using the weather forecasting data. The proposed
model consisting of the LSTM variant was compared to the persistence algorithm, linear least square
regression and multilayered feedforward neural networks using a backpropagation algorithm (BPNN)
for solar irradiance prediction which resulted in LSTM performing the best among all of the methods.
The authors of [25] developed a least absolute shrinkage and selection operator (LASSO) and LSTM
integrated temporal model for solar intensity forecasting which could predict short-term solar intensity
with high precision. Furthermore, recurrent neural networks can be divided into two categories based
on the type of mechanism they follow, one being the traditional memory-based models and the other
being the attention-based ones. Some of the memory-based models are LSTM, GRU, bidirectional
RNNs and so on, while some attention-based models are the attention LSTM, self-attention generative
adversarial networks and multi-headed LSTM. The memory-based RNNs are the most widely used
models for the task of solar irradiance forecasting in literature. Here, we also intend to introduce the
attention mechanism for the task of solar irradiance forecasting. For the task of predicting an element,
the attention vector is estimated on the strength of its correlation with other elements and then the
sum of these values, which are weighted by the attention vector, is taken. The attention mechanism
which was originally introduced and used specifically for machine translation has been recently used
for time series forecasting in solar energy tasks. The authors of [26] proposed a temporal attention
mechanism for forecasting solar power production from PV plants. The authors of [27] improved upon
the attention-based architecture of transformers for forecasting solar power production. In previous
works, the prediction task was performed on data from a single target location. The data from the
surrounding locations were not exploited for predicting future values of target location. Here, along
with the target location’s data, the regional data surrounding the target location were also utilized for
building the model. This was done in order to exploit the available data of multiple locations and their
contribution in forecasting the future value of a particular target location. A thorough study focusing
on various memory-based and attention-based deep recurrent neural network mechanisms for solar
irradiance forecasting has not been carried out yet. As such, the DNN-based time series models were
built on the basis of the multiple-site concept to forecast the daily solar irradiance of two locations in
India on data collected from NASA over a period of 36 years.
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1.4. Contributions of the Study

The variable nature of solar energy poses challenges in its integration to the power grid.
Accurate forecasting is required for a techno-economically viable solar energy system. The photovoltaic
power data are often proprietary and not publicly available, which creates the need to utilize the
satellite-derived information of solar irradiance, since the relationship between solar power and solar
irradiance is quasilinear [19]. Forecasting at different time horizons has different applications for
solar energy systems such as monitoring, maintenance of stability and regulation, management of
scheduling and unit commitment. Hence, solar irradiance forecasting is crucial for the domain of solar
energy’s advancement in economic feasibility and efficient market penetration; thus, it is essential
in order to pave the way for solar energy to be a major type of green energy. The study aims to
develop forecast models based on deep learning (DL) methodologies and data from multiple sites
to predict the daily solar irradiance. The deep neural network mechanism of machine learning was
chosen since the machine-learning-based model estimates particular types of data with high accuracy
in comparison to the traditional statistical mechanisms. The machine learning models are capable
of extracting and learning the inherent symmetry in patterns and relationships in data. Along with
the memory-based variants of RNN, the study also introduces the attention-based mechanism for
forecasting solar irradiance. The machine learning models are data-driven, and a large data set is
required to understand the behavior of the system, which is often complex. Hence, the past 36 years
(1983–2019) of data were provided to the model. For further validation of the proposed mechanism,
two locations in India along with the adjoining regional sites were considered for testing the forecast
accuracy. The goodness of fit and model performance were compared with rolling window evaluation
using mean squared error, root-mean-square error and coefficient of determination (R2) for evaluation.
To the best of our knowledge, no comprehensive investigation of solar irradiance forecast models
utilizing the RNN variants and multiple-site data has been performed yet. The contributions of this
study can be summarized as follows:

1. Time series models based on deep learning methodologies were implemented to forecast the daily
solar irradiance of two locations in India through consideration of the historical data collected.

2. The models were developed on the basis of single-location univariate solar irradiance data as
well as data from multiple locations.

3. The accuracy, performance and reliability of the model were investigated on the basis of standard
performance evaluation metrics and rolling window evaluation.

