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Abstract: Artificial intelligence (AI)-based systems have achieved significant success in healthcare
since 2016, and AI models have accomplished medical tasks, at or above the performance levels
of humans. Despite these achievements, various challenges exist in the application of AI in health-
care. One of the main challenges is safety, which is related to unsafe and incorrect actions and
recommendations by AI algorithms. In response to the need to address the safety challenges, this
research aimed to develop a safety controlling system (SCS) framework to reduce the risk of potential
healthcare-related incidents. The framework was developed by adopting the multi-attribute value
model approach (MAVT), which comprises four symmetrical parts: extracting attributes, generating
weights for the attributes, developing a rating scale, and finalizing the system. The framework
represents a set of attributes in different layers and can be used as a checklist in healthcare institutions
with implemented AI models. Having these attributes in healthcare systems will lead to high scores
in the SCS, which indicates safe application of AI models. The proposed framework provides a basis
for implementing and monitoring safety legislation, identifying the risks in AI models’ activities,
improving human-AI interactions, preventing incidents from occurring, and having an emergency
plan for remaining risks.

Keywords: artificial intelligence; human–AI interaction; human factors; safety challenges; black-
box challenge

1. Introduction

Artificial intelligence (AI) has recently experienced substantial growth across different
industries, including medicine and healthcare [1,2]. Applications of AI in healthcare can be
divided into four symmetrical periods: the beginning (1956–1970), the first generation of AI
algorithms in healthcare (1970–2012), the second generation of AI algorithms in healthcare
(2012–2016), and AI outperforming its human counterparts in some medical tasks (2016 to
the present).

The beginning. The field of AI began in 1956 as the science and engineering of making
intelligent machines [3]. The first AI model, which had limited problem-solving ability,
was developed in the mid-1950s [4]. In 1959, the term “machine learning” was coined by
Arthur Samuel, who defined it as the field of study that gives computers the ability to
learn without being programmed [5]. In 1961, an AI model was trained with data from
1035 patients, and used to diagnose congenital heart disease [6]. In 1966, a natural language
processing program was developed to mimic human therapists [7].

The first generation of AI algorithms in healthcare. In 1972, the performance of
computer-aided diagnosis for acute abdominal pain was compared with that of human physi-
cians. The system’s overall diagnostic accuracy was higher than that of the physicians [8].

Symmetry 2021, 13, 102. https://doi.org/10.3390/sym13010102 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9134-3441
https://orcid.org/0000-0001-5711-1498
https://orcid.org/0000-0002-5235-4586
https://doi.org/10.3390/sym13010102
https://doi.org/10.3390/sym13010102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13010102
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/1/102?type=check_update&version=2


Symmetry 2021, 13, 102 2 of 25

Subsequently, rule-based approaches achieved many advances in diagnosing dis-
eases [9]. These approaches heavily relied on developing robust decision rules and using
expert knowledge in medical practice [9]. The period included other important mile-
stones. For example, in 1991, a pioneering attempt to open the black-box was conducted by
Dean Pomerleau [10]. In 2004, adversarial inputs were formally described as intentionally
designed input data to force AI systems to make mistakes [11].

The second generation of AI algorithms in healthcare. This period started with the
development of a deep neural network-based system able to recognize a cat in pictures and
videos [12]. Subsequently, deep learning attracted the attention of many researchers [12,13].
The second generation AI algorithms, in contrast to the rule-based approach, were able to
analyze complex interactions in health data and discover hidden patterns [14].

AI outperforming its human counterparts in some medical tasks. Since 2016, the
application of AI in healthcare has achieved considerable success, and AI models have ac-
complished various medical subtasks, at or above the performance levels of physicians [15].
A highly accurate neural network algorithm was developed in ophthalmology for detecting
diabetic retinopathy after training with manually labeled retinal fundus photographs [16].
In radiology, a convolutional neural network trained with labeled frontal chest X-ray
images outperformed radiologists in detecting pneumonia [15,17]. In cardiology, a deep
learning algorithm diagnosed heart attack with a performance comparable to that of (hu-
man) cardiologists [18]. In pathology, one study trained AI algorithms with whole-slide
pathology images to detect lymph node metastases of breast cancer and compared the
results with those of pathologists [19]. In dermatology, a convolutional neural network
was trained with clinical images and was found to classify skin lesions accurately [20].

Despite these advancements, various challenges exist in applying AI in healthcare
[1,2,21]. One of the main challenges is safety. Several reports have described unsafe and
incorrect recommendations by AI algorithms [22]. The safety of AI models is mainly asso-
ciated with model interpretability and explainability [1]. Interpretability is defined as the
ability to understand how an AI model reaches its decisions [1]. Regarding interpretability,
AI models can be categorized into white-box models, such as decision trees, and black-box
models, such as neural networks [23]. Compared with white-box models, black-box models
have excellent performance, with almost no interpretability [24].

To address the AI black-box challenge, a considerable amount of research has focused
on developing explainable AI to open the black-box [23]. As a primary method for address-
ing the AI black-box issue, the visualization approach was developed to explain the models’
main features [25]. For example, De Fauw et al. [26] visualized sections of the patient
optical coherence tomography scans used by an AI model to make medical decisions.
However, visualization is challenging to explain, and users tend to misread the results
and over-trust their judgement [27]. Other approaches for addressing the AI black-box
issue have been developed, such as (1) analyzing one isolated layer at a time to learn the
differences between layers in neural networks [28]; (2) using a simplified version of the
algorithm for debugging and detecting potential errors, and then training an accurate ver-
sion of the algorithm [29]; and (3) training the black-box model to explain the level of safety
by assigning a confidence level to the model’s prediction [30]. However, these methods
focus on diminishing the black-box rather than opening the black-box of AI [26]. To open
the black-box, the logic behind AI models’ decision-making processes must be identified,
and specific model tasks must be able to be paused or modified as necessary [31].

In contrast, some researchers are less concerned about opening the black-box of AI [28].
From this standpoint, understanding how an AI model makes decisions is less crucial
than empirically verifying its accuracy [32]. According to this viewpoint, regulators and
clinicians should accept the AI black-box models, because opaque systems are common
in medicine [10]. For example, several efficient medications such as aspirin and penicillin
were used before their mechanisms were discovered [33]. Owing to the excellent performance
and popularity of AI black-box models, and given the absence of effective methods to open
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the black-box, accepting AI black-box models could be considered an acceptable option.
However, addressing the safety issues of AI black-box models is also essential [33–35].

The present study focused on developing a tool to evaluate the safety practices of
AI models implemented in healthcare. The main objective of this article was to build
safety guidelines for implemented AI black-box models, to reduce the risk of health-
related incidents and accidents. For this purpose, a three-level multi-attribute value
model (MAVT) approach was used to develop a safety controlling system (SCS) for AI
systems implementation.

