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Abstract: Humanitarian logistics (HL) is considered one of the most significant issues of disaster
operations and management. Thus, HL operation should be viable enough to function well under
the uncertain and complex nature of the disaster. Many difficulties in pre-and post-disaster phases
bring both human and economic losses. Therefore, it is essential to make sure that the HL operations
are designed efficiently. In the last two decades, several publications have emphasized efficient HL
operations and proposed several mathematical models and algorithms to increase the efficiency of
HL operations and motivated the necessity of a systematic literature review. A systematic literature
review is deemed pertinent due to its transparent and detailed article searching procedure. In this
study, due to the importance of the mathematical optimization model, we reviewed more than one
hundred articles published between 2000 and 2020 to investigate the optimization models in the field
of HL. We classified the optimization models into three main problems: facility location problems,
relief distribution, and mass evacuation where each of the classified areas includes both deterministic
and non-deterministic models.

Keywords: humanitarian logistics; systematic literature review; facility location; relief distribution;
mass evacuation

1. Introduction

The exponential increase in the disaster numbers has brought up myriad complica-
tions in both human life and the economic sector of a country. The number of affected
people is almost proportional to the increase in disaster numbers; on average 224 million
people per annum have been affected by disasters since 2006 where the economic damages
were USD 154 billion in 2016, 12% above the annual average in 2006–2015 [1]. As the
impact is intensifying of disasters on the society and economical sector of a country, the
improvement and the reconstruction of humanitarian logistics (HL) has become a great
concern nowadays [2].

Since the Asian tsunami occurred in 2004 in the Indian Ocean, humanitarian logis-
tics operations have become an essential area of research for academia. Before the 2004
tsunami, most of the research work considering the disaster management phases. Namely,
preparation, relief, recovery, and mitigation, was studied to a smaller extent, and most of
the work was in the context of supply chain and logistics. Figure 1 depicts that there were
few numbers of published works before 2004 and, after 2004, the number of research work
in humanitarian logistics has increased drastically. Owing to a lack of logistical expert,
there were limited coordination and collaboration among humanitarian-relief-providing
agencies. The lack of proper coordination and collaboration had created a blockage in
the airport of the tsunami-affected countries in 2004 [3]. Due to the massive demands
during a disaster, sometimes it outstrips the available resources. However, sometimes
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relief goods become excessive because many international donors send relief resources to
disaster-affected countries and it results in difficulties to sort out the necessary resources
and distribute them timely and cost-effectively.
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Figure 1. Number of publications by year.

Until the last decade, it was considered that natural disasters are low frequency, but
in the last decade, it has been seen that the United States, China, India, the Philippines,
and Indonesia are most frequently structured by natural disasters [1]. Among various
natural disasters, hurricanes are one which most frequently hit the Caribbean and Central
Africa. On the other hand, because of the movement and collisions of lithospheric plates,
which result in “the ring of fire”—90% of the world’s earthquakes occur along the ring
of fire. Japan, the Philippines, Indonesia, and Papua New Guinea have a long history of
earthquakes because of their presence in the “Ring of Fire” region [4].

Numerous studies have been published by different authors in the last decade with a
different title but with the same purpose of lowering the sufferings of people in disaster-
stricken regions. The number of publications per year from 1980 to 2019 is depicted in
Figure 1. It is discussed in the earlier paragraph that there are four stages in humanitarian
operations; these are mitigation, preparedness, response, and recovery [5]. Mitigation
includes the steps to reduce the vulnerability of disaster-stricken areas such as reduce the
loss of life, property, and others, while the preparedness stage educates people on how
to better prepare themselves to confront the disaster. Not only the people but also the
preparedness stage helps the government to take proactive approaches to have a robust
structure in the time of disaster. The response and recovery stages are the post-disaster
phases. The response stage works to respond efficiently to minimize the loss of economic
and human life while the recovery stage works to resort to the damages caused by the
disaster.

In the field of HL, there are a few literature review articles published already that
follow the different procedures and structures. Focusing on the disaster operation life
cycle, Altay and Green [6] published a review article where they explained the required
activities of the stages of the disaster. Natarajarathinam, Capar, and Narayanan [7] studied
the current practices and research trends to manage the supply chain in times of crisis.
Simpson and Hancock [8] reviewed the operations research technique applied in the
emergency responses for the last 50 years. Caunhye, Nie, and Pokharel [9] reviewed the
optimization models for emergency logistics. They have broken down the literature into
three parts: facility locations, relief distribution, and causality transportation. Leiras and
Adriana [10] studied the trend of HL literature by applying the systematic literature review
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process. However, the optimization model was not studied properly. On the other hand,
Habib, Lee, and Memon [3] reviewed the mathematical models of the supply chain for
crisis management. The authors divided the literature into three parts: facility location,
network restoration, and evacuation. Bealt and Mansouri [2] discussed the literature
review in the view of a collaborative aid network. They tried to find out the literature
focusing on community involvement, coordination, and collaboration between different
stakeholders. Boonmee, Arimura, and Asada [11] reviewed the facility location problem
in HL. In their study, facility location problem is divided into four categories; one is
the deterministic facility location problem, and another is the non-deterministic, which
includes the stochastic and robust facility location problem and, lastly, the dynamic facility
location problem. On the other hand, Ruiz [12] reviewed the literature only focusing on
the relief distribution network of emergency management.

A very interesting survey on the public health system was performed by Burkle,
Bradt, and Ryan [13]. The authors studied the overlooked opportunities of the public
health information system and explored the current trend of it. Finally, they proposed
a model for a population-based management system by a global public health database.
Goldschmidt and Kumar [14] provided a literature review on the disaster management life
cycle where authors covered three domains, namely, supply chain management, economics,
and disaster management.

As of now the published literature review on HL focuses on a certain stage of a
disaster life cycle and some modeling techniques. The literature review only focusing on
mathematical modeling for the deterministic and non-deterministic models are not studied
for all the four stages of the disaster. None of these published works cover the three main
domains of HL and their approaches are not holistic in terms of modeling technique and
solution methodologies. Therefore, this review article aims to provide a detailed study
covering both the deterministic and non-deterministic models of the HL.

The rest of the paper is organized as follows: the research methodology is explained
in Section 2. Section 3 provides an explanation of the published literature for the last two
decades. Section 3 is further divided into subsections according to the deterministic and
nondeterministic nature of the model. Finally, future directions are added in Section 4
while the conclusions are explained in Section 5.

2. Research Methodology

A systematic review process differentiates itself from other existing review processes
by its organized and categorical approach. A systematic literature review process aims to
bring out the zest from the existing published studies by following a procedure of searching,
collecting, and analyzing the available resources. There are four steps for systematic review
methodology; these are planning, searching, screening, and reporting [15].

Planning: The planning stage of the systematic literature helps to frame the question
on which the review process starts. Normally, research questions are framed in such a way
that helps to answer the current research status of a particular area and the research gap of
that area. The planning stage helps to avoid the ambiguity of the review result.

Searching: The searching stage depends on the research questions addressed in the
planning stage. In this literature review, we tried to collect the papers from 2000 to
2020. While searching for the papers some keywords have been used and these keywords
are: “humanitarian logistics”, “disaster management”, “relief operations”, “humanitarian
relief operations”, “facility locations in disaster management”, “location and routing
problem in HL”, “commodity distribution”, “relief logistics”, “relief distribution and
evacuation”, “stochastic programming”, “robust optimization”, “uncertainty in disaster
management”, “emergency response”. This searching procedure was performed with the
following databases mentioned in the following Table 1. The paper collected and depicted
in Figure 1 only states the optimization of HL. Only papers collected from 1980 to 2019
were considered, though we mainly concentrated on the articles that were published after
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2000. On the other hand, a few articles published in 2020 were also studied to see the recent
approach to this field.

Table 1. The database search for the articles.

Database Website

Google Scholar https://www.scholar.google.com
Science Direct https://www.sciencedirect.com

Scopus https://www.scopus.com/freelookup/form/author.uri
https://www.elsevier.com/search-results?query=
humanitarian%20logistics&labels=journals

Emerald Insight https://www.emeraldinsight.com

Screening: An unbiased screening process is very important for a good literature
review. In this study, an intensive screening process is carried out where the inclusion and
exclusion criteria are considered. This study focuses on the mathematical modeling tech-
nique in the field of HL. Thus, only those papers are included that follow the mathematical
modeling technique. We did not include conference papers but peer-reviewed journal
articles. Articles written from the perspective of commercial supply chain management are
out of the scope of this literature review.

Reporting: In this stage, papers are divided according to the classification of HL
operations. Every classified area of HL is discussed according to the nature of the model
(i.e., deterministic and non-deterministic models). Finally, the current trend and the
research gap are analyzed.

3. Research in Humanitarian Logistics
3.1. Facility Location Problems

In disaster management (DM), the identification of the appropriate location of shelters,
medical centers, warehouses, distribution centers, debris removal sites, and others is very
important to mitigate human suffering. To find the prior mentioned centers, the study of
facility location problems (FLPs) in DM plays a vital role. According to Boloori Arabani
and Farahani [16], FLPs can be defined depending upon two questions—which area should
be selected to locate the facilities, and when should new facilities be established, or existing
facilities modified? Caunhye, Nie, and Pokharel [9] reviewed most of the optimization
models related to facility location problems in humanitarian logistics. The articles they
reviewed include the decision of selecting new facility locations or choosing the locations
among existing facilities for relief distribution, evacuation of people, and stocking the relief
items before the disaster. Jia, Ordóñez, and Dessouky [17,18] surveyed research articles that
only include facility location models. The main challenge of the facility location problems is
to find out the optimum location for facilities to minimize people’s sufferings by satisfying
the demand of people while keeping the associated cost minimum.

It has been found from the review of FLPs in DM that most of the articles are based on
a single objective, and few papers are based on multi-objectives. From the surveyed articles,
FLPs are divided into the deterministic and non-deterministic models. Deterministic and
non-deterministic models of facility location problems are described in Tables 2 and 3,
respectively, where the objective of each problem, constraints, decisions, stage of the disaster,
solution method, and problem type are mentioned.

https://www.scholar.google.com
https://www.sciencedirect.com
https://www.scopus.com/freelookup/form/author.uri
https://www.elsevier.com/search-results?query=humanitarian%20logistics&labels=journals
https://www.elsevier.com/search-results?query=humanitarian%20logistics&labels=journals
https://www.emeraldinsight.com
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Table 2. Deterministic models of the facility location problem.

Authors Objective Function Constraints Decisions Stage of the Disaster Solution Method Problem Type

Dekel et al., (2005)

Minimize facilities for each area
with a given distance and

maximize the probability of
using facilities

Identify the location of the
facility for each area Location identification Recovery Pick-the-farthest algorithm Set covering model

McCall (2006) Minimize (victim nautical miles,
shortage) FC, BC Location selection, unmet

demand, Preparation GAMS/CPLEX P-median problem

Kongsomsaksakul et al., (2005) Minimize total evacuation time
and evacuee travel time FC, LC, DC, TT, VC

Shelter location selection,
route and destination

selection,
Response GA Location-allocation model

Jia et al., (2007)
Maximize the demand with

sufficient quantity of facility and
quality level

FC, FA, DC, FA Facility location selection,
number of serviced facility Response CPLEX Maximal covering,

p-median, p-center

Balcik et al., (2008) Maximize demand coverage by
distribution centers IL, FC, BC, DC

Number and location of the
distribution center, amount of

relief supplies

Preparation and
response GAMS/CPLEX Maximal covering location

model

Rath et al., (2011)
Minimize (depot opening cost,
transportation cost), maximize

the covered demand
FC, VC, VTT, BC, DC

Depot identification, quantity
of relief item, maximum

operative budget, arc selection
for vehicle

Response AECA, The constraint pool
heuristic, CPLEX

Set covering and vehicle
routing model

Lin et al., (2012) Minimize the operational cost VC, FC, IL, FA
Depot location selection,

number of vehicles, demand
point selection

Response

A two-phase heuristic
approach is coded in C

language and interfaced
with ILOG CPLEX

Minimum facility location

Abounacer et al., (2014)

Minimize the transportation
duration, number of agents

(first-aiders) and total
uncovered demand

FC, VC, LC, WT Location selection, amount of
commodity to deliver Response Epsilon constraint method,

Exact Pareto front, CPLEX
Minimum set covering,

maximal covering

Barzinpour et al., (2014)

Maximize the cumulative
coverage of the population in
pixels of the region, minimize

the setup cost and
transportation cost

MCC, CTC, FC, IL, DC

Location of shelter, allocation
of people, amount of

commodity to be transferred
or stored

Preparation LINGO Maximal covering

Hu et al., (2014) Minimize (total cost of shelter,
total evacuation distance) FC, CC, ACS

Location selection, shortest
distance, assignment of the

community to shelter,
construction cost

Preparation Genetic algorithm Set covering

Ye et al., (2015) Minimize the number of
warehouses NWSE, LD, DSOW

Warehouse location selection,
selection of open warehouse

for emergency operation
Preparation VNS algorithm, CPLEX p-center problem
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Table 2. Cont.