4. The feature importance of the nearby locations with respect to forecasting target location solar
irradiance was analyzed and compared on the basis of the solar irradiance data obtained from
NASA over 36 years.

The paper is organized as follows: Section 2 highlights the materials and methods considered in this
work. The data set used in this study along with the forecast framework, the methodology developed
and the metrics used for performance evaluation are discussed in Section 2. The performance of the
forecasting models and a discussion are presented in Section 3. The conclusion is given in Section 4.

2. Materials and Methods

In the sections that follow, the methodology of the proposed deep learning framework for
forecasting daily solar irradiance is discussed. The outline of the proposed framework is shown in
Figure 1. The first step consisted of data collection of the point target location and the multiple-site
region surrounding the target location. Then, the proposed model selected the relevant location data
from the multiple-site high-dimensional data. The optimal model of forecasting was then obtained
utilizing deep learning models. The proposed mechanism was validated on meteorological data from
two target locations for different time horizons of forecasting. The efficiency was compared with the
single-location forecast model and various deep learning models in terms of performance metrics.
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Figure 1. Schematic diagram of the proposed framework.

2.1. Data Collection

Forecast models for solar irradiance were built on historical time series data. These data can be
obtained through ground-based stations or satellite-based data sets. Due to the limited availability
of ground-based stations, the satellite-based data was utilized here from NASA’s POWER database,
which is open access with long-term coverage. The daily solar irradiance data consisting of solar
radiation incidents on a horizontal surface having unit kwhr/m2 per day were collected from the
SSE-Renewable Energy Community of the POWER Data Access Viewer for a period of 36 years from
1983 to 2019.

The problem of forecasting that we are trying to address here is the forecast of data in a particular
target location utilizing not only the target location data, but also the data of the region surrounding
the target location. This would address the data dependency on unrelated features, since it is only
the solar irradiance data that is considered for all of the sites. Instead of only relying on lags of the
particular target locations data, which might consist of discrepancies, this framework considered
multiple-site data of the target solar irradiance feature. The relevance of the feature is discussed in
the next section. Here, we introduce a multi-site mechanism converting the problem into multivariate
forecasting utilizing the concerned solar irradiance data from multiple sites. Figures 2 and 3 below
show the point location and the region selected for the solar irradiance data from the POWER Regional
Data Access widget which provides access to near real-time data. Point P represents the target location
while the enclosed region represents the multiple sites surrounding the target location. These regional
data were further analyzed and processed in the next step for the task of forecasting. For a single
point—that is, the target location’s data—a near real-time 1/2× 1/2 degree data set was accessed
by supplying a numeric vector with length of two, giving the decimal degree longitude and latitude
in that order for data to download. For the regional coverage, a bounding box was attained for the
surrounding location to a target point location with a maximum bounding box of 4.5× 4.5 degrees of
1/2× 1/2 degree data with 100 data points maximum in total. A numeric vector with length of four,
as latitude and longitude coordinates of the lower left and upper right, was provided to attain the
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enclosed area. These coordinates of the data set utilized for the case study are represented in Table 1.
Table 2 lists the descriptive statistics of the target solar irradiance data.

Figure 2. Point data and multi-site data collected for location 1. Adapted from the POWER Data
Access Viewer by the NASA Langley Research Center (LaRC) POWER Project funded through the
NASA Earth Science/Applied Science Program (https://power.larc.nasa.gov/data-access-viewer/).

Figure 3. Point data and multi-site data collected for location 2. Adapted from the POWER Data
Access Viewer by the NASA Langley Research Center (LaRC) POWER Project funded through the
NASA Earth Science/Applied Science Program (https://power.larc.nasa.gov/data-access-viewer/).

Table 1. Data set description for target location and regional data.

Location # Target Location Coordinates Number of Enclosed Regional Sites Enclosed Site Coordinates

1 23.25991, 77.41261 12 23.9645, 78.2255; 22.7947, 76.5556
2 22.71961, 75.85771 15 23.4011, 76.7314; 22.1450, 74.9077

Table 2. Descriptive statistics for daily solar irradiance.