2. Methodology

The SCS for AI implementation was developed by using a three-level MAVT adapted
from Teo and Ling [36]. This approach consisted of four parts: (1) extracting attributes
at different levels; (2) generating weights for the attributes; (3) assigning a rating scale for
the attributes; and (4) finalizing the system [36] (see Figure 1). Several techniques were
used to accomplish these steps. A combination of a systematic literature review and expert
interviews was used for extracting attributes; a questionnaire-based survey was used for
generating weights; and a questionnaire-based survey was used for developing a rating scale.

Figure 1. Components of the three-level multi-attribute value approach.

2.1. List of Attributes

In the proposed SCS, the attributes were divided into three levels. The first level
attributes, called key dimensions, were adopted from Fernández-Muñiz et al. [37]. These
were extracted from applicable safety standards and guidelines. These key dimensions
were the fundamental and well-known elements of any robust safety management sys-
tem, and included safety policies, incentives for clinicians, clinician and patient training,
communication and interaction, the planning of actions, and the control of actions.

The second and third level attributes were developed by using a systematic liter-
ature review and interviewing ten AI domain experts. As the lowest level, the third
level attributes were measurable safety elements for implemented AI systems in healthcare.
The third level attributes were extracted from the systematic literature review, and were sub-
sequently refined during expert interviews. The third level attributes were clustered accord-
ing to their predominant topics. These topics were named as the second level attributes.

The main reason for using a combination of systematic review and interviews was to
identify the main topics of AI safety in the included literature, and to expand these topics
through consultation with ten AI domain experts. In addition, we aimed to ensure that all
the main aspects (elements) of AI implementation safety were addressed. For this purpose,
first, a systematic review was conducted, and the main elements of safety in different
key dimensions were extracted. Second, the extracted information was categorized and
discussed during interviews with AI domain experts to produce the third attributes, as
illustrated in Figure 2.
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Figure 2. Approach for a combination of systematic review and interviews.

2.1.1. Systematic Review

To identify the attributes, we followed the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) guidelines [38]. Two main features of the research
question and search strategy were developed. The following research question guided the
systematic review:

Question: What are the primary safety attributes of implemented AI models in health-
care for each key dimension?

A search strategy was developed by (1) defining keywords and identifying all relevant
records, (2) filtering the identified articles, and (3) addressing the risk of bias among
records [39]. Three sets of keywords were defined, and their combinations were used to
identify relevant articles (Figure 3).

The PubMed and Google Scholar databases were used to discover relevant articles
published through the end of July 2020. The selection strategy is shown in Figure 4.

Figure 3. Three sets of keywords and their combinations for identifying relevant articles.
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Figure 4. Chart of the selection strategy following preferred reporting items for systematic reviews
and meta-analyses (PRISMA) guidelines [38].

2.1.2. Interviews

A primary method for collecting qualitative data is interviews, which are widely
used in conducting research [40]. Some researchers apply structured interviews to test
a priori hypotheses by using standardized questions and analysis. In contrast, others apply
qualitative interviewing methods, to better understand the stated hypotheses [41]. In this
article, both types of interviews were used.

After completing the systematic literature review, we applied an interview approach to
identify the SCS’s key dimensions. The objective was to examine the extracted information
from the literature review, discuss unidentified aspects of safety systems, and determine
measurable third level attributes. Consequently, we interviewed ten AI domain experts.
We asked these ten specialists the following questions:

• Q1. What are the attributes of safety policies for implemented AI models in healthcare?
• Q2. What are the attributes of incentives for clinicians for implemented AI models

in healthcare?
• Q3. What are the attributes of clinician and patient training for implemented AI

models in healthcare?
• Q4. What are the attributes of communication and interaction for implemented AI

models in healthcare?
• Q5. What are the attributes of planning of actions for implemented AI models

in healthcare?
• Q6. What are the attributes of control of actions for implemented AI models

in healthcare?

The interviews were conducted during August 2020. Each interview lasted approxi-
mately 1 h, and was divided into two main parts. First, the key dimensions and results
of the systematic literature review were explained and discussed. Second, six research
questions were asked, and the third level attributes were developed.

As we conducted information-gathering interviews where the IRQ1–6 questions only
concentrated on AI-based models rather than individuals or their opinion regarding them-
selves, our study is not considered human subject research, and ethics approval was not
required [42]. However, before participating in the interview, we transparently informed
all individuals about our study’s objective and aim. We emphasized that participation
is voluntary. Therefore, participants were free to leave the interview without any penalty
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or question. We ensured that individuals were not pregnant, had not consumed alcohol
for 24 h before the interview, or were not under hormonal treatment. We sent a recruiting
email accompanied by a list of questions (IRQ1–6) and an explanation of our research
to all potential candidates. We did not collect any identifiable data. All emails, contact
information, and messages were deleted right after the interviews. Finally, we obtained
informed consent verbally from all individuals. The socio-demographic information of
interviewees is shown in Table 1.

Table 1. The socio-demographics information of interviewees.

Characteristics Interviewees (Number) Interviewees (Percent)

Age
30 to 34 2 20%
35 to 39 4 40%
40 to 44 4 40%

Years of experience in AI
0 to 4 1 10%
5 to 9 4 40%

10 to 14 5 50%

Gender
Male 10 100%

Female 0 0

Race/Ethnicity category
Non-Hispanic Black 0 0
Non-Hispanic Asian 0 0
Non-Hispanic White 10 100%
Non-Hispanic Other 0 0

Hispanic 0 0

Occupation
Postdoctoral researcher 2 20%

Data scientist 5 50%
Machine learning scientist 2 20%

Data engineer 1 10%

After discovery of the attributes on the basis of the systematic literature review and
expert interviews, we organized the key dimensions and the second and the third level
attributes into a hierarchy tree. In this knowledge structure, the higher-level attributes rep-
resented the overall view of safety in implemented AI models, and the lower-level attributes
measured the elements of safety in AI models (Figure 5). Notably, the highest level had six
attributes, the middle level had 14 attributes, and the lower level had 78 attributes.

2.2. Weight of Attributes

Since the identified attributes differed in importance regarding AI system safety,
differentiating essential attributes from desirable attributes was essential. Therefore, we as-
signed a weight to each attribute to understand its degree of importance. Weights are
crucial for decision-making because they indicate the most critical safety elements in AI
systems implementation. For assigning weights to the attributes, we used a four-point
Likert scale. For this purpose, a questionnaire was designed containing the third level
attributes. To evaluate the significance of the third level attributes, we asked the ten AI
experts who participated in developing the attributes to rate these attributes on a four-point
scale: not important = 1; neutral = 2; important = 3; and very important = 4.

