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Abstract: In quantum field theory, Hamiltonians contain particle creation and annihilation terms that
are usually ultraviolet (UV) divergent. It is well known that these divergences can sometimes be
removed by adding counter-terms and by taking limits in which a UV cutoff tends toward infinity.
Here, I review a novel way of removing UV divergences: by imposing a type of boundary condition
on the wave function. These conditions, called interior-boundary conditions (IBCs), relate the values
of the wave function at two configurations linked by the creation or annihilation of a particle. They
allow for a direct definition of the Hamiltonian without renormalization or limiting procedures.
In the last section, I review another boundary condition that serves to determine the probability
distribution of detection times and places on a time-like 3-surface.

Keywords: interior-boundary condition; particle creation; renormalization

1. Introduction

Let us take an unusual approach to quantum field theory (QFT): let us use wave
functions. Specifically, let us use a particle-position representation of the quantum state
vector. I know there are reservations about such an approach, but let us set aside these
reservations for a little while and explore what this may gain us. My message here is
that this approach has led to a certain new type of boundary conditions on the wave
function, called interior-boundary conditions (IBCs), that make UV-finite particle creation
and annihilation terms in the Hamiltonian (in some models, at least) possible.

Is it desirable to obtain a Hamiltonian without UV divergence? Many researchers
have given up on this aim long ago and understandably so. If there has been not much
progress on the UV divergence problem in a long time, then we will want to move on
without solving this problem. However, that does not mean that a solution to the problem
would not be welcome. Likewise, many physicists have focused on computing scattering
matrices, which represent the time evolution from t = −∞ to t = +∞. However, that does
not mean that the time evolution in between, for finite times, did not exist in nature. For
those QFTs for which a well-defined Hamiltonian exists, it seems to me very valuable to
know that it does.

In this paper, I explain the idea of IBCs and how it works. I report about some recent
progress on providing well-defined Hamiltonians by means of IBCs, mainly concerning
nonrelativistic models, and about some reasons for thinking that IBCs can also be applied
in quantum electrodynamics (QED). It has turned out that Hamiltonians defined with IBCs
agree with those obtained through renormalization in the cases where both approaches
are available. However, the IBC approach has also been applied successfully to models
for which no well-defined Hamiltonian was known (neither through renormalization nor
otherwise). In the last section of this paper, I briefly turn to another boundary condition on
wave functions relevant to the probability distribution of arrival times or, more precisely,
detection times.
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In addition to UV divergence, some QFTs also have infrared (IR) divergence problems.
However, they seem less serious because they usually disappear if 3 space is assumed to
have finite volume, and it seems like a real possibility that this is the case in our universe.

IBCs were first considered by Moshinsky in 1951 [1–3] for the purpose of modeling
particle creation and annihilation but not for dealing with UV divergence. This use was
proposed in 2015 [4] and has led to a number of papers on IBCs since.

In Section 2, I discuss IBCs in the nonrelativistic case. I include an overview of the
literature in Section 2.6 that also covers works on the relativistic case. In Section 3, I explain
why there is reason to think that the approach can also be applied to QED and what the
present obstacles are. In Section 4, I describe another boundary condition, an absorbing
boundary condition, used for formulating Born’s rule for a time-like 3-surface.

2. Nonrelativistic Case

Let us consider wave functions in the particle-position representation. In N-particle
quantum mechanics, the wave function can be regarded as a function ψ on configuration
space R3N with values in spin space S⊗N with S = C2s+1 the spin space of a single spin-s
particle. For models involving particle creation, ψ should be a function on the configuration
space Q of a variable number of particles,

Q =
∞⋃

n=0
(R3)n . (1)

We could use ordered configurations (x1, . . . , xn) or unordered configurations {x1, . . . , xn};
it will be convenient for us to use ordered ones. On the n-particle sector ofQ, ψ takes values
in S⊗n, so it can be written as ψs1...sn(x1...xn) with sj ∈ {1, . . . , 2s + 1} and xj ∈ R3. For
brevity, we often write (x1...xn) for (x1, . . . , xn). Furthermore, ψ should be anti-symmetric
(for fermions) or symmetric (for bosons) against permutations of the particle positions
along with their spin indices. The set of (square-integrable) such wave functions ψ is the
(fermionic or bosonic) Fock space F .