Authors Objective Function Constraints Decisions Stage of the Disaster Solution Method Problem Type

Khayal et al., (2015) Minimize logistics cost and
penalty cost FC, SC, CF, DS, TT, FA

Location of demand and
supply point, resource
allocation and transfer,
coverage, back ordered

demand

Response CPLEX Dynamic facility location

Xu et al., (2016)

Minimize the total distance,
maximize the coverage of all
shelters, maximize the shelter

coverage for people

FC, DPC, SRS Evacuation shelter site
selection Response Lagrangian heuristic

algorithm and GIS p-median and set covering

Chen et al., (2016) Minimize the assignment cost of
facilities FC, DS, MAF Temporary EMS location

selection Preparation
Reduced LR and greedy
algorithm, K-medoids

algorithm

Capacitated facility
location

Perez-Galarce et al., (2017) Minimization of total traveled
distance by the victim CR, AM Number of the victim, location

of the refugee center Preparation CPLEX Uncapacitated facility
location model

M. Akbari et al., (2017) Minimize total cost before and
after interdiction FC, BC, CAF Customer assignment, location

of facility Response
Tabu search, Rainfall

optimization, Random
greedy search

A tri-level facility location
r-interdiction median

model;

Cotes and Cantillo et al., (2019)
Minimize the sum of private

cost (transportation, inventory,
fixed) and deprivation cost

ADC, FC, FLC, DT, TT Amount of prepositioned
product Preparation GAMS/CPLEX capacitated facility location

Das Rubel (2018) Maximize the coverage NW, CLW, TOC
Location selection of local

warehouse (LW) and regional
warehouse, coverage of LW

Response
Open source python

package solver GLPK and
PULP

Maximal covering problem

Tabana et al., (2017)

Minimize the total cost of
procurement and preparation,

minimize the total relief
operational cost, minimize the

total operational relief time

FC, IL, DC, VC, BC, SP
Location selection, amount of
unused product, shortage of

product, inventory level

Preparation and
response NSGA-II and RPBNSGA-II

Facility location, vehicle
routing, and inventory

management

Wapee Manopiniwes et al.,
(2020)

Minimize the amount of
unsatisfied demand SC, VC, DS, NV Amount of vehicle, amount of

supplies, location selection Response Gurobi optimizer Location and routing
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Table 3. Non- deterministic models of the facility location problem.

Authors Objective Function First Stage Decisions Second Stage Decisions Uncertain Components Stage of Disaster Solution
Approach/Technique Model Type

Chang et al., (2007) Minimize the expected
shipping distance Location of rescue storehouse The number of resources to

be stored Demand Preparation LINGO Two-stage stochastic
programming

G. Rawls et al., (2010) Minimize the total expected
cost

Location selection, amount of
pre-positioned commodity

Distribution of available
supplies

Demand and
transportation network

availability
Preparation LLSM algorithm,

CPLEX
Two-stage stochastic

programming

G. Rawls et al., (2012) Minimize the expected cost Stocking quantity, location
selection – Demand Preparation and

response CPLEX Stochastic
programming

Murali et al., (2012) Maximize the number of
people taking medication

Facility location selection,
supply to be assigned to the
facility, allocated supplies to

demand point

– Demand Response Locate–allocate
heuristic

Probabilistic model
(CCM)

Rennemo et al., (2014)
Maximize the utility (in

terms of demand satisfaction
and monetary budget)

Location selection, Number of
vehicle type, Amount of

commodity type

Level of the residual budget,
amount of commodity type,

number of vehicle type

Demand, the size of the
vehicle fleet, available
medical personnel and
state of infrastructure

Response Xpress-IVE Three-stage stochastic
programming

Hong et al., (2015)

Minimize the cost of opening
facilities and purchasing the
relief supplies (1st stage) and

expected total cost
(2nd stage)

Size and location of the facility

Amount of commodity to be
shipped, amount of shortage

and surplus, the inventory
level of relief supplies

Demand and
transportation capacities Preparation

Preprocessing
algorithm,

combinatorial
patterns, MATLAB,

AMPL, CPLEX

Two-stage stochastic
programming

Renkli et al., (2015)

Minimize the total weighted
distance between affected
areas and their assigned

disaster response facilities

Location selection of
warehouse, amount of relief

item to be sent
Amount of relief item Preparation CPLEX Probabilistic model

(CCM)

Amiri et al., (2016)

Minimize the maximum
amount of shortage, total

travel time, pre- and
post-disaster cost

Location of the facility, amount
of commodity to transfer,
amount of commodity to

procure, inventory level, tour
selection

–

Procurement cost,
transportation cost,
demand, amount of
stocked commodity

Preparation and
response

є-constraint method,
GAMS/CPLEX

Stochastic
programming

An et al., (2015) Minimize the total expected
system cost

Location of facility, service
allocation – Disaster location Preparation Lagrangian relaxation Stochastic

programming

Golabi et al., (2017)
Minimize the aggregated
travel time of both people

and the UAVs

Location selection, the flight
time, required numbers of

reload
– Demand, shortest path

length Preparation GA, MA Stochastic
programming
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Table 3. Cont.

Authors Objective Function First Stage Decisions Second Stage Decisions Uncertain Components Stage of Disaster Solution
Approach/Technique Model Type

Moreno et al., (2018) Minimize logistics cost and
deprivation cost

Location, procured number of
vehicles

Procured number of vehicle
in 2nd stage, amount of

commodity to ship,
inventory of commodity,

unmet demand

Demand, incoming
supply, available routes Response CPLEX, FXO, TSH,

and TSH+FXO
Two-stage Stochastic

programming

Kinay et al., (2018) Maximize minimum weight
of facilities

Location selection of facilities,
allocation of demand points to

the open facilities
– Demand Preparation CPLEX Max–min probabilistic

model (CCM)

Rezaei-Malek et al., (2016) Minimize total cost,
weighted response time

Warehouse location selection,
amount of commodity to

transfer, shortage of
commodity, stock level

– Disruption, demand,
transportation time

Preparation and
response GAMS/CPLEX Robust stochastic

optimization

Muggy et al., (2017) Maximize the cumulative
weighted demand Location of facility – Supply, demand Response CPLEX Robust stochastic

optimization

Ni et al., (2018)

Minimize 1st stage cost
(facility cost and commodity
holding cost) and 2nd stage

cost (transportation cost,
penalty cost)

Location of facility,
pre-positioned inventory

amount
–

Demand, proportion of
usable inventories, road

link capacity

Preparation and
response CPLEX Min–max robust

optimization

Yahyaei et al., (2018)
Minimize total cost

(transportation, facility
opening cost)

Location selection of facility
(UDC, SDC), amount of

shipped relief item
– Number of affected

people
Preparation and

response GAMS/CPLEX Robust optimization

Oksuz et al., (2020)
Minimize the setup cost of

TMC and expected
transportation cost

Medical center location
selection

Assignment of causalities,
medical center assignment

for a specific patient

Capacity of hospital,
number of causalities,

distance of road
Response CPLEX Two-stage stochastic

programming

Julia Monzon et al., (2020) Minimize the expected
unsatisfied demand

Selection of arc, decision of
inventory

Flow of goods, supply
quantity

Demand and state of
transportation network Preparation GAMS/CPLEX Two-stage stochastic

programming

S. Mohammadi et al., (2020)
Minimize the total logistics

cost, minimize the total time
of relief operation

Supplier selection, distribution
center selection, dispatching of

injured people

Demand, capacity of
facility, time, cost Response GAMS Robust optimization

Phillip R. Jenkins et al., (2020)

Maximize the demand
coverage, minimize the

maximum number of located
facilities and reallocation

Location selection, reallocation,
aeromedical helicopter

deployment
Aeromedical helicopter Response CPLEX Robust optimization

The abbreviations used in Table 3 are as follows: LLSM: Lagrangian L-shaped method, CCM: chance constraint method, SMSP: Stochastic Multi-Scenarios Program, AHP: analytical hierarchy process, FXO: fix
and optimized heuristic, TSH: two-step heuristic, MSDCs: medical supplies distribution centers, UAV: unmanned aerial vehicle, GA: genetic algorithm, MA: memetic algorithm, UDC: unreliable distribution
center, SDC: safe distribution center.
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3.1.1. Deterministic Models

In the deterministic facility location problem, input parameters are known and con-
stant over time. Input parameters such as transportation cost, facility establishment cost,
fixed cost, the capacity of the shelter, number of affected people, and location are used in
the deterministic facility location problem to select or locate safe places for affected people.
Temporary or existing distribution centers for commodity distribution, warehouses for
stock pre-positioning, medical centers for the treatment of wounded people, and debris
removal points are also used in deterministic models.

In most cases, demand is considered at the node, not in the link of deterministic FLPs.
That is why the deterministic FLPs in HL can be called network facility location problems.
However, some research has been carried out in some cases in which demands arise on
links and nodes [19]. Deterministic models of the network facility location problem in HL
can be classified into some categories: median problems, center problems, and covering
problems.

Median Problem

The focus of the median problem is on minimizing the distance between facilities
and the demand node where weight is considered for demand points. According to C.S.
ReVelle, Eiselt, and Daskin [20], in median problems, the nearest open facilities serve
the demand of people, although the furthest facilities can serve the demand of people
depending on facilities’ capacity, economies of scale, or other cost structures. P-median
problems are an important part of the median problem because p-median problems select
or locate the maximum number of facilities that serve each demand point. The formulation
of the p-median problem by Charles S. ReVelle and Swain [21] is as follows:

Indexes and Set:

I Set of demand points indexed by i ∈ I;
J Set of facilities indexed by j ∈ J.

Input Parameters:

dij The distance between each demand point i and candidate facility j;
wi The weight associated with each demand point i;
p Maximum number of facilities to be located.

Decision Variables:

xj 1 if a facility is located at candidate node j and 0 otherwise;
yij 1 if demand point i is assigned to the facility at candidate node j and 0 otherwise.

Minimize Z = ∑
j∈J

∑
i∈I

widijyij (1)

Subject to ∑
j∈J

yij = 1 ∀i ∈ I, (2)

yij − xj ≤ 0 ∀i ∈ I, ∀j ∈ J, (3)

∑
j∈J

xj = p, (4)

xj, yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (5)

The objective Function (1) minimizes the weighted total distance between demand
points and candidate facilities. Constraint (2) ensures that each demand node i is assigned
to a candidate facility j. Constraint (3) ensures that only the open facility will be used for
demand assignment. While Constraint (4) stipulates that p facilities be opened or located
at the facility j. Constraint (5) denotes the decision variables which decide binary form.
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McCall [22] proposed a model for the pre-disaster scenario where the author empha-
sized the prepositioning operation of assistance pack-up kits. This study is concerned
with minimizing the shortage of relief kits and distance between affected people’s location
and shelter. The main decisions of this model are to locate the different types of kits at
different sources, deliver kits to satisfy the demand, and whether to open stockpile or
not. Lin [23] proposed a mathematical model to find out the location of temporary depots
around the disaster-affected area. One of their objectives is to minimize the travel distance
of the vehicle between the demand node and central depot, which is the drawback of
the previous research article published by Flanigan [24]. The objective of their model is
to minimize the penalty cost and transportation cost. This model is for the post-disaster
scenario (response stage) while considering the constraints of the facility (depot) capacity,
vehicle capacity, and the relationship between depots and demand points that ensures the
assignment of demand points only to the selected depot. To deal with the multi-objective or
multi-criteria model, considering the median problem, Abounacer, Rekik, and Renaud [25]
proposed a multi-objective to determine the location of relief distribution centers and a
transportation plan for distributing the relief. As a solution method, the author used the
epsilon-constraint method due to the multi-objective model. For flood evacuation planning,
a multi-level optimization model is presented in [26]. The authors divided their problem
into an upper-level problem and a lower level problem. In the upper-level problem, mini-
mization of total evacuation time is addressed, and choosing the shelter and the route for
evacuee is addressed in the lower level problem. The lower level problem is focused on
two issues—distribution and assignment simultaneously—where the evacuee’s decision to
choose the evacuation route is given preference. The main decisions of this model were to
select the shelter locations and the routes.

Covering Problem

In covering problems, according to Boloori Arabani and Farahani [16], a coverage
distance is followed between each demand node and the facility where each demand node
will be served by each facility. Normally covering problems are suitable for the facility
location problems where it is necessary to find out the location of hospitals, fire stations,
and shelter sites. Covering problems can be classified into the set covering and maximal
covering problems.

a. Set Covering Problem

The objective of the set covering problem is to minimize the total number of facilities
while satisfying all the demand points. It also deals with location selection and minimiza-
tion of the fixed cost of open facilities. The formulation of the set covering the problem
proposed by Toregas [27] is as follows:

Input Parameters:

cj Fixed cost of facility j;
Si Maximum distance for a facility to service demand node i.

Decision variables:
xj 1 if a facility is located at candidate node j and 0 otherwise.

Minimize Z = ∑
j

cjxj (6)

Subject to ∑
j∈Ni

xj ≥ 1 ∀i, (7)

xj ∈ {0, 1} ∀j. (8)

The objective function of the set covering problem (Equation (6)) minimizes the
required number of facilities to fulfill the customers’ order or total fixed cost of opening
facilities. Constraint (7) ensures that the number of candidate facility locations within the
distance limit cannot be lower than 1 and the binary variable of this model is defined by
Constraint (8).
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In humanitarian logistics, the first model on the set covering problem to minimize the
total number of facilities needed to cover all demand points is presented in [27]. For the
medical center location problem, Dekle [28] proposed a set covering model to minimize the
facilities for each area with a given distance. The authors used the covering location model
to identify the potential location of disaster recovery centers (DRCs) with a two-stage
approach, where the stage-1 approach gave three idealized DRC locations requiring each
residence in the county to be within 20 miles of the closest DRC, and the stage-2 approach
was used to refine the approximate solution from stage-1. The main decision was to identify
the location of the facility for each area and, as a solution method, the authors used the
pick-the-farthest (PTF) algorithm. For the warehouse location and routing problem, a
multi-objective optimization model was adopted by Rath and Gutjahr [29] that had three
objectives, one of which is a set covering problem that tried to minimize the facility opening
cost. Apart from this objective function, other objective functions are related to minimizing
transportation costs and maximizing demand coverage. The model decides to select open
depot, shipped quantity from the plant to the depot, maximum operative budget, and
selecting the arc to use on a tour of a vehicle. Two solution methods were proposed in this
problem. The first approach is an exact method to solve the small instances and the second
one is a math-heuristic technique, which is named as constraint pool heuristic. Both in the
exact and the heuristic method, the authors used the adaptive epsilon-constraint algorithm
(AECA). On the other hand, Hu, Yang, and Xu [30] proposed a multi-objective optimization
model for the selection of the shelter location after an earthquake that is aimed to minimize
the total evacuation travel distance and total cost of the facility. Between two objectives, the
second objective is the set covering problem where the facility (shelter) capacity and safety
service area contiguity constraint satisfaction (separation of the service area into several
parts should be avoided to decrease the chaos among evacuees) are considered. Finally, the
authors proposed a non-dominated sorting genetic algorithm as one of the multi-objective
evolutionary algorithms to solve their model.