We assessed agreement among the AI experts by calculating Kendall’s W (Kendall’s
coefficient of concordance) [43,44]. This non-parametric statistic ranges in value between
0 and 1, such that 1 indicates more substantial agreement [45]. We assessed the concor-
dance of opinions regarding six key dimensions of the SCS. There was strong agreement
(Kendall’s W scale bigger than 0.6) among AI experts in the key dimensions of “planning of
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actions” and “control of actions.” In addition, the AI experts were moderately in agreement
(Kendall’s W scale between 0.3 to 0.6) regarding the remaining key dimensions. However,
we decided to adopt the average experts’ ratings as each third level attribute’s weight. Next,
the weights of all third-level attributes were recalculated, such that the sum of all weights
was 100. For this to be achieved, we added up the rates of the scale for all third-level
attributes; then, we divided the rate of each attribute by the sum of all attributes. In the
final step, the weights of the second and the first level attributes were determined. For this
purpose, we added up the weight of all third-level attributes corresponding to the first and
second level attributes. According to the results, the key dimension of “communication
and interaction” had the highest weight, and was followed by “control of actions” and
“safety policies.” The weights of the key dimensions and the second level attributes are
shown in Figures 6 and 7.

Figure 5. Attributes of the safety controlling system (SCS) in different layers.

2.3. The Rating System

The next part of the MAVT approach was developing a rating system, and assigning
it to the third level attributes. To reduce the probability of having different results from
different auditors, and to improve the generalization of the SCS, we developed a rating
system by allocating points to the third level attributes in a straightforward manner.
Different types of rating systems were extracted from Teo and Ling [36] and used in
the survey. The four possible rating options were as follows:

(1) 0/1, in which the rating options are “0” (no) or “1” (yes),
(2) 0–1, in which the rating options are a fraction between “0” and “1”,
(3) 0/1/NA, in which the rating options are “0” or “1” or “not applicable”, and
(4) 0–1/NA, in which the rating options are a fraction between “0” and “1” or

“not applicable.”
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Figure 6. Weights of the first and second level attributes.

Figure 7. The 19 steps of the multi-attribute value model approach (MAVT) approach.

A questionnaire was designed containing the third level attributes. To assign the
most relevant rating system to each attribute, we asked the ten AI experts to select the
most relevant rating system. We assessed the agreement among AI experts by assigning
numbers from 1 to 4 to each rating system and calculating Kendall’s W. There was strong
agreement (Kendall’s W scale bigger than 0.6) among the AI experts in all key dimensions
except “control of actions” and “safety policies.” The most relevant (popular) rating system
was assigned to each attribute according to the collected data.



Symmetry 2021, 13, 102 9 of 25

2.4. Finalizing the Model

The score of each third level attribute was determined by multiplying the attribute’s
weight in the auditor’s assessment by the attribute according to the assigned rating system.
After the scores were determined, the total score was calculated by adding all scores of
third level attributes. In conclusion, the entire MAVT approach for developing the SCS in
19 steps is represented in Figure 7.

3. Results

An SCS can be defined as a set of policies, practices, procedures, strategies, roles,
functions, and resources associated with safety that interacts in an organized way to
decrease the damage generated in a process [37,46]. Different SCSs have been developed
for different industries and technologies, but there is a lack of studies aiming to understand
the key dimensions and measurable indicators of the safety of black-box AI models in
healthcare. Although the developed safety models and guidelines for industries may not
apply directly to AI models in healthcare, their methods and frameworks can be adapted
to create a comprehensive safety system suitable for black-box AI models.

This article developed a system to evaluate the safety performance of AI models
implemented in healthcare. The proposed system was constructed by applying the three-
level MAVT approach [36]. The first level attributes, adopted from Fernández-Muñiz
et al. [37], were the main elements of safety standards and guidelines. The 14 attributes of
the second level and the 78 elements of the third level were extracted by using a systematic
literature review, conducting interviews, and performing two small questionnaire-based
surveys.

The key first level dimensions of the SCS are as follows: (1) safety policies; (2) incen-
tives for clinicians; (3) clinician and patient training; (4) communication and interaction;
(5) planning of actions, and (6) control of actions (Figure 8).

Figure 8. The first and second level attributes of the SCS.

3.1. The First Key Dimension

Safety policies can be divided into the three attributes of legislation and codes of
practice (including six attributes), liability (including nine attributes), and continual devel-
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opment (including five attributes). Developing AI models in healthcare faces several legal
regimes, such as federal regulations, state tort law, the Common Rule, and the Federal Trade
Commission Act. In malpractice claims, owing to the use of AI black-box models in clinical
workflows, the current legal system is not suitable [47,48]. Therefore, the responsibilities
of different parties, including AI developers, the source of training data, clinicians, and
suppliers who provide the AI system platform, must be clearly defined [1]. In addition,
clinical systems are being controlled by designed rules, and using black-box data-driven
devices can introduce new risks [49]. For example, traditional medical devices are updated
manually, whereas AI-based devices are updated by training with new data [49]. The dif-
ferences between the data-driven and the traditional devices require clinical regulations to
be updated to correctly implement AI-based devices in clinical workflows [47].

The continual development of AI models is one of the main attributes of safety policies.
AI-based devices are a new type of medical technology, and they may become outdated
because of continually changing medical treatment patterns and improvements in medical
instruments [50,51]. Therefore, this unique aspect of AI-based medical devices in medical
regulation is important to consider [1]. The Food and Drug Administration (FDA) has
defined and developed the Software as Medical Device (SaMD) category and Digital Health
Software Precertification (Pre-Cert) Program to address this issue [47,52]. Accordingly,
the FDA’s new policy centers on AI developers’ organizational excellence rather than
approving AI-based medical devices [53]. Organizational excellence is defined as an effort
to develop different processes and standards intended to engage employees to deliver
excellent products [53]. Consequently, developers are authorized to update AI models
without review by the FDA [54]. However, crucially, a testing process must be developed
so that the updated models’ performance is not below that of the primary models [55].

3.2. The Second Key Dimension

Due to false confidence, clinicians often accept the results and recommendations of AI
models, regardless of their accuracy [29]. To address this issue and to motivate clinicians
to constantly check the results of AI systems, clinicians’ incentives can be considered
according to two attributes: developing safety incentive programs, and adopting reso-
lutions according to clinicians’ recommendations. Safety incentive programs comprise
three aspects, such as: “Are there any incentives offered to clinicians to put defined pro-
cedures of implemented AI systems into practice?” The attribute of adopting resolutions
comprises three aspects, such as: “Are there any meetings with clinicians to adopt their
recommendations concerning AI-based medical device operation?”