Statistic Value for Location 1 Value for Location 2

Total Observations 13,000 13,000
Date Range 1983–2019 1983–2019
Minimum 0.2 0.16
Maximum 8.41 8.66
Mean 5.09 5.17
Standard Deviation 1.42 1.38

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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2.2. Data Selection

The data of 36 years were collected for the target location as well as the enclosed region. As it can
observed from Table 1, the data collected for forecasting Location 1 and 2 consisted of 12 and 15 sites,
respectively. However, the sites surrounding the target location may not all have been correlated and
helpful in forecasting solar irradiance data. The dimensions of the features needed to be reduced to
utilize only the relevant features for forecast purpose. Here, feature implies the solar irradiance data
of all of the locations as depicted in Table 1. Therefore, the forecast framework further consisted of
analyzing the correlation and feature importance of the multiple-site data for forecasting the target
location data. This task was accomplished by utilizing the Pearson, Spearman and XGBoost Ranking
as discussed below.

2.2.1. Pearson Correlation

Pearson correlation measures the linear relationship between related variables. −1 implies the
variables are negatively correlated, 0 denotes they are not correlated and 1 means they are perfectly
correlated. It generally measures the global synchrony.

Corrxy =
n ∑ xiyi −∑ xi ∑ yi√

n ∑ x2
i − (∑ xi)2

√
n ∑ y2

i − (∑ yi)2
(1)

2.2.2. Spearman Correlation

Spearman correlation is a correlation test which is nonparametric in nature. It does not carry
assumptions regarding the distribution of the data and is the appropriate correlation analysis
when the variables are measured on a scale. Equation (2) denotes the formula for calculation of
Spearman correlation with n number of observations and di being the difference between ranks of the
corresponding variables.

Corr = 1−
6 ∑ d2

i
n(n2 − 1)

(2)

2.2.3. XGBoost

Along with the correlations between target and neighboring locations, we also computed the
feature importance of the solar irradiance values. eXtreme Gradient Boosting (XGBoost) utilizes
information gain for estimating the importance of feature. After the boosted trees are constructed,
the importance scores for each attribute can be retrieved in a straightforward manner. This importance
is calculated for all of the features which ranks and compares them to each other. Calculation of
feature importance is performed for a single decision tree. This is done by the amount in which each
split point contributes to the improvement of the performance measure, weighted by the number of
observations the node is responsible for. The performance is measured using an error function and
feature importance calculated by the average across all of the decision trees within the model.

These scores would indicate the relation of the multiple sites and the target location, such that only
the relevant sites are chosen which would improve the forecast accuracy. Figure 4 depicts the process
of selection of m locations from the collected n sites data. The solar irradiance of these m locations and
the target location were used for the forecast methodology, utilizing deep neural networks as stated in
the next section.
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Figure 4. Data selection from multiple-site data.

2.3. Forecast Methodology

This section introduces the deep learning methodology of recurrent neural networks and their
variants. The vanilla LSTM, GRU, bidirectional LSTM, CNN LSTM and the attention mechanisms are
presented below. The networks took the past solar irradiance data of the target location and the selected
multi-site locations as input features. The final output y(t−1+∆) was the forecast result of future solar
data of the target location. Given daily solar irradiance time series X, with xi representing observed
value at time i, X = {x1, x2, ...., x(t−1)}, the problem was forecasting x(t−1+∆) with ∆ as the horizon

w.r.t. different tasks. y(t−1+∆) is the prediction with y
′
(t−1+∆) = x(t−1+∆) being the ground-truth value.

For every task, {x(t−w), x(t−w+1), . . . , x(t−1)} is used to predict x(t−1+∆), where w is the window size
because of the assumption that there exists no useful information before the window and the input
is fixed. Equation (3) denotes the problem with y representing ∆ days-ahead forecasting of solar
irradiance data with deep neural network model f on past historical data. Since data from multiple
locations were used, the input data x consisted of time-lagged values of target location data as well as
the regional multi-site data.

y(t−1+∆) = f (x(t−w), x(t−w+1), . . . , x(t−1)) (3)

The solar irradiance forecast modeling in the univariate scenario for a single location was
performed by taking the historical data at time t− 1+∆, denoted by Irr(t−1+∆) in Figure 5, as the target
variable and the window-lagged data, Irr(t−w), Irr(t−w+1), . . . Irr(t−1), as input variables. w represents
the window length for the lagged time series, which was decided upon using the autocorrelation and
partial autocorrelation characteristics of the data. Li represents the ith hidden layer L, in which the i
values are set during model tuning. Overall, the future values of solar irradiance were predicted using
the past and present values according to set window size.
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Figure 5. A deep neural network forecast framework for single-location data.