According to Xu [31], the existing studies of facility location problems are not suitable
enough for the response stage of the HL, particularly for an earthquake due to avoiding the
perspective of urban planning. To overcome this overlooked problem of the facility location
model, the authors studied seven principles for locating earthquake evacuation shelters,
and, following these principles, they proposed a multi-criteria constraint location model.
The model is derived from a p-median model and a location set covering model where
objectives are to minimize the total distance, maximize the coverage of all shelters, and
maximize the shelter coverage of people. The second objective is related to the set covering
problem where the authors tried to optimize the number of shelters to save government
investment. The main decision of this model is to select the evacuation shelter location,
and the model is solved by the Lagrangian heuristic algorithm.

b. Maximal Covering Problem

According to R. Church and ReVelle [32], the maximal covering problem search for p
facilities that can serve the maximum population within a stated service distance or time
given a limited number of facilities. The mathematical formulation of this problem is stated
as follows:

Decision Variables:

zi
1 if demand node i is covered by a facility within distance S,
otherwise 0. Note that S indicates the distance limit.

Minimize Z = ∑
i

wizi (9)

Subject to zi − ∑
j∈Ni

xj ≤ 0 ∀i, (10)

∑
j∈Ni

xj = p (11)
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xj, zj ∈ {0, 1} ∀j. (12)

The objective is to maximize the number of covered demand nodes within the distance
limitations. Constraint (10) ensures that if there is no facility at one of the candidate
locations serving the node, demand node i can not be covered while Constraint (11) states
that in the eligible facility location there can be p facilities and Constraint (12) is the binary
variable of this model.

Jia, Ordóñez, and Dessouky [17] analyzed the large-scale emergencies and proposed
facility location model and their model can be used as a maximal covering model, a p-
median model or a p-center model according to different needs in large-scale emergencies.
The objective of this model is to maximize the demand with a sufficient quantity of facility
and quantity level. Balcik and Benita M. Beamon [33] proposed a maximal covering model
to determine the location and the number of a distribution center for the convenience of
relief distribution. The amount of relief supplies to be stored at each distribution center to
meet the necessity of people affected by disasters can also be determined. The objective of
their model is to maximize the coverage of demand from the established distribution center.
In their model, they emphasized the inventory level of commodities in the distribution
center, the capacity of the distribution center, and consideration of budget for establishing
the distribution center.

Barzinpour and Esmaeili [34] proposed a multi-objective model for the preparation
phase of disaster management to determine the emergency shelter location, allocate the
affected people to shelter, increase the total coverage of people of a specific region, store
the commodities in the facility and transfer to the demand points. This multi-objective
model consists of three objectives—maximize the cumulative coverage of the population in
pixels of the region, minimize the total facility setup cost, minimize the transportation cost,
equipment holding cost, and shortage cost. As it is a multi-objective model, the authors
used a goal programming approach to prioritize the objectives and used optimization
software, LINGO, to solve this model. Das [35] studied the importance of integrating the
disaster preparedness and response task. According to their study, the demand for relief
items is a key factor in disaster preparedness and they identified seven influencing factors
of the demand for relief items. They considered the maximal covering problem where
their objective is to maximize the coverage of the local warehouse and to minimize the
distribution cost.

P-Centre Problem

A p-center is a minimax facility location problem that consists of a set of p points that
minimizes the maximum distance between a demand point and the closest point belonging
to that set. In humanitarian logistics, the p-center problem can be applied for planning
the location of the hospital, fire station, shelter, and other facilities. Mark S. Daskin [36]
proposed the mixed integer programming (MIP) formulation for the discrete p-center
problem. Before Mark S. Daskin [36] proposed the MIP formulation, C.S. ReVelle, Eiselt,
and Daskin [20] proposed a vertex p-center problem, where locations are allowed to serve
as a node of a network. According to S.L. Hakimi [37] the p center model is as follows:

Decision Variables:

D The maximum distance between a selected location and a demand point.

Minimize D (13)

Subject to ∑
J

dijyij ≤ D ∀i, (14)

The objective function in Equation (13) will minimize the maximum distance between
a selected location and a demand node. In addition, other constraints of this model are
considered, such as Constraints (2)–(5) with two decision variables

(
xj, yij

)
from the section

of the median problem.
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Ye. F [38] proposes a p-center model for an emergency warehouse location problem
(EWLP). The main aim of this model is to determine the location of the warehouse that
would be assigned to the demand points and be operated during the emergency relief dis-
tribution operation to minimize the number of the warehouse. The considered constraints
ensure that the number of the warehouse will be sufficient to supply emergency materials,
and the longest distance (longest distance should be less than the distance limit) will also
be covered from the warehouse. The (variable neighborhood search) VNS algorithm is used
to solve the problem as it a non-linear problem. Also, an optimization software CPLEX is
used to solve some part of the model.

Other Models on FLPs

In addition to the three main categories of the facility location problem, there are
some other categories such as the dynamic facility location problem, uncapacitated facility
location, and capacitated facility location problem. Khayal [39] proposed the model for a
temporary facility location, which is a dynamic facility location model. The objective of this
model is to minimize the logistics and penalty cost to determine the temporary distribution
center (TDC) location, the location of supply points, and resource allocation quantity. The
facility capacity (FC), supply capacity (SC), commodity flow (CF), and demand satisfaction
(DS) are considered as constraints and solved the model using optimization software,
CPLEX. Under the dynamic facility location problem, Wapee Manopiniwes and Tabana
both integrated the location problem with the routing problem which is seldomly seen
in the location problem. For the capacitated facility location model, Chen and Yu [40]
proposed an integer programming formulation to improve the effectiveness of emergency
medical service (EMS). To enhance the post-disaster medical service operation, planning for
emergency medical service Service (EMS) is important. Due to this importance, the authors
determined the temporary locations for on-post EMS facilities by applying network-based
partitioning in their model. The reduced Lagrangian relaxation, greedy algorithm, and
K-medoids algorithm were used as a solution method. On the other hand, Cotes and
Cantillo [41] proposed a model of capacitated facility location, attempting to minimize the
global social costs which are the sum of both private costs (cost of transportation, inventory
costs, fixed cost of facilities) and deprivation costs, determining the amount per type of
product to be prepositioned for serving the areas affected by a disaster. This model was
solved in GAMS using the CPLEX solver. Pérez-Galarce and Akbari-Jafarabadi [42,43]
proposed the un-capacited and r-interdiction median problem, respectively, where their
objective is to minimize the total travel distance by the victim and minimize total cost
before and after the interdiction, respectively. Pérez-Galarce [42] proposed their model for
locating and assigning the refuge centers to provide shelter, medical and psychological
assistance to the victims, and the objective of this model is to minimize the total distance
traveled by victims. On the contrary, Akbari-Jafarabadi [43] proposed a model of man-
made disaster, while they focussed on reducing the effect on system loss (linkage between
key facilities) brought by the intentional attack. The authors proposed a tri-level facility
location r-interdiction median (TFLRIM) model intending to minimize the total cost before
and after the interdiction. To get the knowledge of r-interdiction median model readers are
advised to read the article written by R.L. Church, Scaparra, and Richard S. Middleton [44].
The abbreviations used in Table 2 are as follows: Solution approach: AECA: adaptive
epsilon-constraint algorithm, GIS: geographic information system, GAMS: general alge-
braic modeling system, GA: genetic algorithm, LR: Lagrangian relaxation. Constraints:
ADC: assignment of distribution center, ACS: assignment of the community to the shel-
ter, AM: assignment of medical center to refugee, BC: budget constraint, CF: commodity
flow, CTC: commodity transportation condition, CC: contiguity constraint, CAF: customer
assignment to the facility, CLW: coverage of local warehouse, CR: capacity of refuge, DC:
demand coverage, DS: demand satisfaction, DT: deprivation time, DPC: demand point
coverage, DSOW: demand will only be satisfied by open warehouse, FA: facility assign-
ment, FC: facility capacity, FLC: flow conservation constraint, FCP: flow conservation of
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product, IL: inventory level, LC: link capacity, LD: longest distance, MCC: maximal cover-
ing constraint, MAF: maximum allowed facility, NV: number of vehicle, NWSE: number
of warehouse to supply emergency material, NW: number of warehouse to establish, SC:
supply capacity, SP: shortage of product, SRS: service range of shelter, TT: travel time, TOC:
transportation operating constraint, VC: vehicle capacity, WT: working time.

3.1.2. Non-Deterministic Models

Two approaches, namely, stochastic optimization and robust optimization are mostly
studied for the non-deterministic model in the facility location problems. Besides these two-
optimization models, there are a few other approaches to deal with uncertain parameters.
The uncertain parameters in facility location problems, which are mostly seen in HL, are
listed in Table 3. The detailed review of these non-deterministic models in the facility
location problem is as follows:

Stochastic Programming Approach

In stochastic optimization, uncertain parameters are dispensed to a probability dis-
tribution, and parameters are usually modeled through a set of discrete scenarios with
known probabilities. Most of the articles use the two-stage stochastic programming ap-
proach and very few articles are using a single-stage or three-stage stochastic programming
approach. For example, Chang, Tseng, and Chen [45] proposed a two-stage stochastic
programming model for flood emergency logistics to determine the location of rescue
storehouses, allocation of rescue resources, considering the demand uncertainty. The two
objectives of this model are minimizing the expected shipping distance of rescue equip-
ment and minimizing the cost (sum of the facility set up cost and the average cost of all
rescue equipment). The location of the rescue demand point and the quantity of rescue
equipment for different flooding scenarios were estimated by the GIS analysis function and
the model was solved by LINGO. Similarly, Rawls and Turnquist [46] proposed a model for
prepositioning the emergency supplies and also the location to preposition. This stochastic
mixed integer-programming model provides a robust model that considers the demand
uncertainty as well as uncertainty regarding the transportation network availability after a
natural disaster such as hurricanes. Another study for the location selection of temporary
medical centers was performed by Oksuz and Satoglu [47]. They proposed a two-stage
stochastic programming approach to minimize the transportation cost and set-up cost of
temporary medical centers. Rawls and Turnquist [48] proposed a prepositioning plan for
short-term planning considering the demand as an uncertain component. Their objective
is to minimize the cost and the considered constraints are facility capacity and some re-
quirements and bounds such as restriction on shipping extra material to minimize the
holding cost on unused stocks, limitation on the number of open facilities, and limitation on
stocking quantity at the shelters. A case study was analyzed using this model for meeting
the demands of consumable and non-consumable goods in shelters for hurricane events
that affect coastal North Carolina. Finally, the authors solved their model using CPLEX. In
most cases, after the large-scale disaster the condition of transportation network becomes
inaccessible and, realizing this problem, Monzón and Liberatore [49] proposed a two-stage
stochastic programming model where the unavailability of the transportation network is
considered.

To make sure the network reliability is at a certain level, Hong, Lejeune, and Noyan [50]
introduced a risk-averse stochastic programming approach for pre-disaster relief network
design with the determination of the size and location of response facilities and the inven-
tory level of relief supplies at each facility. At the first stage of this stochastic model, the
objective is to minimize the sum of the cost of opening facilities and purchasing the relief
supplies, and the objective of the second stage is to minimize the expected total cost while
ensuring the facility capacity for prepositioning the commodity, facility location at each
node. As a solution method, the authors used the preprocessing algorithm and combinato-
rial patterns to formulate their proposed model as an MIP model and are implemented in
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MATLAB, AMPL, and CPLEX. On the contrary, Bozorgi-Amiri and Khorsi [51] proposed a
multi-objective dynamic stochastic programming model to integrate strategic, tactical, and
operational decisions. Apprehending the relationship between the location of facilities, the
allocation of suppliers, vehicles, and customers with the facilities, the authors proposed
this model, intending to minimize the maximum amount of shortage among the relief
commodity in all periods, the total travel time, and the sum of pre and post-disaster cost.
The uncertain component of this model is the demand, cost, and travel time. The authors
applied the є-constraint method to make their multi-objective model a single objective
model and implemented their model in CPLEX. To respond effectively in the aftermath
of a disaster, Moreno [52] proposed a model to optimize the location, transportation, and
fleet sizing decisions with the aim of minimizing the expected logistics cost and human
suffering cost. The author presents a two-stage stochastic programming model to hedge
against the uncertainty regarding demand, incoming supply, and availability of routes. The
authors devised three heuristics based on decomposition and mathematical programming
techniques, namely, a fix-and-optimize heuristic (FXO), a two-step heuristic (TSH), and
a hybrid heuristic (FSO + TSH). On the other hand, to enhance the emergency service
reliability, An and Shi [53] proposed a scenario-based stochastic mixed-integer non-linear
programming model by integrating the facility disruption risk, en-route traffic congestion,
and in-facility queuing delay into an integrated facility location problem. The objective
of this model is to minimize the expected system cost by considering the constraints of
the traffic flow assignment to each origin and destination pair, time of emergency facility
establishment (an emergency service facility should be built before assigning to a victim
group), victim assignment to an emergency facility, and warehouse capacity. Finally, the
authors proposed a Lagrangian Relaxation algorithm to find a near-optimum solution to
their model.