3.3. The Third Key Dimension

Clinicians and patients should be educated on the risks, benefits, and limitations of
AI models [33]. Different actions that should be taken may include engaging clinicians in
developing data-driven systems, providing training events in health organizations before
and after AI model implementation, using different teaching methods to educate clinicians,
asking for feedback from learners, and developing personalized education [56]. Clinician
and patient training can be divided into: (1) general training, including five attributes, such
as “Are clinicians given sufficient training concerning AI system operation when they enter
a health institution, change their positions, or use new AI-based devices?”; and (2) specific
training for certain patients and clinicians facing high-risk events, including two attributes,
such as “Are specific patients or clinicians who are facing high-risk events trained?”

3.4. The Fourth Key Dimension

Communication and interaction can be divided into two main attributes of human–
human interactions: interaction between parties (such as healthcare institutions and AI
developers, including five attributes), and human–AI interaction (including 18 attributes
mainly adopted from Amershi et al.) [57]. The safe implementation of AI-based devices
in healthcare depends on comprehensive and effective interaction among healthcare in-
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stitutions, clinicians, and AI developers. This interaction is necessary, because AI models
cannot be trained and tested for all disease states and patient demographics during clinical
trials. This interaction includes five attributes, such as “Is there any information system
developed between a health institution and an AI developer during the lifetime of AI-
based medical devices?” [58–60]. The attribute of human–AI interaction is associated with
designing safety guidelines for interaction between humans and AI. A total of 18 attributes
are considered for human–AI interaction, such as: “Is there an established description of
what the AI-based medical device can do?” [57].

3.5. The Fifth Key Dimension

As implemented AI models are required to perform tasks in dynamic and complex
healthcare environments, and because these models cannot be fully evaluated during
clinical trials, a safety plan must be created to identify all risks and adverse events, and
plan a course of action to remove risks and plan emergency actions. The planning of actions
is divided into two main aspects: (1) risk assessment and preventive plans, including eight
attributes, such as: “Are all risks and adverse events identified concerning implemented
AI systems?”; and (2) emergency plan for occurring risks, including four attributes, such
as: “Do the health institution and the AI developer have an emergency plan for remaining
risks and adverse events of AI operation?”

3.6. The Sixth Key Dimension

The control of actions aims to monitor all risks and adverse events, and all procedures
and planning. The control of actions is divided into two main aspects: (1) checking the
AI system’s effectiveness internally and externally, and (2) comparing incident rates with
benchmarks. Checking the AI system’s effectiveness internally and externally involves
eight attributes, such as “Is effective post-market surveillance developed to monitor AI-
based medical devices?” Post-market surveillance has two main parts. The first is practical
cooperation among clinicians, health organizations, and AI developers to gather clinical and
safety-related data (explained in the communication and interaction attribute). The second
is monitoring and analyzing different safety signals, longitudinal data, risks and adverse
events, and thresholds for AI-based device recall [61]. The comparison of incidence rates
with benchmarks includes two attributes. All attributes are shown in Table 2.

Table 2. Summary of system attributes.

Attributes Weight Rating System

SCS 100.00
Safety policies 23.50

Legislation and codes of practice 11.25

Is there a commitment to current legal regimes, such as federal regulations, state tort
law, the Common Rule, Federal Trade Commission Act, legislation associated with
data privacy, and legislation associated with the explainability of AI?

3.00 0–1

Is a written declaration available reflecting the safety objectives of the AI-based
medical device? 2.00 0/1

Are clinicians informed about the safety objectives of the AI-based medical device? 2.00 0/1

Is a written declaration available reflecting the safety concerns of the directors of
health institution? 1.50 0/1

Does the health institution coordinate the AI-based medical device policies with
other existence policies? 1.50 0/1

Is there a positive atmosphere to ensure that individuals from all parties, such as
the health institution and the AI developer, participate in and contribute to
safety objectives?

1.25 0–1
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Table 2. Cont.

Attributes Weight Rating System

Liability 7.00

Are the responsibilities of the AI developer established in writing? 1.00 0/1

Are the responsibilities of clinicians established in writing? 0.75 0/1

Are the responsibilities of the source of training data established in writing? 0.75 0/1

Are the responsibilities of the source of suppliers who provide the system platform
established in writing? 0.75 0/1

Are the responsibilities of the AI algorithm (at the higher level) established in writing? 0.25 0/1/NA

Is there a positive atmosphere to ensure that individuals from all parties, such as the
health institution and the AI developer, know their responsibilities? 0.75 0–1

Is there an appropriate balance for the responsibilities of different parties? 0.75 0–1

Is there any procedure for resolving conflicts between parties? 1.00 0/1

Is resolving conflicts established in writing? 1.00 0/1

Continuous development 5.25

Is there a commitment to FDA regulations regarding Software as Medical
Device (SaMD)? 0.75 0/1

Is there involvement in the Digital Health Software Precertification (Pre-Cert) Program? 0.75 0/1/NA

Is an organizational excellence framework established in writing? 0.75 0/1

Is there a commitment to organizational excellence? 1.50 0/1

Is there a testing policy for updated AI-based devices? 1.50 0/1

Incentives for clinicians 5.25
Safety incentive programs 2.25

Are there any incentives offered to clinicians to put defined procedures of
implemented AI systems into practice? 0.75 0/1

Are incentives frequently offered to clinicians to suggest improvements in the
performance and safety of implemented AI systems? 1.00 0/1

Are there disincentive programs for clinicians who fail to put defined procedures of
implemented AI systems into practice? 0.50 0/1

Adopting resolutions 3.00

Are there any meetings with clinicians to adopt their recommendations concerning
AI-based medical device operation? 1.50 0/1

Is adoption of resolutions coordinated with other parties, such as the AI developer? 0.50 0/1

Do any modifications or changes in AI-based medical device operations involve
direct consultation with clinicians who are affected? 1.00 0/1

Clinician and patient training 5.25
General training 3.75

Are clinicians given sufficient training concerning AI system operation when they
enter a health institution, change their position, or use new AI-based devices? 1.75 0/1

Is there a need for follow-up training? 0.50 0/1/NA

Are general training actions continual and integrated with the established
training plan? 0.50 0/1/NA

Are the health institution’s characteristics considered in developing training plans? 0.50 0/1/NA

Is the training plan coordinated with all parties, such as the AI developer and
health institution? 0.50 0–1/NA

Specific training 1.50

Are specific patients or clinicians who are facing high-risk events trained? 0.75 0/1/NA

Are specific training actions continual and integrated with the established specific
training plan? 0.75 0/1/NA
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Table 2. Cont.