In the proposed forecast framework, the difference was in the features utilized for future value
prediction. Instead of only depending upon the past lagged values of one location, the values of
multiple locations were utilized. This converted the univariate form of forecasting into a multivariate
form with solar irradiance data from the target location as well as m locations as features. The final
aim was forecasting solar irradiance values for the target location. Figure 6 represents this framework,
with Irrj representing jth location data, where j ranges from 1 to m and Irrtarget denoting solar
irradiance for target location.

Figure 6. The proposed forecast framework with data from multiple locations.

The deep neural network assigns weights to the past input data in order to predict the future
values. The recurrent neural network variant of DNN is used for the task of time series forecasting
since it is suited for sequential data and remembers the temporal dependencies in data. Equation (4)
represents a vanilla RNN which takes into account the present input along with the output of the
previous state. The proposed framework utilizes the enhanced cell mechanism of this vanilla RNN
which is capable of understanding more complex and long-term dependencies.
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yt = WXHXt + WHH Ht−1 (4)

2.3.1. LSTM

LSTM belongs to the family of recurrent neural networks, improving on the efficiency of traditional
sequence learning mechanisms. The problem of vanishing and exploding gradients persists in the
RNN, which led to the development of LSTM in order to overcome these problems of RNNs.

LSTM, as shown in Figure 7 [28], introduces additional computation components to the RNN,
the input gate, the forget gate and the output gate. The equations for the forward pass are stated below:

At = tanh(WcurXt + Rcur Ht−1)

It = σ(WinpXt + RinpHt−1)

Ft = σ(W f orXt + R f or Ht−1)

Ot = σ(WoutXt + RoutHt−1)

Ct = It � At + Ft � Ct−1

Ht = Ot � tanh(Ct)

(5)

Figure 7. Long short-term memory (LSTM) cell. Adapted from “LSTM: A Search Space Odyssey” by
K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink and J. Schmidhuber, 2017, IEEE Transactions on
Neural Networks and Learning Systems, 28(10), pp. 2222–2232.

The current input and the previous state are processed by At after which the input gate It decides
upon the parts of At to be added in the long-term state Ct. Ft is the forget gate with the responsibility
of deciding which parts of Ct−1 are to be erased, discarding the unnecessary parts. The output gate Ot

finds the parts of Ct to be read and shown as output. As such, there exists a short-term state Ht that is
shared between the cells and a long-term state Ct in which the memories are dropped and added by
the respective gates. Weight updation is carried out by following equation below with ∗ denoting any
one among {cur,inp,for,out} and < ∗, ∗ > denoting the product.:

δW∗ =
T

∑
t=0

< δ∗t, Xt >

δR∗ =
T−1

∑
t=0

< δ∗t+1, Ht >

(6)

2.3.2. Bidirectional LSTM

LSTM processes the inputs in strict temporal order. This indicates that the current input has
context of previous inputs, but not the future. The bidirectional LSTM [29] model was introduced to
address this shortcoming. It duplicates the LSTM processing chain so that the inputs are processed in
both forward and reverse time order. This allows the network to look into the future context as well.
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2.3.3. GRU

The gated recurrent unit [30] can be viewed as the simplified version of LSTM in which the cell
states are not used explicitly. The main simplification made is that both the state vectors are merged
into a single vector. Figure 8 [31] represents a GRU cell, and the equations followed during forward
pass are shown below.

zt = σ(Wxzxt + Whzht−1)

rt = σ(Wxrxt + Whrht−1)

gt = tanh(Wxgxt + Whg(rt ⊗ ht−1)

ht = (1− zt)⊗ tanh(Wxght−1 + zt ⊗ gt)

(7)

There exists a single gate controller which controls the input gate and the forget gate. On a gate
controller giving an output of 1, the input gate is opened while the forget gate is closed, and vice
versa when the output is 0. This implies that on requirement of a memory to be stored, the location
to be stored is erased first. It is, in fact, a variant of LSTM which is used frequently. No output gate
exists and the full state vector is output every time step. However, there is a new gate controller which
controls the part of the previous state which will be shown to the main layer.