Robust Optimization and Other Non-Deterministic Approaches

In robust optimization, uncertainty is handled in two ways: robust models with dis-
crete scenarios and robust models with interval uncertainty. Mulvey [54] proposed the
concept of robust optimization in 1995. They considered uncertainty via a set of discrete
scenarios. Later, Bertsimas and Sim [55] proposed a robust optimization approach for
parameter uncertainty. Both types of approaches to robust optimization are studied in
facility location problems in HL. Rezaei-Malek [56] proposed a robust stochastic optimiza-
tion modeling technique for designing a relief logistics network for the preparation and
response phase of a disaster. The objective of their model is to minimize the cost in both the
pre-and post-disaster phases. As their model is multi-objective, they applied the Tchbycheff
metric-based approach. Those who are interested in the Tchbycheff metric-based approach
are referred to the article written by Reeves and MacLeod [57]. To test the significance and
efficiency of their model, they conducted a case study in Iran. Another robust stochastic
optimization approach is proposed by Muggy and Heier Stamm [58] for the post-disaster
health care facility location problem. To make the accessibility of people who may need to
take service from health care facilities and to make the equity among people affected by
disasters less negatively impacted, the authors emphasized the coordination system among
facility location decisions and responding organizations of health care facility providers.
They introduced a dynamic, scenario-based, robust optimization model to quantify the
impact on accessibility and equity resulting from the lack of coordination in locating post-
disaster healthcare service facilities. Ni, Shu, and Song [59] proposed a min–max robust
model to optimize the decisions of facility location, inventory pre-positioning, and relief
delivery operations. On the other hand, S. Mohammadi, and Soroush Avakh [60] proposed
a model for facility location and routing of victims to the safest place where authors have
considered the aftershock of earthquakes. Unlike Rezaei-Malek [56] and Muggy and Heier
Stamm [58], Yahyaei and Bozorgi-Amiri [61] applied the interval uncertainty procedure
to design a reliable humanitarian relief network. The authors considered the disruption
scenario of distribution centers and, to support the disrupted centers, they considered
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the good sharing service from the undisrupted center. The use of aeromedical facilities
after the disaster was not frequently studied until 2019. To determine the location of
aeromedical facilities, the optimum number to use in a certain situation is explored by
Phillip R. Jenkins [62]. Gao et al. in [63], suggested a robust mathematical model that
handles large-scale evacuations. The problem was divided into two phases, the assembling
site identification phase, which was formulated as a non-linear model, and the second
phase, whereby scheduling and vehicle routing were solved using the genetic algorithm.

Some probabilistic models are reviewed where the authors used the chance-constrained
method in their model. As pre-disaster planning, Renkli and Duran [64] emphasized re-
ducing the arrival time of relief items to the affected areas and efficient allocation of relief
items. The authors developed a mixed-integer programming model for the pre-positioning
of warehouses throughout a potential area. In addition, probabilistic constraints are used
to ensure the arrival of relief items within a certain time window. Kınay [65] developed a
modeling framework to find out the location of the shelter under demand uncertainty. In
their probabilistic model, the utilization rate of shelters and their capacity is considered as
the probabilistic constraint.

3.2. Relief Distribution

Research in the field of the relief distribution model in humanitarian logistics has been
conducted in a variety of ways and, because of this, the relief distribution model can be
classified into three main domains, namely, location and network design, transportation,
location, and transportation. A varied mathematical model has been formulated in hu-
manitarian logistics with some variation in objective functions and constraints for each
area of relief distribution. Usually, the constraints, which are considered for the location
and network design, are capacity limit (whether or not the model or author considers the
capacity limit of the facility), sourcing (sourcing indicates the supply sources are considered
or not and sourcing can be single and multiple), period (single period or multi-period),
commodity (single commodity or multi-commodity), resource allocation, and others. The
transportation problem for relief distribution adds some more constraints such as fleet com-
position, vehicle capacity, depots, and transportation mode. All the constraints, objectives,
decisions, and solution methods are mentioned in Tables 4 and 5.
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Table 4. Deterministic models of relief distribution.

Authors Objective Function Constraints Decisions Stage of Disaster Solution
Approach/Technique Problem Type

Ozdamar et al., (2004) Minimize the sum of unsatisfied
demand

FBC (commodity and
vehicle), VC NVT, ACT, AUDN Preparation LRIA Relief distribution and

transportation

Tzeng et al., (2007) Minimize total cost, minimize
travel time, maximize satisfaction SP, SD ACT, CLSTD Response LINGO Relief distribution

Yi et al., (2007)
Minimize the weighted sum of

(unsatisfied demand and
unserved wounded people)

FBC (wounded people),
NV, VC, VL

ACT, NWP, AUDC, NUWP,
NVT Response ACO algorithm, CPLEX Multi-commodity

network flow

Balcik et al., (2008) Minimize the sum of routing and
penalty cost DT, VC, FC, DF ARS, DDS, DDR Preparation and

response GAMS/CPLEX Last-mile relief
distribution

Yan et al., (2008)
Minimize the cost in emergency

repair network and the relief
distribution network

FCC, FBC (commodity),
WTA, AF Repair team, arc selection Mitigation and

response CPLEX, ACO

Relief distribution and
scheduling of

emergency roadway
repair

Campbell et al., (2008)
Minimize the maximum travel
time and minimize the average

arrival time
STE, VC, AT, VRD Vehicle travel decision Response Insertion heuristics and

improvement algorithm
Relief distribution and

Vehicle routing

Horner et al., (2010) Minimize the cost of distributing
relief goods FA, FC, MND

Quantity of relief item,
distribution center type

selection, affected area selection
for distribution center

Response CPLEX Relief distribution and
transportation

Vitriano et al., (2011) Minimize (time, cost), maximize
(equity, reliability)

FBC (vehicle), NV, STE,
VC, BC

Quantity of relief item, quantity
of a stored item, number of

vehicles
Response GAMS/CPLEX Relief distribution

Afsar et al., (2012) Minimize the total amount of
weighted unsatisfied demand

FC, VC, FBC (commodity
and vehicle)

Location selection, number of
the vehicle, amount of

commodity
Response CPLEX Relief distribution,

location, and routing

Liberatore et al., (2014) Maximize demand satisfaction AT, DC, AF, MRP, AR
The flow of people passing arc,
the flow of people at arc, arrival

time

Response and
recovery GAMS/CPLEX Relief distribution

Sheu et al., (2014)
Minimize (travel distance,

operational cost,
psychological cost)

FBC (evacuee), EFC,
VC, FC

Distribution center selection,
quantity of relief resource to
transfer, number of injured

people

Response LINGO Relief distribution and
network design
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Table 4. Cont.

Authors Objective Function Constraints Decisions Stage of Disaster Solution
Approach/Technique Problem Type

Wang et al., (2014)

Maximization of the maximum
vehicle route traveling time,

minimization of relief distribution
cost, maximization of the
minimum route reliability

FA, FC, VC, VAD
Location selection, node

selection, quantity of relief item,
quantity of unsatisfied demand

Response NSGA-II and NSDE
algorithm Location and routing

Pradhananga et al.,
(2016)

Minimize pre-disaster cost and
expected post-disaster cost

FC, FBC (supply point),
AQ

SPS, LSCP, TQP, TQPP, QTD, IN,
SQ, AQDC

Preparation and
response CPLEX Relief distribution and

allocation

Rivera-Royero et al.,
(2016)

Minimize the total remaining
fraction of unsatisfied demand BC, VC, DC, IL

Number of trips, number of
pallets, inventory of pallets,

remaining budget
Response

Run and fix multi-period
heuristic, run and fix

multi-period multi-stage
heuristic, greedy algorithm,

simulated annealing

Relief distribution

Lu et al., (2016) Minimize total relief distribution
time FC, FCC, VC Amount of commodity flow Response C++ programming

language, GUROBI 6.5 Relief distribution

Al Theeb et al., (2017)

Minimize the quantities of
unsatisfied demand, unserved
wounded, and non-transferred

workers

VT, VC, FBC (vehicle),
NW

Quantity of commodity, number
of workers, number of evacuees Response CPLEX, four-phased

heuristic
Relief distribution and

vehicle routing

Mollah et al., (2017) Minimize total cost
(transportation and penalty) FC, ET, VC Available shelter selection,

number of trips Response CPLEX, genetic algorithm Shelter allocation and
relief distribution

Rabta et al., (2018)

Minimize a cost function (which
represents the total traveling

distance, total traveling time or
total traveling costs)

DC, EC, PC Number of moves by drone,
quantity of package to carry Response GAMS Last-mile distribution,

drone routing system

Wang et al., (2018) Minimize the total service
completion time DC, FC, FBC (arc), STE Service starting time, quantity of

relief item Response ABC algorithm, the Rh
algorithm

Medical team
assistance scheduling
and relief distribution

The abbreviations used in Table 4 are as follows: Solution approach—LRIA: Lagrangian-based iterative algorithm, ABC algorithm: artificial bee colony algorithm, ACO: ant colony optimization, GAMS: generic
algebraic modeling system. Constraints—AT: arrival time, AF: arc flow, AQ: available quantity, AR: arc reliability, BC: budget constraint, DT: delivery time, DF: demand fulfillment, DC: demand constraint, ET:
evacuation time, EC: energy constraint, EFC: evacuee flow capacity, FCC: flow conservation constraint, FC: facility capacity, FA: facility assignment to distribution center, FBC: flow balance constraint, IL:
inventory level, MRP: maximum ransack probability, MND: maximum number of distribution center, NW: number of workers, NV: number of vehicles, PC: priority constraint, SP: shipment period, STE: sub-tour
elimination, SD: selection of depot, VC: vehicle capacity, VL: vehicle load, VRD: vehicle route destination, VAD: vehicle arrival and destination, WTA: work team assignment. Decisions—AUDN: amount of
unsatisfied demand at the nodes, AQDC: available quantity at the distribution center, ACT: amount of commodity to transfer, ARS: amount of relief supply, AUDC: amount of unsatisfied demand of commodity,
CLSTD: candidate location selection for transfer depot, DDS: determine delivery schedule, DDR: determine delivery route, IN: inventory at the node, LSCP: location selection for commodity prepositioning,
NUWP: number of unserved wounded people, NVT: number of vehicle types, NWP: number of wounded people to transfer, QTD: quantity to be delivered, SQ: storage quantity, SPS: supply point selection, TQP:
total quantity to be purchased, TQPP: total quantity to be pre-positioned.
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Table 5. Non-deterministic models of relief distribution.

Authors Objective Function Uncertain Components Stage of Disaster Solution
Technique/Approach Model Type Problem Type

Barbarosoglu et al., (2004) Minimize the total transportation cost and
recourse cost

Demand, supply, capacity
of vehicle Response GAMS/OSL Two-stage stochastic

programming
Relief distribution and

transportation

Salmeron et al., (2010) Minimize expected casualties, minimize
expected unmet transfer population

Demand, number of relief
worker, travel time Preparedness CPLEX Two-stage stochastic

programming
Asset prepositioning
and relief operations

Mete et al., (2010) Minimize the total warehouse operating cost and
total transportation time

Transportation time,
demand Preparation CPLEX Two-stage stochastic

programming
Location-routing and

relief distribution

Doyen et al., (2012)
Minimize the total cost (transportation, facility
establishment, inventory holding, the penalty
for shortage)

Capacity, unit
transportation cost,

demand, transportation
time

Preparedness and
response

Lagrangean
relaxation-based

heuristics, CPLEX

Two-stage stochastic
programming

Location and
distribution (network

design)

Li et al., (2011)
Minimize total cost (fixed cost of operating
shelters, inventory cost) and total
transportation cost

Evacuees number,
transportation cost, the
operational cost of one

evacuee

Preparedness and
response CPLEX Two-stage stochastic

programming

Location and
distribution (network

design)

Noyan et al., (2015) Maximize the expected total accessibility Demand, transportation
network Response Branch and cut

algorithm
Two-stage stochastic

programming

Last mile relief
distribution model

(network)

Tofigi et al., (2016)

Minimize the total cost (warehouse and
distribution center operating, inventory),
distribution time, maximum weighted
travel time

Supply, demand, road
availability

Preparedness and
response DEA Two-stage stochastic

programming
Relief distribution

(network)

Ahmadi et al., (2015)
Minimize the total distribution time, penalty cost
of unsatisfied demand and fixed cost of
opening DC

Road destruction, location Response GAMS, Neighborhood
search algorithm

Two-stage stochastic
programming

Location-routing and
last mile relief
distribution

Moreno et al., (2015) Minimize the total expected cost (opening and
operating relief center, vehicle assignment,
transportation, inventory, unmet demand,
demand satisfaction)

Demand, supply, inventory,
road availability

Response Relax-and-fix
heuristics,

Stochastic
programming

Location and
transportation

Fix-and-optimize
heuristics

Alem et al., (2016) Minimize the cost of stock prepositioning,
vehicle hiring, inventory, and unmet demand Demand, supply, budget Preparedness Two-phase heuristic Two-stage stochastic

programming
Relief distribution

(network)

Zheng et al., (2013) Minimize total time delay, total transportation
cost, and total transportation risk

Quantity of good, cost,
arrival time, travel time Preparation MOTS, MOGA Fuzzy optimization Transportation planning

and relief distribution
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Table 5. Cont.