2.1. Simple Model

Let us consider two particle species, x and y, such that x-particles (fermions) can emit
and absorb y-particles (bosons), x � x + y; this is sometimes called the Lee model [5,6].
For simplicity, let us focus first on the case of a single x-particle fixed at the origin 0 ∈ R3;
this is sometimes called the van Hove model [7,8]. For simplicity, let us suppose further
that all particles, x and y, have spin s = 0 (although in nature all fermions have half-odd
spin; spin-statistics theorems do not apply here, as the model is nonrelativistic). Then, ψ
is a complex-valued function of the y-configuration, ψ = ψ(y1...yn) with variable particle
number n, or equivalently a vector in the bosonic Fock space of the y-particles.

The natural formula for a Hamiltonian of free nonrelativistic y-particles that are
created and annihilated at the origin is

(Horigψ)(n)(y1...yn) = −
h̄2

2my

n

∑
k=1
∇2

kψ(n)(y1...yn) + nE0 ψ(n)(y1...yn)

+ g
√

n + 1 ψ(n+1)(y1...yn, 0)

+
g√
n

n

∑
k=1

δ3(yk) ψ(n−1)(y1...yk−1, yk+1...yn) , (2)

where ψ(n) means the n-particle sector of ψ, my > 0 is the mass of a y-particle, E0 ≥ 0 is
the energy that needs to be expended for creating a y-particle (which would reasonably be
E0 = myc2, but that is not crucial for what follows), g ∈ R is a coupling constant governing
the strength of the emission and absorption, and δ3 means the Dirac delta function in
3 dimensions. The first line represents the free time evolution of the ys, the second the
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absorption of yn+1 by the x, and the third the creation of a y by the x; the sum over k ensures
the permutation symmetry. In a different notation, the Hamiltonian can be written as

Horig = Hfree + Hint (3)

with the free boson Hamiltonian

Hfree = dΓ
(
− h̄2

2my
∇2 + E0

)
, (4)

where dΓ(H1) means the “second quantization functor” applied to a 1-particle Hamiltonian
H1, and the interaction Hamiltonian

Hint = g a(0) + g a†(0) , (5)

where a(x) is the boson annihilation operator in the position representation at location x.
In yet another notation,

Hfree =
∫

d3k
(

h̄2k2

2my
+ E0

)
a†(k) a(k) (6)

and

Hint = g
∫ d3k

(2π)3/2 φ(k) (7)

with φ(k) being the bosonic field operator for momentum h̄k, i.e.,

φ(k) = a†(k) + a(k) (8)

with a(k) being the boson annihilation operator for momentum h̄k.
Now, for g 6= 0, Horig as in (2) or (3)–(7) is UV divergent—it does not actually define an

operator in Fock space F . Specifically, the integral over k in (7) diverges for large |k| (i.e.,
for “ultraviolet” k). Equivalently, one can say that the δ3 that appears as the wave function
of the newly created y-particle is problematic; it can be thought of as containing an infinite
amount of energy. Due to the δ3 factor, Horigψ is not even a square-integrable function and
thus does not lie in F even if ψ is as nice a function as one could wish for, say, infinitely
differentiable and compactly supported in each (R3)n. Similar divergence problems have
plagued most QFTs since the early days of quantum theory [9]. Over the next pages, I
describe how, by means of boundary conditions on ψ, it is nevertheless possible to make
sense of Equation (2) or Equations (3)–(7), that is, how a Hamiltonian can indeed be defined
to describe the emission and absorption of particles at a single point 0.