Figure 8. Gated recurrent unit (GRU) cell. Adapted from “Handling Long Sequences” in A. Geron,
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (p. 519), 2019, O’Reilly Media,
Inc. Sebastopol, CA 95472.

2.3.4. CNN LSTM

CNN [32] architecture consists of three types of layers: the convolutional layer, the pooling
layer and the fully connected layer. Convolutional layers take in the feature maps as inputs from the
previous layer and perform convolution operations between filters and the inputs.

conv(x, y) = ∑
i

wivi (8)

where wi are the convolutional kernel parameters, vi the output of previous layer and (x, y) the spatial
coordinate. A complete feature map is obtained as follows with b as scalar bias and g as the nonlinear
activation function.

z(x, y) = g(conv(x, y) + b) (9)

The hybrid CNN LSTM method consists of a series of connections between the convolutional
and LSTM layers. The convolution operation reduces the number of parameters and uses a pooling
layer for combining the output of a cluster of neurons to a single neuron. The pooling layer also
reduces parameters and computation cost of the network. Max pooling is used here which selects the
maximum value from neuron clusters. The LSTM layers are placed after the CNN layers. The past
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and future contexts are kept in view along with consolidation of memory units and cell states for
the temporal dependencies. The vanishing and exploding gradients are also addressed by the LSTM
layers. The dropout regularization is used for overfitting as well.

2.3.5. Attention LSTM

The attention mechanism belongs to the sequence-to-sequence model which was built mainly
for neural machine translation. It consists of an encoder and decoder with encoder encoding the
input to a fixed length vector and decoder translating it [33]. The attention mechanism addresses the
long-term dependencies in which past values from far back might be affecting the present day forecast.
The identification of relevant features and dynamic interdependencies can be done through attention.
The attention mechanisms mainly differ in the architecture of the encoder-decoder adopted and the
score function. In the sequence-to-sequence model, the decoder receives the last encoder hidden state
from the encoder, a vector representation, much like an input sequence’s numerical summary. Thus,
for a long input, the decoder uses just this one vector representation to output the prediction, which
leads to forgetting. As such, attention was introduced, which acts as an interface in between the
encoder and decoder providing information from every encoder hidden state to the decoder. As shown
in Figure 9 [34], this enables the model to selectively focus on useful parts of the input sequence based
on the scoring function, and thus learn the alignment between them.

Figure 9. Attention mechanism. Adapted from “Time Series Forecasting: A Comparison of Deep
Neural Network Techniques” by B. Brahma and R. Wadhvani, 2020, Solid State Technology, 63(6),
pp. 1747–1761.

Here, score represents a typical scoring function which represents the relevance between the
input vectors. The whole process is done for computation of the context vector which is then forwarded
to the decoder layer [26].

score(ht-1, st-1) = vT
a tanh(Wa[ht-1; st] + Wxx + ba) (10)

αt−1 =
exp(score(ht-1, st-1))

∑t
i=1 exp(score(hi-1, si-1))

(11)

ContextVector =
t

∑
i=1

αihi (12)
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where x is the given input, ht-1 is the hidden state and st-1 the cell state. Wa, Wx and ba are the attention
weights and bias. As it can be observed from Figure 9, after the input layer, there exists an encoder
layer which processes the input and then forwards it to the attention layer. The σ represents the
softmax function performed on the score. This attention layer proceeds with the input according to the
equations as stated above and then feeds its output to the decoder to be sent to the output layer. Now,
these encoder and decoder layers are nothing but the DNN hidden nodes and layers which perform a
typical sequential learning from the complete process. The additional benefit is the computation of
relevant information after extracting it through the scoring function. This aides in managing long-term
dependencies by just the introduction of an attention layer.

In the attention LSTM developed for solar irradiance forecasting, the score function adopted is
the content-based attention. The attention vectors in content-based attention [35] or cosine scoring are
created on the basis of similarity between the key and memory rows. It computes the cosine similarity
which is then normalized by the softmax function.

score(st, hi) = cosine[st, hi] (13)

The encoder layer consists of the bidirectional LSTM and vanilla LSTM. The hidden outputs from
this layer is then fed to the attention layer which computes the score function and then the context
vector. This is then forwarded to the decoding fully connected layer or the dense layer which then
gives the output that is the forecast values of solar irradiance.