Authors Objective Function Uncertain Components Stage of Disaster Solution
Technique/Approach Model Type Problem Type

Najafi et al., (2013)

(a) Minimize the total weighted unserved
injured people

(b) Minimize the total weighted unsatisfied
demand

(c) Minimize the total number of vehicles
utilized in response

Demand, number of
injured people, supply of

the commodity
Response CPLEX Robust optimization,

stochastic model
Transportation and
relief distribution

Fereidumi et al., (2017) Minimize the total cost
Demand, rescue operation
time, transportation cost,

operational cost

Preparedness and
response GAMS Robust optimization Distribution and

evacuation

Hagi et al., (2017)

(a) Minimize the total cost (facility
establishment, commodity procurement,
transportation, shortage, inventory holding)

(b) Maximize the satisfaction level by
minimizing the maximum shortage

(c) Minimize the cost of health center
establishment, casualty transportation

(d) Maximize the satisfaction level by
minimizing the sum of maximum neglected
casualties

Demand, supply, and cost Preparedness and
response MOGSA Robust stochastic

optimization
Location and
distribution

Vahdani et al., (2018)

(a) Minimize the cost (facility establishment,
storing goods in facilities)

(b) Minimize the vehicle travel cost
(c) Minimize the vehicle travel time
(d) Maximize the route reliability

Storage capacity Response NSGAII and MOPSO Robust optimization Location, routing, and
distribution

Yuchen Li et al., (2020)
Minimize the fixed cost of opened supply
facilities, and the cost of prepositioned relief
goods

Demand, transportation
time

Preparation and
response CPLEX, MATLAB Three stage stochastic

programming
Distribution and

location

Peiman Ghasemi1 et al., (2020)
(a) Minimize the untreated injured people
(b) Minimize the shortage of commodities Demand Preparation and

response NSGAII Two-stage stochastic
programming

Distribution and
evacuation

The abbreviations used in Table 5 are as follows: Solution technique: MOTA: multi-objective tabu search, MOGA: multi-objective genetic algorithm, DEA: differential evolution algorithm, NSGAII: non-dominated
sorting genetic algorithm II, MOPSO: multi-objective particle swarm optimization.
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3.2.1. Deterministic Models

As the relief distribution models diversify in many ways, the effort has been given
to review every diversified section in the following Table 4 of the deterministic model.
Sometimes, the relief distribution model also associates with location problems and routing
problems. Afshar and Haghani [66] suggested a model that serves both location and
routing problems. H. Wang, Du, and Ma [67] considered a multi-objective location-routing
model with split delivery to facilitate the relief distribution activities. The authors take
into account the travel time, the total cost, and reliability with split delivery in their
proposed model. To solve the model, the authors proposed the non-dominated sorting
genetic algorithm and non-dominated sorting differential evolution algorithm, and a
case study was conducted on the great Sichuan Earthquake in China to validate their
proposed model. The commercial solver, CPLEX, was also used to solve the model. Yi
and Kumar [68] proposed a network flow problem and used a meta-heuristic called ant
colony optimization (ACO) to solve the problem. This model minimizes the weighted
sum of unsatisfied demand of all commodities and unserved wounded people at demand
nodes and emergency units. In their model, they considered a coordination center to
obtain the information for predicting future demand so that they can make a balance of
the commodity flow and vehicle flow on the demand nodes. Another network flow the
problem that is integrated with the vehicle routing problem is proposed by Özdamar,
Ekinci, and Küçükyazici [69]. They decomposed the model into two multi-commodity
network flow problems; the first one is for transporting commodities and the second one
is for vehicle flows. The objective of this model is to minimize the sum of the unsatisfied
demand of all commodities with the determination of the number of vehicles to be used
for transportation, the amount of the commodity to be transferred, and the amount of
unsatisfied demand of a commodity at a specific node. The authors proposed a Lagrangean
relaxation-based iterative algorithm to solve their model. On the other hand, Campbell,
Vandenbussche, Hermann, and Al Theeb and Murray [70,71], did not integrate the vehicle
routing problem with location problems. They only considered the vehicle routing problem
for relief distribution. Campbell, Vandenbussche, and Hermann [70] developed a model by
considering two objective functions for the classical traveling salesman problem (TSP) and
the vehicle routing problem (VRP). The objective of this TSP is to minimize the maximum
arrival time (minmax routing) and the objective of VRP is to minimize the average arrival
time (minavg routing). The sub tour elimination (STE—for a given set of nodes, a TSP
sub tour may be visiting some nodes among a given set of nodes and this sub tour is
not the feasible solution so it must be eliminated), customer visit by vehicle and vehicle
capacity are considered in the constraints. The authors proposed the insertion heuristic
and improvement algorithm to solve their model. Al Theeb and Murray [71] considered
a vehicle routing problem to minimize the quantities of unsatisfied demand, unserved
wounded and non-transferred workers while distributing the relief commodities in the
post-disaster phase. The authors suggested a vehicle routing problem with split delivery
to expedite the relief distribution process. The authors proposed this multi-depot, multi-
period, and multi-commodity model to determine the quantity of the commodity to pick up
from the node, the number of workers to transfer from a node, the number of evacuees to
pick up from a node, the quantity of the commodity to deliver, and the number of evacuees
to deliver. The authors developed a four-phased heuristic to solve their problem for a
large-scale instance.

After the disaster, international donations are received from different sources and to
store the commodities they are transferred to central warehouses. Finally, from the central
warehouses, relief goods are sorted out and sent to the regional warehouse or distribution
center. The regional distribution center is the final stage from where the relief goods are
dispatched to the disaster-affected areas. Due to the complexity in the final stage of relief
distribution, some researchers follow the last mile distribution strategy. Balcik, Beamon,
and Smilowitz [72] are some of the pioneers who developed the last mile distribution
model in humanitarian logistics. In this study, they considered a vehicle based last-mile
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distribution system. Their main decisions are to allocate the relief supplies at the last-mile
distribution centers and determine the delivery schedule/route for each vehicle. The
objective of their mixed integer-programming model is to minimize the routing cost and
penalty cost for back-ordered demand based on supply, vehicle capacity, and delivery time
restrictions. Another research on last-mile distribution in HL was carried out by Rabta,
Wankmüller, and Reiner [73]. Due to the destroyed roads and debris-covered areas after
the disaster, aid agencies have to confront some difficulties to distribute relief goods. To
overcome this problem, Rabta, Wankmüller, and Reiner [73] proposed a drone fleet model.
In their drone fleet model, they used unmanned aerial vehicles (UAVs) as the drone fleet
and the objective of the model is to minimize the total traveling distance (or time/cost) of
the drones. As the constraints, they considered the degree constraints (a drone can visit the
recharging station and depots as many times as possible, but the in-degree must be equal
to out-degree), demand constraints, and energy constraints.

Horner and Downs [74] proposed a facility location model to transport and distribute
the relief goods to the affected areas. This is a capacitated warehouse location model where
the location decisions are taken only for the warehouse to store the commodities. The
authors present a geographic information system (GIS)-based model to transport the relief
goods from warehouses to people in the affected areas. The objective of their model is
to minimize the costs of distributing relief goods with the determination of the location
of distribution centers, the number of relief good packages to deliver. A case study was
analyzed using their model for the hurricane disaster relief plan in Leon County, Florida,
USA. Tzeng, Cheng, and Huang [75] constructed a multi-objective relief distribution model
with three objectives: minimizing the total cost, minimizing the total travel time, and
maximizing minimal satisfaction. In the constraints, the authors considered the control
over shipment and insufficient shipment of goods, that goods shipped in and out of
transfer depots should be on the same period, and predetermined quantities of relief goods.
Vitoriano [76] proposed a decision support system to assist the organizations in charge of
distributing relief goods after a disaster. The decisions that can be determined through this
multi-criteria model are the number of vehicles that should travel from one node to another,
and the amount of relief goods that will be sent and received to the destination node. The
objective of this model is to minimize (transportation time and cost) and maximize (equity
and reliability); the constraints are flow balance of vehicles, a number of operating vehicles
at the node should be equal to the available number of the vehicle, sub-tour elimination,
and vehicle capacity. Pradhananga [77] proposed a three-echelon network model for the
distribution of emergency supplies. This model is proposed for both pre- and post-disaster
planning and response operation, respectively, where the objective of the pre-disaster phase
is to minimize the fixed cost of establishing facilities, purchasing emergency supplies, and
the transportation cost. On the other hand, the objective of the post-disaster phase is to
minimize logistics and deprivation costs. Lu, Ying, and Chen [78] proposed a real-time
relief distribution model based on a rolling horizon-based framework in the aftermath of
the disaster. The rolling horizon framework has two modules—one is a state estimation
and prediction module, and another is a relief distribution module. In the first module,
this framework will predict the relief demands and delivery time and, according to the
prediction, the second module will solve the optimal relief distribution flows. The main
goal of their model is to minimize the total travel time to deliver relief goods to satisfy the
demand of people in need. They conduct a case study to demonstrate their model on the
large-scale earthquake that occurred in Taiwan.
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3.2.2. Non-Deterministic Models

In search of non-deterministic models, we have found both stochastic programming
and robust optimization approaches. In stochastic programming approaches, the literature
is divided into the first stage and two-stage stochastic programming approaches.

The Stochastic Programming Model for Relief Distribution

Similar to the deterministic model, the non-deterministic model also covered all the
possible diversified ways of relief distribution. All the reviewed papers, with their special
characteristics, are mentioned in Table 5.

In emergency management, decision-makers usually make decisions about HL net-
work design and relief distribution, confronting some uncertainties. To make the decision
efficiently, researchers have studied many stochastic models. Among the HL network’s
decisions, the selection of facility location (i.e., location for distribution centers, temporary
medical service center, and others) is one of the main decisions frequently considered by
the researchers. One of the early works for a two-stage stochastic programming approach
is conducted by Li, Jin, and Zhang [79]. Their stochastic model is for making decisions
in both the pre-and post-disaster phases of the disaster. Their proposed model for the
pre-disaster stage helps to decide the locations of facilities, capacities of facilities, and
resources of new permanent shelters. On the other side, in the response stage, resources
will be distributed to shelters and evacuees will be rescued to shelters. The objective of the
first stage of their model is to minimize the fixed cost to have new permanent shelters, and
the inventory cost of resources at the shelters, while the second stage cost is to minimize
the transportation cost of evacuees, transportation cost of resource distribution, the surplus
and shortage costs for resources after an evacuation. Noyan, Balcik, and Atakan [80]
developed a two-stage stochastic model to determine the locations and capacities of the
relief distribution points in the last-mile relief distribution networks where the uncertain
elements are demand and transportation networks. The authors focused on two types
of supply allocation policies and proposed the hybrid allocation policy considering their
accessibility and equity. Finally, the author devised a branch-and-cut algorithm based on
Benders decomposition to solve the large-scale problem. Tofighi, Torabi, and Mansouri [81]
developed a two-stage scenario-based possibilistic-stochastic programming approach to
design the HL network. The first stage involves selecting the location of the warehouse
and distribution center where the uncertain elements are the demand, supply, and avail-
ability level of the transportation network’s routes after the earthquake. In the second
stage, relying on the distribution plan is required to minimize the total distribution time
and the maximum weighted shortage cost of unmet demands. In this model, authors
classify the relief items into the critical and non-critical item, and, in the constraint, they
enforce the restrictions on the available capacity of warehouse and distribution centers
for non-critical relief items. Another important constraint for their model is to consider
a restriction on establishing no more than one warehouse at a candidate location. Alem,
Clark, and Moreno [82] proposed a two-stage stochastic network flow model to expedite
the process of distributing humanitarian aid to victims of disaster-affected areas. Some
practical characteristics such as allocation of budget, procurement, varying lead-time over
a dynamic multi-period horizon, and the fleet size of multi-type of vehicles are considered
in this model, which are seldom considered in network flow models. Finally, the author
provided a case study on the floods and landslides in the Rio de Janeiro state, Brazil. To
minimize the expected number of casualties, Salmero [83] developed a two-stage stochas-
tic programming model where the first stage decision is to expand the facilities such as
warehouses, medical centers with personnel, shelters and the second stage decisions were
about logistical problems.

Once the logistics network is established, the relief delivery plans are taken to transfer
the relief goods to safe shelters as soon as possible. Transportation or distribution problems
can make the relief delivery plan more efficient. Normally in transportation problems
for distributing relief items, the demand of the commodity, the supply of the commodity,
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the capacity of the vehicle, transportation arrival time, and travel time are considered
as an uncertain element. Barbarosoǧlu and Arda [84] proposed a two-stage stochastic
programming model for transportation planning in the disaster response phase. The main
objective of their model is to minimize the total transportation cost and recourse cost. To
make the model more dynamic, the authors considered multi-commodity and multi-modal
transportation system in their model. Apart from the logistics network establishment,
another important area of crisis management is to research routing problems along with
location and relief distribution. To decide for both pre and post-disaster rescue center loca-
tion and the amount of relief item to be stocked and the flow of relief item at each echelon
of the HL network, Döyen, Aras, and Barbarosoǧlu [85] developed a two-stage stochastic
programming model. The objective of their study is to minimize the total cost of facility
location, inventory holding cost, transportation, and shortage cost where the uncertain
elements are facility capacity, unit transportation cost, transportation time, and the demand
for relief goods. In 2010, Mete and Zabinsky [86] proposed a two-stage stochastic program-
ming model for medical supply storage, location, and distribution. They considered the
vehicle routing problem in their sub-problem to transport the medical supplies in disaster
response. In the multi-modal transportation context under some uncertainties, Moreno,
Alem, and Ferreira [87] proposed a two-stage stochastic programming model for multi-
commodity distribution. Their model is the integration of a few different decisions, namely,
location decision, transportation, and fleet sizing decisions in a multi-period context. One
special characteristic of this model is to reuse the vehicle within the same period to cover
extra routes. Morteza, Abbas, and Behnam [88] proposed a multi-depot location routing
model to facilitate the disaster relief operation. There are many studies where routing is
considered with a location problem, but few studies considered the routing for last-mile
distribution. Morteza, Abbas, and Behnam [88] are among those who considered the
location and routing simultaneously with the last-mile distribution. The objective of this
model is to minimize the total distribution time, penalty cost, and fixed costs of opening the
distribution center. In an attempt to combine distribution and evacuation activities, Peiman
Ghasemi and Kaveh Khalili-Damghani [89] proposed a two-stage stochastic programming
approach. Their proposed model is for both pre- and post-disaster phases, where in the
pre-disaster phase the authors tried to find the optimum location for the permanent relief
distribution center and in the post-disaster phase, their concentration is on temporary
treatment centers to facilitate the treatment of injured people. On the other hand, a three-
stage stochastic programming model, a unique approach to making a correlation between
primary and secondary disaster is proposed by Li. Y, Yu, and Zhang [90].