Attributes Weight Rating System

Communication and interaction 27.00
Human–human interactions 9.00

Is an information system developed between a health institution and an AI
developer during the lifetime of AI-based medical devices? 2.00 0/1

Are clinicians informed before modifications and changes in AI-based medical
device operation? 2.00 0/1

Is there written information about procedures and the correct way of interacting
with AI-based medical devices? 2.00 0/1

Is there any communication plan established between parties? 1.50 0–1

Is there any procedure to monitor communication and resolve problems such as
language, technical, and cultural barriers between parties? 1.50 0/1

Human–AI interactions 18.00

Is there any established description of what the AI-based medical device can do? 1.50 0/1

Is there any established description of how well the AI-based medical device performs? 1.50 0/1

Is the AI-based medical device time service (when to act or interrupt) based on the
clinician’s current task? 1.50 0/1

Does the AI-based medical device display information relevant to the clinician’s
current task? 1.50 0/1

Are the clinicians interacting with AI-based medical devices in a way that they
would expect (are social and cultural norms considered)? 1.50 0/1

Is there any procedure to ensure that the AI-based medical device’s behaviors and
language do not reinforce unfair and undesirable biases? 1.50 0/1

Is it easy to request the AI-based medical device’s services when needed? 0.75 0/1

Is it easy to ignore or dismiss undesired and unwanted AI-based medical
device services? 0.75 0/1

Is it easy to refine, edit, or even recover when the AI-based medical device is wrong? 0.75 0/1

Is it possible to disambiguate the AI-based medical device’s services when they do
not match clinicians’ goals? 0.75 0/1

Is it clear why the AI-based medical device did what it did (access to explanations
and visualizations of why the AI-based medical device behaved as it did, in terms of
mitigating the black-box)?

0.75 0/1

Does the AI-based medical device have short term memory and allow clinicians to
efficiently access the memory? 0.75 0/1

Does the AI-based medical device learn from clinicians’ actions (personalizing
clinicians’ experience by learning from their behaviors over time)? 0.75 0/1

Are there several disruptive changes when updating the AI-based medical device? 0.75 0/1

Can clinicians provide feedback concerning the interaction with the AI-based
medical device? 0.75 0/1

Can the AI-based medical device identify clinicians’ wrong or unwanted actions?
How it will react to them? 0.75 0/1

Can the clinicians customize what the AI-based medical device can monitor
or analyze? 0.75 0/1

Can the AI-based medical device notify clinicians about updates and changes? 0.75 0/1

Planning of actions 15.00
Risk assessments and preventive plans 12.00

Are all risks and adverse events identified concerning the implemented AI system? 2.50 0/1

Is there any system in place for assessing all detected risks and adverse events of
AI operation? 1.75 0/1
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Table 2. Cont.

Attributes Weight Rating System

Risk assessments and preventive plans 12.00

Are prevention plans established according to information provided by
risk assessment? 1.75 0/1

Does the prevention plan clearly specify for clinicians who are responsible for
performing actions? 1.25 0/1

Are specific dates set for performing preventive measures? 1.25 0/1

Are procedures, actions, and processes elaborated upon on the basis of performed
preventive measures? 1.50 0/1

Are clinicians (involved in using the implemented AI system) informed about
prevention plans? 1.00 0/1

Are prevention plans occasionally reviewed and updated on the basis of any
changes or modifications in operation? 1.00 0/1

Emergency plan for risks 3.00

Is an emergency plan in place for the remaining risks and adverse events of
AI operation? 0.75 0/1

Does the emergency plan clearly specify for clinicians who are responsible for
performing actions? 0.75 0/1

Are the clinicians (involved in using the implemented AI system) informed about
the emergency plan? 0.75 0/1

Is the emergency plan occasionally reviewed and updated on the basis of any
changes or modifications in operation? 0.75 0/1

Control of actions 24.00
Checking the effectiveness of the AI system internally and externally 18.00

Is effective post-market surveillance developed to monitor AI-based medical devices? 2.50 0/1/NA

Are there occasional checks performed on the execution of the preventive plan and
emergency plan? 2.50 0/1

Are there procedures to check collection, transformation, and analysis of data? 2.25 0/1

Is there a clear distinction between the information system and the post-market
surveillance system? 2.25 0/1

Are accidents and incidents reported, investigated, analyzed, and recorded? 2.25 0/1

Are there occasional external evaluations (audits) to validate preventive and
emergency plans? 2.00 0/1/NA

Are there occasional external evaluations (audits) to ensure the efficiency of all
policies and procedures? 2.00 0/1/NA

Are there procedures to report the results of external and internal evaluation? 2.25 0/1/NA

Comparing incident rates with benchmarks 6.00

Do the accident and incident rates regularly compare with those of other healthcare
institutions from the same sector using similar processes? 3.00 0/1/NA

Do all policies and procedures regularly compare with those of other healthcare
institutions from the same sector using similar processes? 3.00 0/1/NA

4. Discussion

This study offers an alternative solution for opening the AI black-box in healthcare
by introducing an SCS. The framework provides safety guidelines for implementing
AI black-box models to reduce the risk of healthcare-related incidents and accidents.
The proposed framework and system provide a basis for implementing and monitoring
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safety legislation and procedures, identifying the risks and adverse events in AI activities,
preventing accidents and incidents from occurring, and having an emergency plan for
threats. Therefore, the proposed framework and tool can guide the safety activities of
implemented AI systems.

The SCS represents a set of attributes in different layers and can be used in healthcare
institutions with implemented AI models. The management of healthcare institutions can
use the proposed set of attributes as a checklist, verifying whether a set of desired safety
elements exists. Having useful specific attributes in healthcare systems will lead to high
scores in the SCS. Healthcare institutions can use this framework to: (1) calculate their
safety score, and compare it with those of other institutions; and (2) detect deficiencies
in current safety practices regarding the implemented AI models. The above steps can help
improve the overall safety performance.

The proposed framework for evaluating AI safety performance was developed by
using the MAVT approach, comprising four parts: extracting attributes, generating weights
for attributes, developing a rating scale, and finalizing the system. With the MAVT ap-
proach, three layers of attributes were created. The first level contained six key dimensions,
the second level contained 14 attributes, and the third level contained 78 attributes.

4.1. First Key Dimension

Three attributes, “legislations and codes of practice,” “liability,” and “continual devel-
opment”, were extracted as primary elements of safety policies from the literature review,
and were confirmed in interviews. Commitment to current legislation and codes of practice
is a basic element of every AI system. Among current legal regimes, data privacy-related
legislation plays a vital role in developing and implementing AI systems. Due to the
complexity of protecting data privacy, and its effects on data availability, three different
viewpoints concerning the level of adaptation of data protection legislation have recently
been proposed.

First view. The European Union has adopted legislation entitled General Data Pro-
tection Regulation (GDPR), which details a comprehensive and uniform approach for
data privacy, regardless of how data are collected, in what format, or who the custodian
is [62]. Under GDPR, only anonymous data can be shared. The anonymization process
under GDPR requires implementing different techniques on datasets to prevent data re-
identification [62]. Although GDPR aims to protect data privacy rather than to prevent data
sharing, a fear of violation penalties has decreased data collection and data aggregation
efforts among European companies, and even data flow from Europe to the U.S. [63].

