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Abstract: In this paper, the transfer functions related to one-dimensional (1-D) and two-dimensional
(2-D) filters have been theoretically and numerically investigated. The finite impulse response (FIR),
as well as the infinite impulse response (IIR) are the main 2-D filters which have been investigated.
More specifically, methods like the Windows method, the bilinear transformation method, the
design of 2-D filters from appropriate 1-D functions and the design of 2-D filters using optimization
techniques have been presented.

Keywords: FIR filters; IIR filters; recursive filters; non-recursive filters; digital filters; constrained
optimization; transfer functions

1. Introduction

There are two types of digital filters: the Finite Impulse Response (FIR) filters or Non-
Recursive filters and the Infinite Impulse Response (IIR) filters or Recursive filters [1–5].
In the non-recursive filter structures the output depends only on the input, and in the
recursive filter structures the output depends both on the input and on the previous outputs.
The Recursive filters have been employed in science and technology for issues like signal
processing, control signals, radar signals, astronomy signals, medical image processing
and x-ray enhancements, among others. The Non-Recursive filters are almost everywhere
in applications where phase linearity has to be ensured. FIR filters are the best choice for
applications like adaptive filters, averaging filters, speech analysis, spatial beamforming
(spatial filtering), and multirate signal processing, among others.

In this paper, methods like the Windows and the Bilinear Transformation method
have been used to design FIR and IIR digital filters. The design approaches for the case of
2-D IIR filters are based on (a) appropriate 1-D filters and on (b) appropriate optimization
techniques [6–11].

2. Finite Impulse Response Filters and Infinite Impulse Response Filters

Finite impulse response (FIR) filters and infinite impulse response (IIR) filters are
broadly used in signal processing studies and industrial applications. The FIR filter is a
filter whose impulse response has a finite duration as a result of settling to zero in finite
time. On the other hand, the impulse response of the IIR filter has aninfinite duration due
to the existence of a feedback in the filter [1,2].

The aforementioned filters can be categorized with respect to the frequency range
which can pass through them (lowpass, highpass, bandpass and bandstop filters). The ideal
frequency response D(ω) for the cases of lowpass, highpass, bandpass and bandstop filters
is presented in Figure 1. In the next sections, we describe methods used to design FIR and
IIR filters. More specifically, the transfer functions for some filters of special importance e.g.,
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highpass filters and lowpass filters have been studied and have shown their dependence
on system parameters (frequency and attenuation, among others).
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2.1. FIR Filters

The Window method, the Kaiser Window method, the Frequency Sampling method,
the Weighted least squares design and the Parks–McClellan method, among other meth-
ods [1,2], are the most commonly used methods to design digital FIR filters. The Window
methods (Ideal filters, Rectangular Window and Hamming Window [1]) are the simplest
methods for designing FIR digital filters. Here, the design of FIR with simple frequency
response shapes filters is presented. The ideal frequency response D(ω) is periodic inω
with period 2π as shown in Figure 1. The Discrete-Time Fourier Transform (DTFT) and the
inverse DTFT relationships are used to estimate the impulse response d = (k) as

D(ω) =
∞
∑

k=−∞
d(k)e−jωk ⇔

d(k) =
π∫
−π

D(ω)e−jωk

2π dω
(1)

After some algebra, the final form of the impulse response is

d(k) =
ejωck − e−jωck

2πjk
(2)

and, as a result, the impulse responses for the ideal FIR filters are given as

d(k) =


sin(ωck)
πk with −∞ < k < ∞ (lowpass filter)

δ(k)− sin(ωck)
πk with −∞ < k < ∞ (highpass filter)

sin(ωbk)−sin(ωαk)
πk with −∞ < k < ∞ (bandpass filter)

δ(k)− sin(ωbk)−sin(ωαk)
πk with −∞ < k < ∞ (bandpass filter)

(3)
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It is worth mentioning that for the same cutoff frequencies the lowpass/highpass
filters and bandpass/bandstop filters are complementary [1], which can be useful for
graphic equalizers and loudspeaker cross-over networks.