Robust Optimization and Others

Measuring the exact value of the probability distribution of the uncertain parameter is
sometimes difficult. In a disaster scenario, it is tough to find out the exact value of uncertain
parameters. Robust optimization is suitable in such cases by employing different robust
measures for uncertain parameters. In robust optimization, uncertainty is handled in two
ways, namely, robust models with discrete scenarios and robust models with interval
uncertainty. Most of the published papers related to the robust optimization model in the
case of relief distribution problems use the interval uncertainty to represent the uncertain
parameters.

Usually, when a disaster such as an earthquake occurs, relief organizations are not
prepared with enough resources to meet the demand of disaster-affected areas. By address-
ing this problem, Najafi, Eshghi, and Dullaert [91] proposed a robust optimization model
to distribute scarce resources efficiently. In their multi-objective model, they considered
a multi-modal transportation system for transporting the commodities and evacuees as
well. The objective of this model is to minimize the total weighted unserved injured people,
total weighted unsatisfied demands, and the number of vehicles where the uncertain
elements are the demand of the commodity, number of injured people, and supply of
the commodity. On the other side, Fereiduni and Shahanaghi [92] considered the disrup-



Symmetry 2021, 13, 11 25 of 35

tion scenario (distribution infrastructure bridges) along with the parameter uncertainty,
namely, the operational cost of relief centers, unit transportation cost, rescue operation
time, and demand of affected areas. Initially, the authors considered a single-objective opti-
mization model to make a decision about the location of facilities, allocation of resources,
and evacuation of people for multiple disaster periods. To generate different scenarios, a
Monte Carlo simulation is used and afterward, the p-robust approach is used to predict
the damages along pathways and facilities. Haghi, Fatemi Ghomi, and Jolai [93] proposed
a multi-objective model to distribute the commodities and transport the casualties. To
make the model realistic, the authors considered some uncertainties and, to handle the
uncertainties, a robust optimization approach was utilized and, finally, the ε-constraint
method was used to solve the model. Another multi-objective robust optimization model
was proposed by Vahdani, B., Veysmoradi, D., Noori, F., and Mansour, F. [94]. Between the
two phases of their proposed model, in the first phase, the establishment of the distribution
center and warehouse, as well as the storing of relief goods, was considered and, in the
second phase, the distribution of relief goods to the affected areas was considered. Two
meta-heuristic algorithms of NSGA-II and MOPSO were used to solve the model. Zheng
and Ling [95] proposed a multi-objective fuzzy optimization model for emergency trans-
portation planning where uncertainty is tackled by fuzzy theory. Sarma et al. in [96] used
the neutrosophic concept to minimize the cost and time of the redistribution of resources
during disaster management.

3.3. Mass Evacuation

This area of study can be divided into two groups—the evacuation model for rural
areas; evacuation model for the urban areas. The rural area evacuation model is further
divided into two categories—the transport system run by the government and the transport
system run privately. In the public transport evacuation model, evacuee pickup points,
depots, and a shelter for evacuees are optimized along with bus routes, while in the
private transport evacuation model, traffic flow management is more highly prioritized.
Evacuation models related to the urban area have different characteristics. In urban
areas, because of the high density of population traffic congestion, route capacity, flow
conservation, lane reversal, etc., are optimized. In the following sections, we review
relevant public and private transport evacuation models and urban area evacuation models
according to their specific characteristics and functionality. Table 6 summarizes the mass
evacuation models in humanitarian logistics.
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Table 6. Mass evacuation model in humanitarian logistics (HL).

Authors Objective Function Uncertain Components Decisions Deterministic
Model

Non-Deterministic
Model

Solution
Technique/Approach

Murray-Tuite et al., (2003) Minimize the travel time
and evacuee waiting time _ Link selection, meeting

place selection of people
√ Traffic simulation

software

Goerigk et al., (2013) Minimize the maximum
travel distance – Traveling decision of bus

decision, travel time
√

Greedy algorithm

Goerigk et al., (2014) Minimize the total
evacuation time Number of evacuees

√
CPLEX

Margulis et al., (2006) Maximize the total
evacuated number of people – Bus trip selection

√

Swamy et al., (2017)
Minimize the total distance

between the pickup
locations and shelters

– Evacuee pickup point
selection

√
Python 2.7 for

simulation code
generation and

optimization solver
Gurobi 6.5

Bish et al., (2011) Minimize the evacuation
time and total cost – Number of evacuees,

bus trip selection
√

Two heuristic algorithms

Ashish et al., (2014) Minimize the total
evacuation time

Number of
transit-dependent

evacuees

Trip number of bus, pick
up the point of evacuees,

allocation of bus

√
GAMS/CPLEX

Song et al., (2009) Minimize the total
evacuation time Number of evacuees Shelter selection,

vehicles’ travel
√

Hybrid GA, artificial
neural network, hill
climbing heuristic

algorithms

Liu et al., (2006)

Maximize the total number
of vehicles entering all

destinations, minimize the
total trip time (including the

waiting time of evacuees)

– Number of vehicles
√

LINGO 8.0

Wang et al., (2016) Minimize the total
evacuation times

Link travel times and
link capacities

√ Relaxation-based
heuristic, K-shortest path

Kongsomsaksakul et al., (2005)
Minimize the total travel

time for all evacuees to safe
shelters

– Safe shelter selection
√

Genetic algorithm

Sayyady et al., (2010)
Minimize the total

evacuation time and number
of casualties

– Flow of evacuees
√ Traffic simulation

package, CPLEX
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Table 6. Cont.

Authors Objective Function Uncertain Components Decisions Deterministic
Model

Non-Deterministic
Model

Solution
Technique/Approach

Bretschneider et al., (2011) Minimize the average
evacuation time – Number of the vehicle,

number of lanes
√

CPLEX

Ye et al., (2012) Maximizing the coverage
population –

Number of a single
residential building for

evacuation

√ Arc GIS, shortest path
algorithm

Goerigk et al., (2014)
Minimize the evacuation
time and number of used

shelters
– Number of evacuees

using cars and bus
√

Genetic algorithm

Kimms et al., (2018)

Minimize the total exposed
hazard, minimize the

deviation of cell capacity
utilization

–

Number of the vehicle
for starting the

evacuation, number of
vehicles used between

two cells

√ Path generation
algorithm

Li Wang (2020) Minimize the evacuation
time

Travel time and link
capacity

Flow of people in a
specific link

√ Lagrangian
relaxation-based

algorithm
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3.3.1. Public and Private Transport Evacuation Model

The transportation system, which is run by the government, can be named as bus
evacuation model, and most of the model in the mass evacuation domain is a bus evacuation
model. Murray-Tuite and Mahmassani [97] studied household members’ behavior at the
time of evacuation. For example, it is an innate behavior of household members to seek
each other out to evacuate as a single unit; they try to find relatives to evacuate the area.
The authors studied this behavior of the people and point out that this behavior will lead
the people towards the danger instead of away from it and this behavior leads to longer
than expected evacuation time. They formulated a capacitated vehicle routing model
aiming to minimize the travel time including evacuee waiting time. Further, Goerigk, Grün,
and Heßler [98] presented a bus evacuation problem as a vehicle routing problem. The
objective of their model is to minimize the maximum total travel distance. Another study
of Goerigk and Grün [99] is to consider the evacuees’ number as an uncertain element to
make their bus evacuation model more robust and applied a scenario based approach to
tackle the uncertainty. The authors considered the simplified version of the bus evacuation
problem, which is a vehicle scheduling problem that aims to minimize the total time to
evacuate the evacuees. For hurricane evacuation planning, Swamy and Margulis [100,101]
used the public transport system in the model. Margulis proposed a decision support
system that will help decision-makers with decisions about maximizing the number of
evacuated people. Their model can decide on the number of the trip of the bus between
pickup points and shelter points in the evacuation process. On the other hand, Swamy
provides a mass evacuation strategy before striking the hurricane. In their multi-stage
approaches, the first stage is about the determination of pickup locations, assigning the
busses to the shelters, and the generation of routes for the pickup and shelter points. The
second stage is about assigning the trip number for each route. For example, the route
with higher demand requires more trips and lower demand requires fewer trips. Bish [102]
provides a mixed-integer programming formulation for the bus evacuation problem. They
tried to provide the difference between the classical vehicle routing problem and the bus
evacuation problem. The objective of their mixed-integer programming model for the
bus evacuation problem is to minimize the duration of the evacuation. Song, He and
Zhang [103] present a location-routing model for the people who do not own a car and
who are entirely dependent on public transport. Thus, they need to go to the transit point
to be evacuated. The number of evacuees is considered to be an uncertain number. The
authors introduced the chance constraint method for demand uncertainty and a stochastic
number of evacuees. Another transit-based evacuation model under demand uncertainty is
proposed by Ashish, Yingyan, and Yafeng [104]. To determine the optimal pickup points for
evacuees and allocate the available buses to transport the evacuees, the authors proposed
a robust optimization model aiming to minimize the total evacuation time. Liu, Lai, and
Chang [105] presented a simulation-based two-level integrated optimization system where
the higher level maximizes the throughput during evacuation time and the lower level
minimizes the total travel time as well as the waiting time of evacuees. The authors used
a cell transmission concept to show the relationship of traffic flow with mathematical
formulations. Another cell transmission model based on evacuation planning is proposed
by Chiu and Zheng [106]. They considered the multi-priority groups where some groups
have more priority over others. Their cell transmission-based linear-programming model
helps to make the decision on departure schedule, traffic assignment, and mobilization
destination. L. Wang [107] considered the stochastic link travel times and capacity in their
proposed traffic routing problem for disaster response. To guarantee the traveling efficiency
and to reduce the congestion, they considered the capacity of each link where the number
of agents on a specific link is considered limited over different scenarios. To solve their
model, they proposed a heuristic algorithm which is the combination of the Lagrangian
relaxation-based approach and the k-shortest path technique.
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3.3.2. Urban Area Evacuation Model

Concerning the urban area evacuation model, a shelter location-allocation model
is formulated by Kongsomsaksakul, Chen, and Yang [26] for flood evacuation planning.
In their bi-level programming model, the upper level is a location problem where the
authority will decide on the location, but at the lower level, evacuees will take a decision.
The upper and lower-level decisions are modeled according to game theory and, finally,
a genetic algorithm is used to solve the model. To find optimal evacuation routes for
transit-dependent citizens during no-notice disasters, a mixed-integer linear programming
model is proposed by Sayyady and Eksioglu [108]. The objective of this model is to
minimize the total evacuation time and the number of casualties. Bretschneider and
Kimms [109] developed a mixed-integer mathematical model for fast and safe evacuation
planning in the case of disasters such as floods, hurricanes, and chemical accidents. Their
proposed model provides a reorganization of the traffic routing of a certain area. Their
dynamic network flow problem minimizes the evacuation time while prohibiting conflicts
within intersections. Spatial analysis techniques of Geographical Information System
(GIS) are employed by Ye, M. [110] for urban area evacuation planning in case of an
earthquake. Their methodology encompasses three aspects: the distribution analysis
of emergency evacuation demands, the shelter space accessibility calculation, and the
evacuation destinations optimization. Goerigk, Deghdak, and Heßler [111] proposed a
macroscopic multi-criteria optimization model for evacuation planning under different
scenarios and they named their model the Comprehensive Evacuation Problem (CEP).
Their objective is to minimize the evacuation time, the risk, and the number of used shelters
(safe places, e.g., stadiums or gymnasiums). As their proposed CEP is a non-deterministic
polynomial-time hardness (NP hard) model, a genetic algorithm is established as a method
of choice for large-scale multicriteria problems. Kimms and Maiwald [112] presented a bi-
objective-path-based evacuation model based on the assumption of the Cell-Transmission
Model. They tried to minimize the overall hazard under some restrictions (e.g., rescuing
all evacuees) and introduced the aspect of resilience in the context of evacuation planning.
As they modeled two conflicting objective functions, the authors dealt with these objective
functions by applying the ε-constraint method. As it is tough to predict the condition of
traffic after the disaster, Li Wang [113] considered the travel time and capacity of the road as
an uncertain element and proposed a two-stage stochastic programming model to evacuate
the urban people. Apart from the mass evacuation model and rural area evacuation model,
an interesting study is conducted by Goniewicz Krzysztof, Patrycja Misztal-Okonska, and
Witold Pawłowski [114] where authors analyzed the requirements of a safe evacuation
plan for the patients in the hospital and they observed an obligation of polish law in the
case of safe evacuation.

4. Future Research Direction

A rigorous review of selected articles indicates that most of the focus on HL is on
the preparedness and response phase considering facility location, relief distribution, and
mass evacuation. After exploring the current research trend, an effort has been paid to the
direction of future research according to the four phases of the disaster life cycle. The lowest
concentrated phase among the four phases of the disaster life cycle is the mitigation and
recovery phase. In the mitigation phase, a reallocation strategy can be an area for facility
location problems where the researcher should focus more. Reallocation of inhabitants to
the safest place from the disastrous areas is very important for minimizing the vulnerability
of people.