Here, by the “boundary” of the n-particle sector Q(n) = (R3)n, we mean the set

∂Q(n) =
{
(y1...yn) ∈ Q

(n) : yk = 0 for some k
}

(9)

of configurations for which at least one y-particle meets the x-particle. Correspondingly, by
the boundary of Q, we mean

∂Q =
∞⋃

n=0
∂Q(n) . (10)

The relevant boundary condition is essentially a relation between the values of ψ at two
configurations related through the emission or absorption of a y-particle, i.e., at (y1...yn) ∈
Q(n) and (y1...yn, 0) ∈ ∂Q(n+1) or a permutation thereof. Since the latter point lies on the
boundary and the former does not, it is called an interior-boundary condition (IBC). The
condition is essentially of the form

ψ(n+1)(y1...yn, 0) = αn ψ(n)(y1...yn) (11)
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with some fixed constant αn ∈ R. The exact condition, Equation (29) below, will be a little
more involved as the left-hand side needs to be replaced with the leading coefficient in the
asymptotics when approaching (y1...yn, 0).

2.2. Motivation: Probability Transport

Before I write down the condition in Section 2.3, I give a motivation based on consid-
eration of probability transport. As in n-particle quantum mechanics, |ψ(y1...yn)|2 yields
the probability density ρ(y1...yn), relative to the 3n-dimensional volume d3y1 · · · d3yn, of
the configuration being at (y1...yn). Since this is a probability density on Q, its integral
over Q will equal unity,

∫
Q

dy |ψ(y)|2 =
∞

∑
n=0

∫
R3n

d3y1 · · · d
3yn |ψ(y1...yn)|

2 = 1 . (12)

Additionally, as in quantum mechanics, the transport of probability within each sector
Q(n) = R3n is governed by the probability current j, which is a vector field on Q given on
any sector R3n by

j = h̄
my

Im[ψ∗∇ψ] . (13)

However, while in quantum mechanics of N particles, ρ is related to j by the continu-
ity equation

∂ρ

∂t
= −∇ · j (14)

in R3N , the equation in Q that looks the same as (14) cannot be expected to be valid: after
all, j only represents probability transport within one sector and thus cannot account for
probability transport from one sector to another as occurs through particle creation or
annihilation. Since particle creation transports probability from whichever configuration
(y1...yn) to another configuration (y1...yn, 0) (or a permutation thereof), the amount of
probability from Q(n) when transported to Q(n+1) will show up at ∂Q(n+1). Conversely,
amounts of probability can be transported from Q(n+1) to Q(n) through annihilation, in
which case, they are transported from (y1...yn, 0) (or a permutation thereof) to (y1...yn), so
that they can only be transported from ∂Q(n+1) to Q(n). Then, what is the equation in Q
replacing (14)? At configurations (y1...yn) not on the boundary ∂Q, it reads

∂ρ

∂t
= −∇ · j− J (15)

with J(y1...yn) being the probability current coming out of ∂Q(n+1) at (y1...yn, 0) (and
permutations thereof) minus the probability current flowing into ∂Q(n+1) at (y1...yn, 0)
(and permutations thereof). These currents can be expressed as flux integrals of j. To see
how, let us begin with a simple example: for a current vector field j in R3, the flux out of
the sphere of radius r minus the flux into it is given by∫

S2

d2ω r2ω · j(rω) , (16)

where S2 denotes the unit sphere in R3 and d2ω is the area of a surface element of the
sphere. Note that ω · j is the radial component of j, which is positive for an outward
current and negative for an inward current. Taking the limit r ↘ 0, we obtain the flux out
of the origin minus the flux into it. Correspondingly, J, the flux out of (permutations of)
(y1...yn, 0) minus the flux into it, is given by

J(y1...yn) =
n+1

∑
k=1

lim
r↘0

∫
S2

d2ω r2ω · jk(y1...yk−1, rω, yk...yn) , (17)
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where jk means the 3 particle-k components of j, i.e., j = (j1...jn+1). Note that rω does not
replace yk but gets inserted between yk−1 and yk, so that jk has n + 1 arguments and, for
k = n + 1, equals jn+1(y1...yn, rω).