Second view. The current U.S. data privacy legislation is more lenient than that of
the European Union [64]. In general, Europe places more emphasis on protecting citizens
from technological risks, whereas the U.S. focuses more on innovation and technology [64].
Under U.S. privacy law, health data are treated differently depending on how they have
been created, who is handling the data, and who the data custodian is [65]. The Health
Insurance Portability and Accountability Act (HIPAA) includes a privacy rule that prohibits
disclosing protected health information [47]. HIPAA limits the use of protected health
information unless there is authorization from the patient or Institutional Review Board [65].
Under HIPAA policy, any type of de-identified data is considered non-personal and not
subject to data protection regulation [62]. Furthermore, HIPAA focuses on specific actors
and their activities rather than on the data itself; therefore, a considerable amount of health
data are not covered by HIPAA [65].

Third view. From China’s perspective, AI is a powerful tool for economic success,
military dominance, and controlling the population [63]. Chinese companies accumulate
a tremendous amount of health-related data, which can be used in AI development, owing
to lenient regulations on data collection and little public concern about data privacy [54,66].
However, in recent years, the Chinese public has started to petition large companies, such as
Baidu and Alibaba, for the right to data privacy [66]. Consequently, China has initiated
personal data protection laws and ethical principles for developing and using AI [67,68].
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Among the third level attributes of safety policies, the elements “Software as Medical
Device (SaMD)”, “Digital Health Software Precertification (Pre-Cert) Program”, “current
legal regimes”, and “assigning responsibility” were mainly extracted from the included
articles. The elements of “safety objectives of the AI-based medical device”, “positive atmo-
sphere in the health institution”, and “coordinating the AI-based medical device policies
with existing policies” were mainly found from the interviews. However, we observed
that the AI experts differed in the weights assigned to this crucial dimension’s attributes.
The most confusing second level attribute was the liability, on which AI experts did not
reach agreement.

The term Software as a Medical Device (SMD) is described as “software that uses
an algorithm that operates on data input to generate an output that is used for medical
purposes” [69]. SMD applications are as diverse as computer-aided detection (CAD) soft-
ware, for example, software detecting breast cancer, smartphone applications for diagnostic
purposes, or software for analyzing images collected from a magnetic resonance imaging
medical device. Although some FDA guidelines for SMD overlap with attributes of other
key dimensions, we decided to consider “commitment to FDA regulations regarding Soft-
ware as Medical Device” under “safety policies.” As described earlier, the Pre-Cert Pilot
Program looks first at the AI developers rather than at AI-based medical devices, in contrast
to the FDA process for traditional medical devices [70]. Since the FDA selected several
companies to participate in developing the Software Pre-Cert pilot program, we decided to
include it as an attribute.

4.2. Second and Third Key Dimensions

Both the “incentives for clinicians” and “clinician and patient training” attributes
were formed and developed in interviews. There was moderate agreement regarding the
weights of attributes and strong consensus regarding the assigned rating system.

4.3. Fourth Key Dimension

Although two parts of this key dimension were mainly extracted from the literature
review, a considerable amount of interview time was spent on this aspect to define the
third level attributes. Human–human interactions are associated with communication
management among all parties, for example AI developers and health institutions, involved
in implemented AI-based medical devices. All the main communication management
elements, including planning, managing, and monitoring communication, were discussed
in interviews, and measurable attributes were defined. One of the main attributes of human–
human interaction is developing an information system for storing, processing, collecting,
creating, and distributing information. This information system contains different elements
of hardware and software, system users and developers, and the data itself.

Regarding human–AI interactions, the attributes from Amershi et al. [57] were dis-
cussed in the interviews to define measurable attributes. The main elements of the human–
AI interaction included the following: AI system capability, AI system accuracy, AI system
time service, AI system displaying information, AI system language, social and cultural
norms in human–AI interaction, AI system readiness, dismissal of unwanted service,
AI system recovery, AI system disambiguation, AI system explainability (black-box mit-
igation), AI system short term memory, personalizing the AI system, updating the AI
system, feedback mechanisms in the AI system, the AI system’s reaction to wrong actions,
customizing the AI system, and notification mechanisms in the AI system. Importantly,
personalization means that AI systems can learn from clinicians’ actions, and customization
means that clinicians can customize the AI system’s actions.

One of the main controversial elements of human–AI interaction is the AI system’s
accuracy and effectiveness. As a part of model safety, the AI model’s performance in clinical
trials should outperform the performance of existing diagnostics devices and clinicians’
judgment [47]. Accuracy, defined as a proper fraction of predictions, is a commonly used
metric for evaluating AI algorithms’ performance [47].
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Many studies have reported the three measures of accuracy, sensitivity, and specificity
in clinical trials to capture the full extent of a models’ properties [47]. However, cover-
ing all essential differences in patient demographics and disease states in clinical trials
is impossible [50]. One solution is to add external validation after the clinical trials before
implementing the model in clinical workflows [50]. The external validation phase would
include training and testing the model by using data from the clinics where the AI model
will be used [50].

Other metrics to measure model performance are stability and robustness [35]. Model
stability means that, when given two almost identical input data sets, an AI model generates
almost the same results [71]. Model robustness indicates the stability of the model’s
performance after including noise in the input data [35]. Robustness represents the model
efficiency for new data outside the training data [35]. These measures are essential for
applying AI models in healthcare, because a lack of stability and robustness can diminish
clinicians’ and patients’ trust in AI models [72].

4.4. Fifth Key Dimension

In this key dimension, risk assessment was mainly extracted from the literature review,
and elements of the preventive plan and emergency plan were discussed in interviews.
The foundation of the “planning of action” dimension is risk assessment. The principal
risks of implemented AI systems include data difficulties, technological problems, secu-
rity problems, models misbehaving, and interaction issues [73]. Two elements of models
misbehaving and interaction issues were addressed in AI–human interactions. There-
fore, the main risks associated with the implemented AI system are data difficulties and
technology problems.

Risk of data difficulties. One of the main concerns regarding AI in healthcare
is data availability [1,2,21]. Despite considerable recent efforts in collecting and releasing
high-quality AI-ready datasets, most health data are not accessible to the public [1,2,21].
These data are generally collected and controlled by hospitals and other health organiza-
tions and used for operations but not for analytics or research. Therefore, the formats of
the data are often not ideal for training AI models. For example, image data may not be
anonymized, organized, or appropriately annotated [74]. Of the publicly available datasets,
most are released once and become progressively outdated [50]. For example, despite
advances in fundus camera technology, the Messidor database is still used to train AI
algorithms on images acquired in 2007 [75].