2.4. Performance Evaluation Metrics

In order to verify the performance of forecasting models, the goodness of fit needs to be measured.
The common metrics which are used to calculate this include MSE, MAE, RMSE, SSE, R2 score, etc.
Here, we use the following metrics as in Table 3. E denotes the expected value or the actual value
of the target output and F denotes the output of the forecast model given input X and weight w.
MSE and RMSE provide an insight regarding the error. Low values of MSE and RMSE denote better
performance. R2 is the coefficient of determination indicating closeness of fit with baseline model.
When the R2 score value tends to 1, the relationship between the predictors and response variable is
considered to be strong, whereas an R2 score close to 0 indicate the opposite.

Table 3. Forecast performance evaluation metrics.

Metric Equation

MSE 1
N ∑N

n=1(E(Dn | ~Xn)− F( ~Xn, ~w))2

RMSE
√

1
N ∑N

n=1(E(Dn | ~Xn)− F( ~Xn, ~w))2

R2 1− ∑N
n=1(E(Dn | ~Xn)−F( ~Xn ,~w))2

∑N
n=1(E(Dn | ~Xn)−~F( ~Xn ,~w))2

3. Results and Discussion

The results of the simulation experiments performed on historical data are presented in this section.
The analysis was performed based on test results, which were further analyzed for their diversity,
robustness, importance of the features used and the significance of multiple horizons. These results
are discussed and represented in the subsections that follow.

3.1. Test Results

The results of the proposed multi-site deep learning forecast methodology were compared with
those of the traditional deep learning forecast mechanism for the two locations in India. Tables 4–9 show
the performance of the forecasting models in terms of MSE, RMSE and coefficient of determination.
The best performing models are shown in bold. For suitability of representation, the MSE values were
multiplied by 103 and the RMSE values were multiplied by 102.
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Tables 4–6 indicate the performance metrics of each developed model for Location 1 with different
horizons. The developed forecast methodology had the lowest MSE and RMSE and the highest R2

score in all of the cases. The bidirectional LSTM performed the best for 1-day-ahead forecasting.
However, the attention LSTM proved its superiority in 4-days-ahead and 10-days-ahead forecasting of
solar irradiance. The single-location forecast models also performed well; however, the developed
multi-location model performed better, indicating its ability to accurately forecast solar irradiance data.

Table 4. Forecast performance of Location 1 data set for horizon length of 1.

Model
Single-Location Multi-Location

MSE RMSE R2 MSE RMSE R2

LSTM 9.721 9.859 68.62 9.581 9.788 69.06
GRU 9.825 9.912 68.28 9.193 9.588 70.32
CNN 9.714 9.856 68.64 9.213 9.598 70.25
Bidir 9.617 9.806 68.95 9.094 9.536 70.64

Attention 9.610 9.803 68.97 9.399 9.695 69.65

Table 5. Forecast performance of Location 1 data set for horizon length of 4.

Model
Single-Location Multi-Location

MSE RMSE R2 MSE RMSE R2

LSTM 13.19 11.48 57.41 12.79 11.31 58.68
GRU 13.28 11.52 57.13 12.93 11.37 58.23
CNN 13.22 11.50 57.31 12.94 11.37 58.23
Bidir 13.20 11.49 57.36 12.78 11.30 58.74

Attention 13.21 11.49 57.34 12.69 11.26 59.01

Table 6. Forecast performance of Location 1 data set for horizon length of 10.

Model
Single-Location Multi-Location

MSE RMSE R2 MSE RMSE R2

LSTM 15.48 12.44 50.24 15.19 12.33 50.98
GRU 15.41 12.41 50.50 16.25 12.75 47.57
CNN 15.05 12.26 51.66 18.37 13.55 40.75
Bidir 15.16 12.31 51.28 14.84 12.18 52.12

Attention 15.23 12.34 51.05 14.38 11.99 53.56

Similar results were observed for Location 2 as represented in Tables 7–9. The proposed
methodology performed the best among the models compared. The bidirectional LSTM performed
the best for forecasting 1-day-ahead and 4-days-ahead solar irradiance, while the attention LSTM
outperformed others in forecasting 10-days-ahead data. It was also observed that Location 2 showed
the lowest errors, followed by the higher error values of Location 1. The performance of the deep
learning forecast methodology was improved by the addition of multiple-site solar irradiance feature.