2.2. IIR Filters

The bilinear transformation method is commonly used to design IIR digital filters.
This method maps the digital filter into an equivalent analog filter, which can be designed
by using one of the well-developed analog filter design methods, such as Butterworth,
Chebyshev, or elliptic filter designs. Considering a map of the form

s = f(z), (4)

where “s” and “z” present the planes of analog filter and digital filter, respectively, the
bilinear transformation can be written as

s =
1− z−1

1 + z−1 , (5)

with s = jΩ and z = ejω (ω and Ω are the digital frequency and the equivalent analog
frequency, respectively). The digital frequency and the analog frequency are connected via
the following relation

Ω = tan
(ω

2

)
(6)

Here, we present the transfer function of the first-order lowpass filter. The general
form of the transfer function is written as

H(z) =
b0 + b1z−1

1 + α1z−1 (7)

The final form of the transfer function for a first-order lowpass filter and the appropri-
ate coefficients are given as

H(z) = b 1+z−1

1−αz−1

G2
c = 10−AC/10 where Ac is the attenuation (dB)

α = Gc√
1−G2

c
tan
(
ωc
2
)

α = 1−α
1+α , Hα(s) = s

s+α

(8)

For the case of first-order highpass digital filters, the transfer function is given as

Hα(s) =
s

s + α
(9)

Using the bilinear transformation [1]

s =
1− z−1

1 + z−1 (10)

the transfer function gets the form

H(z) = b
1− z−1

1− αz−1 , (11)

where the coefficients have the form

α =
1−α

1 +α
, b =

1 + α
2

(12)
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Example 1. Let us consider a lowpass filter operating at 10 kHz, with G2
c = 0.5 (3-dB frequency

is 1 kHz).

ωc =
2πfc

fs
=

2π 1 kHz
10 kHz

= 0.5π rads/sample

Ωc =
(ωc

2

)
= 0.3249

The other coefficients in Equation (8) get the values

α =
Gc√

1−G2
c

tan
(ωc

2

)
= 0.3249

α = 0.5095 and b = 0.2453.
As a result, the transfer function gets the form

H(z) = 0.2453
1 + z−1

1− 0.5095z−1

Following the same procedure, for the case of G2
c = 0.9, the transfer function is given

by the following form

H(z) = 0.4936
1 + z−1

1− 0.0128z−1

The magnitude response of the designed filters (lowpass and highpass filters) are
presented in Figures 2 and 3, respectively. As it is shown, the transfer function for both the
first-order lowpass and the first-order highpass filters depends strongly on the parameters
ωc and G2

c .
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Figure 3. The transfer function for first-order highpass digital filters as a function of frequency.

Example 2. Let us consider a digital highpass filter operating at 10 kHz, with G2
c = 0.5 (3-dB

frequency is 1 kHz). Using the Equations (11) and (12) and the consideringωc = 0.2π, the transfer
function is given as

H(z) = 0.7548
1− z−1

1− 0.5095z−1 (13)

The transfer function for the case of G2
c = 0.9 is written as

H(z) = 0.9023
1− z−1

1− 0.8046z−1 (14)

In Figure 4, we present the frequency dependence of the transfer function for lowpass
and highpass digital filters for different cutoff frequencies and G2

c . It seems that the transfer
function changes drastically by increasing the factor G2

c .
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3. Transfer Functions for 2-D Digital Filters
3.1. Direct Design of 2-D Filters from Appropriate 1-D Functions

For the case of lowpass Butterworth filter with cutoff frequency Ω = 1, the 1-D transfer
function takes the form [5]

y = |H(jΩ)|2 =
1

1 + Ω2n (15)

Without using transformations (e.g., McClellan Transformations) or other optimization
techniques [5], an easy transformation from 1-D to 2-D lowpass filters could be given by
the following transfer function

y = |H(jω1, jω2)|2 =
1

1 +
(
sin2p(ω1

2
)
+ sin2p(ω2

2
))2n (16)

where Ω = sin2p(ω1
2
)
+ sin2p(ω2

2
)

with p a positive integer.

Using the trigonometric property sin2(ϕ) =
1−cos(ϕ)

2 and considering a zero-phase
filter, the transfer function can be written as

H(jω1, jω2) =
1

1 +
((

1−cos(ω1)
2

)p
+
(

1−cos(ω2)
2

)p)2n (17)

Finally, the function gets the form

H(z−1
1 , z−1

2 ) = 1

1+

 2−z−1
1 −(z−1

1 )
−1

4

p

+

 2−z−1
2 −(z−1

2 )
−1

4

p2n

cos(ωi) =
z−1

i +(z−1
i )

−1

2 with i = 1, 2

(18)