Other issues in data availability include coverage of rare and novel cases [76], missing
data in datasets, a lack of appropriately labeled data [77], high-dimensionality together
with small sample sizes [78], and data contamination with artifacts and noise [79]. Among
image datasets, the main issues include difficulty in collecting many high quality manually
annotated images [80], the limitations of human perception in annotating and labeling
images [81], the time required for reviewing and annotating each image in a dataset [82],
the level of the raters’ sensitivity to a particular target [83,84], loss of information due to
image processing and resizing [85], and collection of images from only a specific device [86].

Data privacy is the main difficulty in increasing data availability in healthcare [1,2,21].
A delicate balance must be struck between stimulating the potential benefits of aggregating
health data and protecting individual privacy rights. To do so, different reported practices
include anonymizing data before sharing, using validated protocols for de-identification,
exploring safer ways to share data, and defining the responsibilities of health organizations
as data custodians [87]. However, linking de-identified data is much more difficult when
patients visit different health institutions, obtain insurance through various companies,
or change their location [65]. Consequently, forming fragmented health data makes data-
driven innovation more difficult [65].

Mitigating the risk of data difficulties. High-quality AI-ready data are the founda-
tion for developing accurate algorithms. Even the unintentional effects of biases due to
selecting unsuitable data can decrease the accuracy of AI models. To generate high-quality
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AI-ready data, different methods have been proposed in various studies. Data aggregation
efforts across health organizations are one way to generate high-quality data [88]. One of
the main challenges in data aggregation is that the data format may differ among health
organizations [89]. Therefore, usable data with consistently structured formats must be
generated among health organizations [89]. Several efforts have been proposed to address
this concern, including developing cloud infrastructures, adopting unified data formats
such as Faster Healthcare Interoperability Resources, and launching collaborative efforts
among health organizations to create high-level joint features [1,90].

Training AI models in a simulated virtual environment has created a unique opportu-
nity to cover the lack of high-quality healthcare data [91]. By using the virtual environment,
an AI model can learn and become powerful before it is implemented in the physical
world [92]. Chawla [93] has reported the successful implementation of AI models trained
inside a virtual environment. The key advantages of using a virtual environment for
training AI models are as follows:

1. The virtual environment allows AI developers to simulate rare cases for training
models [92].

2. The entire training process can occur in a simulated environment without the need to
collect data [93].

3. Learning in the virtual environment is fast; for example, AlphaZero, an AI-based
computer program, was trained over a day to become a master in playing Go, chess,
and shogi [29].

However, using virtual environments for training AI models in healthcare is not as
advanced as its applications in other fields, such as autonomous cars. For example, the Waymo
company has created virtual models of whole cities, and every day it sends 25,000 virtual
self-driving cars through these cities to train AI algorithms [94]. Using a virtual environment
gives Waymo the ability to simulate more than 5 billion miles of autonomous driving [94].
This achievement may inspire healthcare companies to develop a vast virtual world including
all disease states, patient demographics, and health conditions to train AI models.

Another way of generating high-quality data is building health datasets comprising
data from volunteers and groups of consenting individuals. Encouraging patients to share
their electronic medical record information and medical images, and creating datasets
of volunteers’ data have been described in several studies [74]. For example, in 2015,
the U.S. National Institutes of Health set an objective to develop genomic data, lifestyle
data, and biomarker data from 1 million volunteers from diverse backgrounds [54]. Another
project supported by Google is developing a dataset comprising data from 10,000 volun-
teers over 4 years [89]. Participants in this project monitor their sleeping patterns and
daily activities, answer common questions, and periodically visit specific medical testing
locations [89]. However, various concerns exist regarding this type of data generation,
including the lack of a specific mechanism for patients to share their data, and the absence
of a well-founded repository for aggregating patient data outside health care organiza-
tions. Awareness about the benefits of this process is lacking, and no institution has been
authorized to monitor these projects [74,95].

The involvement of tech companies in healthcare has created a new trend of high-
quality data generation [96]. For example, big tech companies collect massive amounts
of behavioral data from social media and sensors [96]. Biomedical signals such as heart
rate and rhythm, blood pressure, blood oxygen saturation, voice, tremor respiratory rate,
limb movement, and temperature can be recorded by modern wearable devices [21]. These
biological signals can be used for detecting several health conditions and diseases [2].
Patient-generated health data are another unique method for creating high-quality data.
Various health-related datasets can be built by patients and caregivers outside clinics by us-
ing software applications, wearable sensors, monitoring devices, smartphones, and tablets
with cameras [97]. Recently, substantial improvements have been made in high-quality and
low-cost technologies with the potential to collect various patient-generated data regarding
movement and behavior, environmental toxins, social interactions, diseases, images, and
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other physiological variables [98]. For example, one study has begun developing compre-
hensive open-access datasets through parents recording the behavior of their children with
autism by using cell phone cameras [97]. In addition, the FDA has made efforts to establish
a path for collecting patient- and caregiver-generated health data in clinical trials [99].

Collecting lifespan data from implemented AI-based medical devices is another
method to access high-quality health data. These efforts require creating a system as
a combination of hardware and software components to store and transfer generated
data [100]. For example, by implementation of an AI model in different health orga-
nizations, high-quality data can be collected and stored in a repository outside health
organizations, with consideration of data privacy protection [1].

Security problems. One of the main risks associated with implemented AI systems
is security. Adversarial attacks, one of the major types of security problem in the AI system,
can result when flawed AI systems are susceptible to manipulation by inputs explicitly
designed to fool it [50]. For example, one study has shown that adding a very small
amount of perturbation to images can cause medical image classifiers to incorrectly classify
a mole with a 100% confidence level [50]. Since the issue of adversarial attacks cannot be
completely addressed in clinical trials, fully managing malicious attacks is a main aspect
of the safe implementation of AI systems in healthcare. Hostile attacks can be partially
addressed by effective post-market surveillance; however, implementing regulatory actions
and novel techniques can secure AI systems against adversarial attacks [11]. For example,
in situations in which clinical data can be changed with fraudulent intent, using the
BlockChain technique allows for data storage in immutable interconnected blocks [11].

Technological problems. Typically, the technological problems in AI systems relate to
software and hardware. From a software perspective, AI systems are explicitly concerned
with algorithms. Although we have discussed the main issues associated with algorithms,
such as data difficulties and accuracy, generalization and algorithm fairness must also be
addressed. Unknown accuracy of the results for minority subgroups is a major element
of algorithm fairness [50]. For example, one study has developed an AI algorithm with
high accuracy in the classification of benign and malignant moles but has found that it has
poor performance on images of darker skin because it was trained on data from mainly
fair-skinned patients [50]. Therefore, in developing and implementing AI systems, further
training of AI models on data from minority groups, and the accuracy of AI models for
underrepresented groups, must be considered [50].