Table 7. Forecast performance of Location 2 data set for horizon length of 1.

Model
Single-Location Multi-Location

MSE RMSE R2 MSE RMSE R2

LSTM 7.911 8.894 72.29 7.678 8.762 73.11
GRU 7.869 8.871 72.44 8.106 9.003 71.61
CNN 7.937 8.909 72.21 8.317 9.120 70.86
Bidir 7.794 8.828 72.71 7.610 8.724 73.34

Attention 7.866 8.869 72.45 7.631 8.735 73.27
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Table 8. Forecast performance of Location 2 data set for horizon length of 4.

Model
Single-Location Multi-Location

MSE RMSE R2 MSE RMSE R2

LSTM 10.63 10.31 62.75 10.50 10.27 63.06
GRU 10.56 10.27 63.01 10.67 10.33 62.64
CNN 10.68 10.34 62.57 10.93 10.45 61.72
Bidir 10.76 10.37 62.30 10.50 10.25 63.21

Attention 10.79 10.38 62.21 10.69 10.34 62.55

Table 9. Forecast performance of Location 2 data set for horizon length of 10.

Model
Single-Location Multi-Location

MSE RMSE R2 MSE RMSE R2

LSTM 12.51 11.18 56.34 12.61 11.23 55.89
GRU 13.07 11.43 54.38 12.98 11.39 54.59
CNN 13.40 11.57 53.25 15.12 12.29 47.11
Bidir 12.83 11.32 55.23 12.54 11.19 56.14

Attention 12.65 11.25 55.84 12.45 11.16 56.44

The tables indicate that the proposed methodology outperformed other models on all data sets,
metrics and horizons. The superiority of the multi-site deep learning forecast methodologies was
demonstrated by the results obtained through simulations. Furthermore, the bidirectional LSTM
and attention-based LSTM models performed the best among other DL models. The bidirectional
LSTM models showed their capability of exploiting data from temporal contexts while attention LSTM
utilized complex and nonlinear interdependencies between time steps and time series for predicting
future values of solar irradiance data. Both of the models showed consistent performance of lower
MSE and RMSE values and higher coefficients of determination, with the attention-based models
performing the best in longer horizons with more complex characteristics. It can be established that the
attention LSTM, based on the content-based scoring function and proposed multi-site data, is indeed
an enhancement to the previously developed forecast models.

3.2. Analysis of Diversity and Robustness

As stated by [36], forecasting performed from a single origin tends to be prone to corruption
because of occurrences which are unique to that origin. It has also been rightly said that the
performance on data outside that used in its construction remains the touchstone for its utility in all
applications. Predictive machine learning includes the routine application of repeated subsampling of
the data set on which some algorithm is parameterized, which in turn leads to diversity in data rather
than in the algorithm [37]. This technique also assesses how well our algorithm would perform in the
case of unseen or independent data sets. In the performance estimation model considered here, the
model is updated only with new data. Past trained data is not considered from the origin for training
again as shown in Figure 10.

Figure 10. Performance estimation model.
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The forecast operation was performed not only for 1-day-ahead solar irradiance but also for
multiple horizons as indicated in Figure 11. The historical daily solar irradiance data were utilized to
forecast 1-day-ahead, 4-days-ahead and 10-days-ahead target data. This also proved the robustness of
the proposed methodology for diverse horizons.

Figure 11. Forecasting data for multiple horizons.

Tables 4–9 in the previous subsection indicate the results of this performance estimation model
for multiple horizons. The error metrics indicate the suitability and reliability of the proposed method
for accurately forecasting solar irradiance data.

3.3. Feature Importance Analysis

Selection of features is an important task for DNN models for eliminating features which are not
important in forecasting target data and for reducing computational time and complexity. The proposed
methodology utilized solar irradiance data from multiple locations for forecasting target solar data.
As such, for efficiently selecting the most influential input features, the importance of each variable
was determined. This data selection was done by the analysis that was carried out for selection of
particular regional point locations from multiple points surrounding the target location.