As ensuring the safety of the inhabitants is an important and long-term planning issue,
the mathematical model for safety planning should be robust. In the preparation stage,
even though there is some research where researchers investigated the optimum location
of shelters, permanent distribution centers, and permanent medical centers location, there
is not enough study on the long-term planning and preparation to decide the location of
the warehouse. Countries such as China, Indonesia, Japan, the Philippines, and the USA
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are disaster-prone and, therefore, these countries should have optimum planning for the
selection of national emergency warehouse locations [38].

The allocation of resources is not widely studied in both response and preparedness
stages. There are some studies for single-period allocation, but multi-period allocation is
seldomly seen. The relief distribution network consists of distribution centers and demand
points and the capacity of the distribution centers is limited but the demand for relief
is an uncertain parameter. As a result, the transfer of relief items between facilities or
inter-facility stock can be studied for the efficient allocation of resources. If the assigned
distribution center cannot meet the demand, then distribution centers are charged with
dissatisfaction costs. However, for the farther period’s demand, if the distribution center
can be assigned, the probability of demand satisfaction would be higher. This is caused
by the lack of multi-period and inter-facility stock transfer consideration. Recently, some
authors have used multi-period analysis in their model, but still, this is not enough. For
further studies in the preparation and response stage, the inclusion of the multi-period
model is an important aspect.

Response for the disaster-relief operation does not always work according to the
pre-planning. Response operations that have been running for a long time after a major
disaster sometimes may face fuel shortage and an inadequate number of vehicles. In
addition, some disasters are responsible for the debris in the road and block the roadways
that can cause trouble in the response of disaster-relief operations. Eventually, this kind of
situation increases lead time. Due to increased lead time, some distribution centers may
have an excessive inventory of relief goods and some may have a scarcity of relief goods.
To replenish the scarce distribution center, a redistribution strategy of relief goods among
distribution centers and demand points can become handy. Another important issue in
such a case is the short life of relief goods. Due to the short life, with the passage of time,
these relief goods will decay. In the present literature, the study of short life relief goods in
the response stage of HL is missing.

Additionally, in the response stage, there are some published works where authors
consider the temporary distribution center and medical center establishment for relief
distribution and causality transportation operation, but the consideration of uncertainty
and employing a robust model is missing. In addition, obnoxious facility location problems
have not been studied widely. Another topic that has not been studied intensively in
the response stage is inventory planning. The study of inventory for both warehouse
and distribution centers is an important sector for efficient distribution of relief. The
uncertainty associated with demand and supply in HL is higher than the uncertainty in
the commercial supply chain and logistics. As a result of that, consideration of inventory
decisions in relief allocation and distribution models is seldom seen. In such a case,
stochastic programming and robust optimization model can be used to respond to the real
situation (e.g., consideration of uncertainty).

In the response phase, the causality transportation is also limited and can be furthered
by combining with uncertain parameters. The injury level of patients, transportation time,
and the demand for medical kits can be considered as probabilistic parameters. Disruption
events can also be included. This may include damage to facilities, stock, and other
resources. Sometimes redistribution planning of medical kits can help to minimize the
demand for a particular treatment center. In the post-disaster phase, the crew scheduling of
debris collection is an important part of disaster management. Research on debris collection
is lacking. On the other hand, many parties want to work together in the response phase of
the disaster. Thus, manpower management is a challenging part too.

The combination of different phases of the disaster life cycle is an unavoidable field
to study. In most cases, a single phase is dealt with to conduct the study. Moreover, three
major areas of HL (facility location, relief distribution, and evacuation) also should be
combined; even though in recent years there has been an effort to combine them, more focus
is needed. In this effort to combine the areas, the problem becomes complex to solve, over
and above the probabilistic nature of the parameters making them more complex. To deal
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with the probabilistic nature, most of the researchers are using stochastic programming and
robust optimization approaches. There are other approaches such as fuzzy programming,
fuzzy set theory, neutrosophic approach, and others to hedge against the probabilistic
nature of the model, and the solution obtained by different approaches can be compared
for the effectiveness of the model.

One of the challenges in the optimization model is having adequate data. In large-scale
disasters, data may not be available or may not be easily readable. Even if data are available
sometimes, it takes a long time to solve the model. In disaster situations, having the desired
result from the optimization model in a short time is very crucial. Therefore, directives are
needed urgently in an emergency and, thus, improvements in solution algorithms are very
essential. Appropriate algorithms can help decision-makers to make decisions in a short
time.

5. Conclusions

This research aims to address the current research trend of HL, especially the op-
timization problem used to achieve the different objectives of core sectors of HL, and
to provide the future research direction. The three main sectors where decision-makers
should emphasize before and after the disaster for avoiding the devastation of disaster and
vulnerability of affected people are facility location problem, relief distribution, and mass
evacuation. An effort has been given for further classification of those three main sectors
into deterministic and non-deterministic models as well. In the case of facility location
problems, all the variants of the facility location problem are studied and, in the table of the
deterministic model’s constraints, decision variables, model type, and solution procedures
are included.

It can be noted from the reviewed article that the response stage of the disaster receives
the highest priority, and emphasis on the preparation stage has a lower priority. However,
the mitigation and recovery stages receive the lowest attention from the researchers. The
integration of two different stages of disaster is an important sector to explore also. Another
important observation is the development and exertion of different models to hedge against
the uncertain parameters. The uncertain elements and the model used so far to tackle the
uncertainty is also presented in the tables.

The limitation of this literature review study is that it considers only the mathematical
model. Secondly, research articles published before 2004 are not included in this study. In
non-deterministic models, this study mostly covered the stochastic programming approach
and robust optimization. There are other approaches such as fuzzy set theory, neutrosophic
sets, and others that are overlooked in this study.

Finally, it can be concluded that this study can be useful for the researchers to under-
stand the current trend of the optimization problem in HL and the modeling techniques.
Researchers can find out the research gap easily and contribute to society through their
research.

Author Contributions: Conceptualization, M.k.N., and I.M.H.; methodology, M.k.N., and I.M.H.;
software, M.k.N.; validation, M.k.N., and I.M.H.; formal analysis, M.k.N.; investigation, M.k.N.,
and I.M.H.; resources, M.k.N.; data curation, I.M.H.; writing—original draft preparation, M.k.N.;
writing—review and editing, I.M.H.; visualization, M.k.N., and I.M.H.; supervision, I.M.H.; project
administration, I.M.H.; funding acquisition, I.M.H. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research and Innovation,
“Ministry of Education” in Saudi Arabia for funding this research work through the project number
IFKSURP-71.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Editors of the journal as well as the anonymous
reviewers for their valuable suggestions that make the paper stronger and more consistent.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2021, 13, 11 32 of 35

References
1. Guha-Sapir, D.; Vos, F.; Below, R.; Ponserre, S. Annual Disaster Statistical Review 2016, The Numbers and Trends; Centre for Research

on the Epidemiology of Disasters (CRED): Brussels, Belgium, 2016; pp. 1–91.
2. Bealt, J.; Mansouri, S.A. From disaster to development: A systematic review of community-driven humanitarian logistics.

Disasters 2018, 42, 124–148. [CrossRef] [PubMed]
3. Habib, M.S.; Lee, Y.H.; Memon, M.S. Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature

Review. Math. Probl. Eng. 2016, 2016, 3212095. [CrossRef]
4. Tupper, A.; Carn, S.; Davey, J.; Kamada, Y.; Potts, R.; Prata, F.; Tokuno, M. An evaluation of volcanic cloud detection techniques

during recent significant eruptions in the western ‘Ring of Fire’. Remote Sens. Environ. 2004, 91, 27–46. [CrossRef]
5. Thomas, A.; Kopczak, L. From Logistics to Supply Chain Management: The Path Forward in the Humanitarian Sector; Fritz Institute:

San Francisco, CA, USA, 2005.
6. Altay, N.; Green, W.G. OR/MS research in disaster operations management. Eur. J. Oper. Res. 2006, 175, 475–493. [CrossRef]
7. Natarajarathinam, M.; Capar, I.; Narayanan, A. Managing Supply Chains in Times of Crisis: A Review of Literature and Insights.

Int. J. Phys. Distrib. Logist. Manag. 2009, 39. [CrossRef]
8. Simpson, N.C.; Hancock, P.G. Fifty years of operational research and emergency response. J. Oper. Res. Soc. 2009, 60 (Suppl. 1),

26–139. [CrossRef]
9. Caunhye, A.M.; Nie, X.; Pokharel, S. Optimization models in emergency logistics: A literature review. Socioecon. Plann. Sci. 2012,

46, 4–13. [CrossRef]
10. Leiras, A.; de Brito, I.; Peres, E.Q.; Bertazzo, T.R.; Yoshizaki, H.T.Y. Literature review of humanitarian logistics research: Trends

and challenges. J. Humanit. Logist. Supply Chain Manag. 2014, 4, 95–130. [CrossRef]
11. Boonmee, C.; Arimura, M.; Asada, T. Facility location optimization model for emergency humanitarian logistics. Int. J. Disaster

Risk Reduct. 2017, 24, 485–498. [CrossRef]
12. Anaya-Arenas, A.M.; Renaud, J.; Ruiz, A. Relief Distribution Networks: A Systematic Review. Ann. Oper. Res. 2014, 223, 53–79.

[CrossRef]
13. Burkle, F.M.; Bradt, D.A.; Ryan, B.J. Global Public Health Database Support to Population-Based Management of Pandemics and

Global Public Health Crises, Part I: The Concept. Prehosp Disaster Med. 2020, 1–10. [CrossRef] [PubMed]
14. Goldschmidt, K.H.; Kumar, S. Humanitarian operations and crisis/disaster management: A retrospective review of the literature

and framework for development. Int. J. Disaster Risk Reduct. 2016, 20, 1–13. [CrossRef]
15. Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by

Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [CrossRef]
16. Arabani, A.B.; Farahani, R.Z. Facility location dynamics: An overview of classifications and applications. Comput. Ind. Eng. 2012,

62, 408–420. [CrossRef]
17. Jia, H.; Ordóñez, F.; Dessouky, M. A modeling framework for facility location of medical services for large-scale emergencies. IIE

Trans. 2007, 39, 41–55. [CrossRef]
18. Jia, H.; Ordóñez, F.; Dessouky, M.M. Solution approaches for facility location of medical supplies for large-scale emergencies.

Comput. Ind. Eng. 2007, 52, 257–276. [CrossRef]
19. Hu, S.L.; Han, C.F.; Meng, L.P. Stochastic optimization for joint decision making of inventory and procurement in humanitarian

relief. Comput. Ind. Eng. 2017, 111, 39–49. [CrossRef]
20. ReVelle, C.S.; Eiselt, H.A.; Daskin, M.S. A bibliography for some fundamental problem categories in discrete location science. Eur.

J. Oper. Res. 2008, 184, 817–848. [CrossRef]
21. ReVelle, C.S.; Swain, W.R. Central facilieits location. Geogr. Anal. 1970, 2, 30–42. [CrossRef]
22. McCall, V.M. Designing and Pre-Positioning Humanitarian Assistance Pack-Up Kits (HA PUKs) to Support Pacific Fleet Emergency Relief

Operations; Naval Postgraduate School: Monterey, CA, USA, 2006.
23. Lin, Y.-H.; Batta, R.; Rogerson, P.A.; Blatt, A.; Flanigan, M. Location of temporary depots to facilitate relief operations after an

earthquake. Socioecon. Plann. Sci. 2012, 46, 112–123. [CrossRef]
24. Flanigan, M.; Blatt, A.; Batta, R.; Lin, Y.-H.; Rogerson, P.A. A logistics model for emergency supply of critical items in the

aftermath of a disaster. Socioecon. Plann. Sci. 2011, 45, 132–145.
25. Abounacer, R.; Rekik, M.; Renaud, J. An exact solution approach for multi-objective location-transportation problem for disaster

response. Comput. Oper. Res. 2014, 41, 83–93. [CrossRef]
26. Kongsomsaksakul, S.; Chen, A.; Yang, C. Shelter Location-Allocation Model for Flood Evacuation Planning. J. East. Asia Soc.

Transp. Stud. 2005, 6, 4237–4252.
27. Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The Location of Emergency Service Facilities. Oper. Res. 1971, 19, 1363–1373.

[CrossRef]
28. Dekle, J.; Lavieri, M.S.; Martin, E.; Emir-Farinas, H.; Francis, R.L. A florida county locates disaster recovery centers. Interfaces

2005, 35, 133–139. [CrossRef]
29. Rath, S.; Gutjahr, W.J. A math-heuristic for the warehouse location-routing problem in disaster relief. Comput. Oper. Res. 2014,

42, 25–39. [CrossRef]
30. Hu, F.; Yang, S.; Xu, W. A non-dominated sorting genetic algorithm for the location and districting planning of earthquake

shelters. Int. J. Geogr. Inf. Sci. 2014, 28, 1482–1501. [CrossRef]

http://dx.doi.org/10.1111/disa.12232
http://www.ncbi.nlm.nih.gov/pubmed/28452127
http://dx.doi.org/10.1155/2016/3212095
http://dx.doi.org/10.1016/j.rse.2004.02.004
http://dx.doi.org/10.1016/j.ejor.2005.05.016
http://dx.doi.org/10.1108/09600030910996251
http://dx.doi.org/10.1057/jors.2009.3
http://dx.doi.org/10.1016/j.seps.2011.04.004
http://dx.doi.org/10.1108/JHLSCM-04-2012-0008
http://dx.doi.org/10.1016/j.ijdrr.2017.01.017
http://dx.doi.org/10.1007/s10479-014-1581-y
http://dx.doi.org/10.1017/S1049023X20001351
http://www.ncbi.nlm.nih.gov/pubmed/33087213
http://dx.doi.org/10.1016/j.ijdrr.2016.10.001
http://dx.doi.org/10.1111/1467-8551.00375
http://dx.doi.org/10.1016/j.cie.2011.09.018
http://dx.doi.org/10.1080/07408170500539113
http://dx.doi.org/10.1016/j.cie.2006.12.007
http://dx.doi.org/10.1016/j.cie.2017.06.029
http://dx.doi.org/10.1016/j.ejor.2006.12.044
http://dx.doi.org/10.1111/j.1538-4632.1970.tb00142.x
http://dx.doi.org/10.1016/j.seps.2012.01.001
http://dx.doi.org/10.1016/j.cor.2013.08.001
http://dx.doi.org/10.1287/opre.19.6.1363
http://dx.doi.org/10.1287/inte.1050.0127
http://dx.doi.org/10.1016/j.cor.2011.07.016
http://dx.doi.org/10.1080/13658816.2014.894638


Symmetry 2021, 13, 11 33 of 35

31. Xu, J.; Yin, X.; Chen, D.; An, J.; Nie, G. Multi-criteria location model of earthquake evacuation shelters to aid in urban planning.
Int. J. Disaster Risk Reduct. 2016, 20, 51–62. [CrossRef]

32. Church, R.; ReVelle, C. The maximal covering location problem. Pap. Reg. Sci. Assoc. 1974, 32, 101–118. [CrossRef]
33. Balcik, B.; Beamon, B.M. Facility location in humanitarian relief. Int. J. Logist. 2008, 11, 101–121. [CrossRef]
34. Barzinpour, F.; Esmaeili, V. A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv.