From a hardware perspective, AI systems are mostly concerned with implementing
algorithms on a physical computation platform [101]. Different physical computation plat-
forms, distinguishable in terms of power efficiency, computation capability, and form factor,
have been developed for AI systems, including: a general-purpose central processing unit;
graphical processing units; customizable and programmable accelerator hardware platforms,
such as application-specific integrated circuits and field-programmable gate arrays; and other
emerging platforms, such as memristor crossbar circuits [101]. However, from the hardware
perspective, the memory wall is a major challenge for AI systems [101]. The memory wall
is defined as a situation in which improvements in processor speed are masked by the much
slower progress in dynamic random access (DRAM) memory speed [102]. Although DRAM
organization has improved, this aspect is a major issue in AI systems [102].

4.5. Sixth Key Dimension

Among elements of this key dimension, post-market surveillance was mainly extracted
from the literature review. This effort was supplemented by internal and external validation
and the use of benchmarks formed and discussed during interviews. Part of the safe
implementation of AI-based healthcare devices is post-market surveillance to monitor
medical devices’ safety [61]. Implementing comprehensive and effective post-market
surveillance is essential for two reasons: (1) the FDA’s new policy focuses on AI developers
rather than AI-based medical devices, and (2) AI models cannot be trained and tested for
all disease states and patient demographics during clinical trials and external validation [59].
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The post-market surveillance system should include practical cooperation among clinicians,
health organizations, and AI developers to efficiently gather clinical and safety-related data.
Such a system should correctly identify safety signals, practically collect longitudinal data,
effectively report adverse events, and strictly define thresholds for device recall [61,103].
An ideal level of post-market surveillance in AI-based medical devices includes three parts:
extensively collecting data across the lifespan of devices, integrating results into electronic
health records, and the full tracking and reporting of adverse events [58]. Developing and
implementing a clear definition and distinction between information systems (data for
human–human interaction) and post-market surveillance systems (data for AI–human
interaction) is crucial.

5. Study Limitations

The proposed framework of the AI SCS in the healthcare industry has several limita-
tions. First, we did not perform safety audits to ensure the developed tool’s effectiveness.
Therefore, at this time, the quality of the proposed approach cannot be assessed in terms of:

1. The comprehensibility of the considered safety elements to potential auditors.
2. The robustness of the rating scale for each safety element to secure a reliable rating

under similar conditions.
3. The potential for improving key dimensions and different layers of attributes.
4. The feedback from the healthcare institutions about the system.

To address the above challenges, the proposed framework should be implemented
in several healthcare institutions concurrently to investigate its effectiveness. In addition,
several key questions should be addressed, including (1) clinicians’ acceptance of the
framework, (2) the compatibility of the model across multiple healthcare institutions,
(3) the opportunity for implementation in different types of healthcare organizations,
(4) and the framework’s effectiveness.

The second limitation of this study is the number of interviewees and their socio-
demographic information. Many attributes were identified during the interviews, thus indicat-
ing their importance in developing AI safety system requirements. However, we interviewed
ten AI experts who were middle-aged white males. Therefore, the small number of intervie-
wees and their lack of diversity can introduce potential bias into the developed attributes.

Finally, the structural relationships between measurable variables (the third level
attributes) and latent variables (the first and the second level attributes) should also
be assessed to validate the developed model. A survey including many health institutions
considering implementation of AI-based systems (including medical devices) should be
conducted for that purpose. Another essential consideration is developing a set of robust
AI-relevant safety criteria. Finally, implementation of the proposed system in real settings
would require comprehensive management and appropriate regulatory oversight.

6. Conclusions

This article has discussed the challenges in advancing the implementation of AI
in healthcare. We have outlined the safety challenges of AI in the context of explainability
as opposed to the black-box approach. Our main objective was to propose a framework
for controlling AI systems’ safety as an alternative to opening the black-box. We adopted
the MAVT approach to develop an AI system’s safety attributes at three levels. This de-
velopment process consisted of four parts: extracting attributes, generating weights for
attributes, creating a rating scale, and finalizing the framework’s architecture. We used
a systematic literature review and interviews with subject experts to establish the safety
attributes’ hierarchical structure. We integrated the systematic review and interviews to
understand better the main aspects of AI safety in the published literature, and to extend
these aspects through consultation with AI domain experts. The first level contained six key
dimensions, the second level included 14 attributes, and the third level had 78 attributes.
Questionnaire-based surveys were used for assigning the weights and developing the
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attribute rating system. Finally, the limitations of the proposed AI safety controlling
framework were discussed.

The first level key dimensions of the SCS are as follows: (1) safety policies; (2) incen-
tives for clinicians; (3) clinician and patient training; (4) communication and interaction;
(5) planning of actions; and (6) control of actions. In safety policies, it is essential to pay
extra attention to the adaptation of data protection legislation. Owing to the complexity
of data privacy, many countries have adapted their data protection legislation. In safety
policies, the elements “Software as Medical Device (SaMD)” and “Digital Health Software
Precertification (Pre-Cert) Program” were discussed in detail by the included articles.

The key dimension of communication and interaction can be divided into two main
elements, of human–human interactions, and human–AI interactions. For the human–
human interaction, it is necessary to develop an information system for storing, processing,
collecting, creating, and distributing information. Several elements must be addressed
for the human–AI interactions, such as AI system capability, AI system accuracy, and AI
system explainability (black-box mitigation). Among the elements of human–AI interaction,
the included papers discussed the AI system’s accuracy and effectiveness.

In the key dimension of planning of actions, the principal risks of AI systems include
data difficulties, technological problems, security problems, and models misbehaving.
In data difficulties, data privacy is the main problem for increasing data availability in
healthcare. However, new approaches are being developed to increase data availability
in the healthcare sector, including data aggregation efforts across health organizations,
training AI models in a simulated virtual environment, building health datasets comprising
data from volunteers and groups of consenting individuals, the involvement of tech
companies in healthcare, collecting lifespan data from implemented AI-based medical
devices, and patient-generated health data. Adversarial attacks are one of the major
security problems of AI systems. The technological problems in AI systems can be divided
into software and hardware.

Concerning the control of actions, it is necessary to have effective post-market surveil-
lance to monitor medical devices’ safety. As a part of this system, it is necessary to have
practical cooperation among clinicians, health organizations, and AI developers to gather
clinical data.

The implementation of the proposed framework in healthcare institutions should allow
understanding its effectiveness better. In the near future, the key questions concerning this
framework should also be addressed, including (1) clinicians’ acceptance of the framework,
(2) the compatibility of the model across multiple healthcare institutions, and (3) the
opportunity for implementation in different types of healthcare organizations. Furthermore,
we encourage other researchers to assess the structural relationships between measurable
variables (the third level attributes) and latent variables (the first and the second level
attributes) to validate the developed model.
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