The Bounded Input Bounded Output Filter (BIBO) stability of the last function can
be proven easily by taking into account that the 2-D system is a non-casual system. As a
result, the necessary and sufficient condition is

B(z−1
1 , z−1

2 ) = 1 +

((
2−z−1

1 −(z−1
1 )

−1

4

)p

+

(
2−z−1

2 −(z−1
2 )

−1

4

)p)2n

6= 0

for all z−1
i with

∣∣∣z−1
i

∣∣∣ = 1 and i = 1, 2

(19)

The function B(z−1
1 , z−1

2 ) can be proven to be different from zero. Considering z−1
i =

ejθi with i = 1, 2, we get the following form

B(z−1
1 , z−1

2 ) = B(θ1, θ2) = 1 +
(

cos2p
(
θ1

2

)
+ cos2p

(
θ2

2

))2n
, (20)

which is always different from zero.
Equations (15) and (18) could be extended to

y = |H(jΩ)|2 =
1

1 + ε2nΩ2n (21)

H(z−1
1 , z−1

2 ) =
1

1 + ε2n

((
2−z−1

1 −(z−1
1 )

−1

4

)p

+

(
2−z−1

2 −(z−1
2 )

−1

4

)p)2n (22)

where ε > 0.
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Example 3. Let us consider the 2-D filter with n = 8 and p = 4. The transfer function has the form

H(jω1, jω2) =
1

1 +
(
sin8(ω1

2
)
+ sin8(ω2

2
))16 (23)

or
Hε(jω1, jω2) =

1

1 + ε16
(
sin8(ω1

2
)
+ sin8(ω2

2
))16 with ε = 2 (24)

Figures 5 and 6 present the numerical results and the designed 2-D filters of the
example.
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3.2. Design of 2-D Filters Using Optimization Techniques

Considering the 2-D IIR filter, the transfer function could get the following form

H(z1, z2) = H0

K
∑

i=0

K
∑

j=0
αi,jzi

1zj
2

K
∏

k=1
(1 + bkz1 + ckz2 + dkz1z2)

(with α0,0 = 1) (25)

The filter design demands the minimization of the following function

J
(
αi,j, bk, ck, dk, H0

)
=

N1
∑

n1=0

N2
∑

n2=0
[|M(ω1,ω2)| − |Md(ω1,ω2)|]p

where
M(ω1,ω2) = H(z1, z2)| z1 = e−jω1

z2 = e−jω2

(26)

Md(ω1,ω2) is the desired amplitude response of the designed 2-D filter and ω1 =
π

N1
n1, ω2 = π

N2
n2 with p = 2 or 4.

In order to design the filter, we have to minimize the following function

J
(
αi,j, bk, ck, dk, H0

)
=

N1

∑
n1=0

N2

∑
n2=0

[∣∣∣∣M{πn1

N1
,
πn2

N2

}∣∣∣∣− ∣∣∣∣Md

{
πn1

N1
,
πn2

N2

}∣∣∣∣]p
(27)

subject to the constraints.

|bk + ck| − 1 < dk, k = 1, 2, . . . , K
dk < 1− |bk − ck|, k = 1, 2, . . . , K

(28)

In the last decades, many methods have been proposed for constraint optimization
problems related to engineering applications. Among others, techniques based on genetic
algorithms [6–10], Particle Swarm Optimization simulated annealing [11], Ant Colony
Optimization [12] or even methods that utilize Artificial Neural Networks [13] are some
of the most commonly used methods which have been employed to solve constraint
optimization problems. Furthermore, software packages (such as PyOpt, a Python-based
Object-Oriented Framework for Nonlinear Constrained Optimization [14], the Grey Wolf
Optimizer (GWO) algorithm [15], which mimics the leadership hierarchy and hunting
mechanism of grey wolves in nature, etc.) have been developed for solving constraint
optimization problems.

4. Conclusions

In this paper, transformations for designing FIR and IIR digital filters have been
presented. Some of the most commonly used methods to describe the lowpass/highpass 1-
D and 2-D filters have been employed. Some numerical examples illustrate the validity and
usefulness of the proposed transformations for the transfer functions of the aforementioned
filters.Furthermore, using a direct design of 2-D filters from appropriate 1-D functions can
be used to derive the transfer functions of highpass, bandstop and bandpass noncausal 2-D
IIR filters. Lastly, we summarize some of the most commonly used constraint optimization
methods to provide general transformations for designing 2-D IIR filters.
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