Tables 10 and 11 show the feature importance on the basis of Pearson, Spearman and XGBoost
scoring for both of the locations, respectively. The feature importance was calculated for site IDs 1,
2, 4, 5 and 8 for Location 1, while for Location 2, the sites with IDs 1, 4, 11, 12 and 14 were analyzed.
The sites for both of the locations were different and did not overlap with each other. The values of the
scores were multiplied by 102 for ease of representation. For Location 1, the sites corresponding to
number 2, 5 and 8 out of the five sites showed the greatest correlation. In the case of Location 2, site
numbers 1, 4 and 12 had the greatest importance out of all five sites. As such, only the most important
sites’ solar irradiance data were selected under data selection.

Table 10. Multi-location feature importance corresponding target solar irradiance for Location 1.

Function 1 2 4 5 8

Pearson 87.4959 90.5483 87.2493 91.7756 91.9108
Spearman 88.9031 91.3695 88.2469 92.2826 92.3385
XGBoost 0.3709 21.3245 0.1822 34.5608 43.5614

Table 11. Multi-location feature importance corresponding target solar irradiance for Location 2.

Function 1 4 11 12 14

Pearson 92.5453 91.9138 86.2631 91.2246 87.3032
Spearman 92.5622 91.9727 87.4589 91.7827 88.6667
XGBoost 37.8932 41.0277 0.3307 20.4562 0.2919
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3.4. Comparison for Different Horizons

The results also showed the performance of the models for different horizons. As the length of
the horizon increased, the performance of the model differed in a similar fashion in all of the cases.
The change in performance of the proposed model for both of the locations was observed as the
horizon increased. The performance metrics showed similar trends with better performance in shorter
horizons. Figures A1 and A2 in Appendix A represents this change for both the locations in terms of
MSE and R2 score as the forecast horizon increases. For a horizon length of 1, the models tended to
give the best performance metrics. The proposed model again performed the best as compared to the
other models. A similar trend was seen for all of the horizon lengths.

4. Conclusions

Solar irradiance forecast has captured the attention of current research due to the requirement
and interest in renewable and green energy. Accurate forecasting of solar irradiance is required to
understand the solar energy perspective of a region, considering the opportunities as well as challenges
related to forecasting. The DNN models can efficiently and accurately predict daily solar irradiance
data. In this work, the DNN models were used to predict the daily solar irradiance data with multiple
sites data of solar irradiance from two locations in India. A historical data set of solar irradiance over
the past 36 years was used for training and testing to accurately forecast solar irradiance in this study.
For checking the validation and stability of the simulation results, the goodness of fit of the model was
tested using MSE, RMSE and coefficient of determination. The results demonstrated the capability of
the proposed methodology in providing accurate daily prediction of solar irradiance. The coefficient of
determination (R2) was equal to 70% and 73% for both the locations, respectively. The R2 scores greater
than 50 indicated excellent forecast performance of the model. Moreover, the feature importance was
analyzed utilizing correlation and XGBoost scores. The results supported the selection of the multi-site
data and its goodness of fit. In addition, a comparison of the DNN models on the basis of multiple
horizons was also conducted. The results showed that forecasting tasks of shorter horizons shows
better accuracy while longer horizons require more complex models.

The present study also exhibited certain limitations. The black box nature of machine learning
models make understanding the model difficult. Our future work will concentrate on exploiting the
hybrid models consisting of linear and nonlinear models. The limitations of using single models
in processing data patterns and the nonstationary behavior of solar irradiance and meteorological
parameters in various atmospheric conditions have led to the introduction of hybrid approaches to
achieve more accurate results for modeling and forecasting [38,39], which led to enhancement of
model interpretability and accuracy. The study considered the data of two locations from a single
country. Future research would include target data from multiple locations and different climate
zones. In general, promising models with boosted forecast precision can estimate potential solar
energy—in particular locations and advance the sustainable planning of solar power applications.
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Appendix A

Figures A1 and A2 denote the effect of horizon on the forecast performance.
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Figure A1. Forecast horizon vs. mean squared error (MSE).

Figure A2. Forecast horizon vs. R2 score.
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