Manuf. Technol. 2014, 70, 1291–1302. [CrossRef]
35. Das, R. Disaster preparedness for better response: Logistics perspectives. Int. J. Disaster Risk Reduct. 2018, 31, 153–159. [CrossRef]
36. Daskin, M.S. Network and Discrete Location: Models, Algorithms, and Applications, 1st ed.; John Wiley & Sons: Chichester, UK, 2013.
37. Hakimi, S.L. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph. Oper. Res. 1964,

12, 450–459. [CrossRef]
38. Ye, F.; Zhao, Q.; Xi, M.; Dessouky, M. Chinese national emergency warehouse location research based on VNS algorithm. Electron.

Notes Discret. Math. 2015, 47, 61–68. [CrossRef]
39. Khayal, D.; Pradhananga, R.; Pokharel, S.; Mutlu, F. A model for planning locations of temporary distribution facilities for

emergency response. Socioecon. Plann. Sci. 2015, 52, 22–30. [CrossRef]
40. Chen, A.Y.; Yu, T.Y. Network based temporary facility location for the Emergency Medical Services considering the disaster

induced demand and the transportation infrastructure in disaster response. Transp. Res. Part B Methodol. 2016, 91, 408–423.
[CrossRef]

41. Cotes, N.; Cantillo, V. Including deprivation costs in facility location models for humanitarian relief logistics. Socioecon. Plann. Sci.
2019, 65, 89–100. [CrossRef]

42. Pérez-Galarce, F.; Canales, L.J.; Vergara, C.; Candia-Véjar, A. An optimization model for the location of disaster refuges. Socioecon.
Plann. Sci. 2017, 59, 56–66. [CrossRef]

43. Akbari-Jafarabadi, M.; Tavakkoli-Moghaddam, R.; Mahmoodjanloo, M.; Rahimi, Y. A tri-level r-interdiction median model for a
facility location problem under imminent attack. Comput. Ind. Eng. 2017, 114, 151–165. [CrossRef]

44. Church, R.L.; Scaparra, M.P.; Middleton, R.S. Identifying Critical Infrastructure: The Median and Covering Facility Interdiction
Problems. Ann. Assoc. Am. Geogr. 2004, 94, 491–502. [CrossRef]

45. Chang, M.S.; Tseng, Y.L.; Chen, J.W. A scenario planning approach for the flood emergency logistics preparation problem under
uncertainty. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 737–754. [CrossRef]

46. Rawls, C.G.; Turnquist, M.A. Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B Methodol. 2010,
44, 521–534. [CrossRef]

47. Oksuz, M.K.; Satoglu, S.I. A two-stage stochastic model for location planning of temporary medical centers for disaster response.
Int. J. Disaster Risk Reduct. 2020, 44, 101426. [CrossRef]

48. Rawls, C.G.; Turnquist, M.A. Pre-positioning and dynamic delivery planning for short-term response following a natural disaster.
Socioecon. Plann. Sci. 2012, 46, 46–54. [CrossRef]

49. Monzón, J.; Liberatore, F. A Mathematical Pre-Disaster Model with Uncertainty and Multiple Criteria for Facility Location and
Network Fortification. Mathematics 2020, 8, 529. [CrossRef]

50. Hong, X.; Lejeune, M.A.; Noyan, N. Stochastic network design for disaster preparedness. IIE Trans. Institute Ind. Eng. 2015,
47, 329–357. [CrossRef]

51. Bozorgi-Amiri, A.; Khorsi, M. A dynamic multi-objective location–routing model for relief logistic planning under uncertainty on
demand, travel time, and cost parameters. Int. J. Adv. Manuf. Technol. 2016, 85, 1633–1648. [CrossRef]

52. Moreno, A.; Alem, D.; Ferreira, D.; Clark, A. An effective two-stage stochastic multi-trip location-transportation model with
social concerns in relief supply chains. Eur. J. Oper. Res. 2018, 269, 1050–1071. [CrossRef]

53. An, S.; Cui, N.; Bai, Y.; Xie, W.; Chen, M.; Ouyang, Y. Reliable emergency service facility location under facility disruption,
en-route congestion and in-facility queuing. Transp. Res. Part E Logist. Transp. Rev. 2015, 82, 199–216. [CrossRef]

54. Mulvey, J.M.; Vanderbei, R.J.; Zenios, S.A. Robust Optimization of Large-Scale Systems. Oper. Res. 1995, 43, 264–281. [CrossRef]
55. Bertsimas, D.; Sim, M. The Price of Robustness. Oper. Res. 2004, 52, 35–53. [CrossRef]
56. Rezaei-Malek, M.; Tavakkoli-Moghaddam, R.; Zahiri, B.; Bozorgi-Amiri, A. An interactive approach for designing a robust

disaster relief logistics network with perishable commodities. Comput. Ind. Eng. 2016, 94, 201–215. [CrossRef]
57. Reeves, G.R.; MacLeod, K.R. Some experiments in Tchebycheff-based approaches for interactive multiple objective decision

making. Comput. Oper. Res. 1999, 26, 1311–1321. [CrossRef]
58. Muggy, L.; Stamm, J.L.H. Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility

location decisions. Oper. Res. Heal. Care 2017, 12, 43–59. [CrossRef]
59. Ni, W.; Shu, J.; Song, M. Location and Emergency Inventory Pre-Positioning for Disaster Response Operations: Min-Max Robust

Model and a Case Study of Yushu Earthquake. Prod. Oper. Manag. 2018, 27, 160–183. [CrossRef]
60. Mohammadi, S.; Avakh, S.; Vahdani, B.; Alinezhad, A. Computers & Industrial Engineering A robust neutrosophic fuzzy-based

approach to integrate reliable facility location and routing decisions for disaster relief under fairness and aftershocks concerns.
Comput. Ind. Eng. 2020, 148, 106734.

61. Yahyaei, M.; Bozorgi-Amiri, A. Robust reliable humanitarian relief network design: An integration of shelter and supply facility
location. Ann. Oper. Res. 2018, 283, 897–916. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2016.10.009
http://dx.doi.org/10.1007/BF01942293
http://dx.doi.org/10.1080/13675560701561789
http://dx.doi.org/10.1007/s00170-013-5379-x
http://dx.doi.org/10.1016/j.ijdrr.2018.05.005
http://dx.doi.org/10.1287/opre.12.3.450
http://dx.doi.org/10.1016/j.endm.2014.11.009
http://dx.doi.org/10.1016/j.seps.2015.09.002
http://dx.doi.org/10.1016/j.trb.2016.06.004
http://dx.doi.org/10.1016/j.seps.2018.03.002
http://dx.doi.org/10.1016/j.seps.2016.12.001
http://dx.doi.org/10.1016/j.cie.2017.10.003
http://dx.doi.org/10.1111/j.1467-8306.2004.00410.x
http://dx.doi.org/10.1016/j.tre.2006.10.013
http://dx.doi.org/10.1016/j.trb.2009.08.003
http://dx.doi.org/10.1016/j.ijdrr.2019.101426
http://dx.doi.org/10.1016/j.seps.2011.10.002
http://dx.doi.org/10.3390/math8040529
http://dx.doi.org/10.1080/0740817X.2014.919044
http://dx.doi.org/10.1007/s00170-015-7923-3
http://dx.doi.org/10.1016/j.ejor.2018.02.022
http://dx.doi.org/10.1016/j.tre.2015.07.006
http://dx.doi.org/10.1287/opre.43.2.264
http://dx.doi.org/10.1287/opre.1030.0065
http://dx.doi.org/10.1016/j.cie.2016.01.014
http://dx.doi.org/10.1016/S0305-0548(98)00108-7
http://dx.doi.org/10.1016/j.orhc.2017.01.002
http://dx.doi.org/10.1111/poms.12789
http://dx.doi.org/10.1007/s10479-018-2758-6


Symmetry 2021, 13, 11 34 of 35

62. Jenkins, P.R.; Lunday, B.J.; Robbins, M.J. Robust, multi-objective optimization for the military medical evacuation location-
allocation problem. Omega 2019, 97, 1–12. [CrossRef]

63. Gao, X.; Nayeem, M.K.; Hezam, I.M. A robust two-stage transit-based evacuation model for large-scale disaster response. Meas. J.
Int. Meas. Confed. 2019, 145, 713–723. [CrossRef]

64. Renkli, Ç.; Duran, S. Pre-Positioning Disaster Response Facilities and Relief Items. Hum. Ecol. Risk Assess 2015, 21, 1169–1185.
[CrossRef]

65. Kınay, Ö.B.; Kara, B.Y.; Saldanha-da-Gama, F.; Correia, I. Modeling the shelter site location problem using chance constraints: A
case study for Istanbul. Eur. J. Oper. Res. 2018, 270, 132–145. [CrossRef]

66. Afshar, A.; Haghani, A. Modeling integrated supply chain logistics in real-time large-scale disaster relief operations. Socioecon.
Plann. Sci. 2012, 46, 327–338. [CrossRef]

67. Wang, H.; Du, L.; Ma, S. Multi-objective open location-routing model with split delivery for optimized relief distribution in
post-earthquake. Transp. Res. Part E Logist. Transp. Rev. 2014, 69, 160–179. [CrossRef]

68. Yi, W.; Kumar, A. Ant colony optimization for disaster relief operations. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 660–672.
[CrossRef]

69. Özdamar, L.; Ekinci, E.; Küçükyazici, B. Emergency logistics planning in natural disasters. Ann. Oper. Res. 2004, 129, 217–245.
[CrossRef]

70. Campbell, A.M.; Vandenbussche, D.; Hermann, W. Routing for Relief Efforts. Transp. Sci. 2008, 42, 127–145. [CrossRef]
71. Al Theeb, N.; Murray, C. Vehicle routing and resource distribution in postdisaster humanitarian relief operations. Int. Trans. Oper.

Res. 2017, 24, 1253–1284. [CrossRef]
72. Balcik, B.; Beamon, B.M.; Smilowitz, K. Last mile distribution in humanitarian relief. J. Intell. Transp. Syst. Technol. Plann. Oper.

2008, 12, 51–63. [CrossRef]
73. Rabta, B.; Wankmüller, C.; Reiner, G. A drone fleet model for last-mile distribution in disaster relief operations. Int. J. Disaster Risk

Reduct. 2018, 28, 107–112. [CrossRef]
74. Horner, M.W.; Downs, J.A. Optimizing hurricane disaster relief goods distribution: Model development and application with

respect to planning strategies. Disasters 2010, 34, 821–844. [CrossRef]
75. Tzeng, G.H.; Cheng, H.J.; Huang, T.D. Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E

Logist. Transp. Rev. 2007, 43, 673–686. [CrossRef]
76. Vitoriano, B.; Ortuño, M.T.; Tirado, G.; Montero, J. A multi-criteria optimization model for humanitarian aid distribution. J. Glob.

Optim. 2011, 51, 189–208. [CrossRef]
77. Pradhananga, R.; Mutlu, F.; Pokharel, S.; Holguín-Veras, J.; Seth, D. An integrated resource allocation and distribution model for

pre-disaster planning. Comput. Ind. Eng. 2016, 91, 229–238. [CrossRef]
78. Lu, C.C.; Ying, K.C.; Chen, H.J. Real-time relief distribution in the aftermath of disasters—A rolling horizon approach. Transp.

Res. Part E Logist. Transp. Rev. 2016, 93, 1–20. [CrossRef]
79. Li, L.; Jin, M.; Zhang, L. Sheltering network planning and management with a case in the Gulf Coast region. Int. J. Prod. Econ.

2011, 131, 431–440. [CrossRef]
80. Noyan, N.; Balcik, B.; Atakan, S. A Stochastic Optimization Model for Designing Last Mile Relief Networks. Transp. Sci. 2016,

50, 1092–1113. [CrossRef]
81. Tofighi, S.; Torabi, S.A.; Mansouri, S.A. Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 2016,

250, 239–250. [CrossRef]
82. Alem, D.; Clark, A.; Moreno, A. Stochastic network models for logistics planning in disaster relief. Eur. J. Oper. Res. 2016,

255, 187–206. [CrossRef]
83. Salmero, J. Stochastic Optimization for Natural Disaster Asset Prepositioning. Prod. Oper. Manag. 2010, 19, 561–574. [CrossRef]
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