For the expression (17) to be nonzero, we need ω · jk to be large or else the factor r2 in
the integral will push the integral to 0 in the limit; that is, ω · jk should be large like 1/r2.
Since j is quadratic in ψ, ψ should be large like 1/r near ∂Q.

Now that we know what the needed continuity equation (15) looks like, we ask what
the Hamiltonian should look like in order to entail this continuity equation. Writing

H = Hfree + Hint (18)

with Hfree = dΓ(− h̄2

2my
∇2 + E0) (i.e., acting like the first line of (2)), it follows from

Schrödinger’s equation

ih̄
∂ψ

∂t
= Hψ (19)

that

∂|ψ|2
∂t

= 2
h̄ Im[ψ∗(Hψ)] (20)

= 2
h̄ Im[ψ∗(Hfreeψ)] + 2

h̄ Im[ψ∗(Hintψ)] . (21)

Since
2
h̄ Im[ψ∗(Hfreeψ)] = −∇ · j , (22)

we obtain that
∂ρ

∂t
= −∇ · j + 2

h̄ Im[ψ∗(Hintψ)] , (23)

and in order to reach the desired form (15), we need that

2
h̄ Im

[
ψ(n)(y1...yn)

∗ (Hintψ
)(n)

(y1...yn)
]

= −J(y1...yn) (24)

(17)
= −(n + 1) lim

r↘0

∫
S2

d2ω r2ω · jn+1(y1...yn, rω) (25)

(13)
= −(n + 1) lim

r↘0

∫
S2

d2ω r2 h̄
my

Im
[
ψ(n+1)(y1...yn, rω)∗ ∂rψ(n+1)(y1...yn, rω)

]
(26)

= − h̄
my

(n + 1) Im

[
lim
r↘0

∫
S2

d2ω rψ(n+1)(y1...yn, rω)∗ ∂r(rψ)(n+1)(y1...yn, rω)

]
. (27)

In step (25), we used that, by permutation symmetry of ψ, all n + 1 summands of (17) are
equal; in step (26), that ω · ∇ψ(rω) = ∂rψ(rω); and in step (27), that ∂r(rψ) = ψ + r∂rψ, so
that

Im
[
rψ∗∂r(rψ)

]
= Im

[
rψ∗ψ + r2ψ∗∂rψ

]
= Im

[
r2ψ∗∂rψ

]
. (28)

Now, we compare the left-hand side of (24) to the right-hand side of (27). We
have imaginary parts on both sides, so the equation would be fulfilled if the square
brackets could be made to agree up to the appropriate pre-factors. (Hintψ)

(n) could cer-
tainly involve ψ(n+1), but the factors of ψ∗ seem more problematic. We would need that
rψ(n+1)(y1...yn, rω) is, in the limit r → 0, proportional to ψ(n)(y1...yn). We would need, in
other words, a boundary condition on ψ(n+1). We can now easily guess what the IBC should
say, except for the choice of the proportionality factor αn, which will become clear soon.
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2.3. Interior-Boundary Condition

Here is what the IBC says: For every ω ∈ S2, n ∈ {0, 1, 2, . . .}, and y1...yn ∈ R3 \ {0},

lim
r↘0

(
rψ(n+1)(y1...yn, rω)

)
= −

g my

2πh̄2√n + 1
ψ(n)(y1...yn) . (29)

The Hamiltonian H = HIBC acts on wave functions satisfying this condition according to

(HIBCψ)(n)(y1...yn) = −
h̄2

2my

n

∑
k=1
∇2

kψ(n)(y1...yn) + nE0 ψ(n)(y1...yn)

+
g
√

n + 1
4π

∫
S2

d2ω lim
r↘0

∂

∂r

(
rψ(n+1)(y1...yn, rω)

)

+
g√
n

n

∑
k=1

δ3(yk)ψ(n−1)(y1...yk−1, yk+1...yn) . (30)

It is now easy to check, by inserting the IBC (29) into (27), that

(27) =
g

2πh̄

√
n + 1 Im

[
lim
r↘0

∫
S2

d2ω ψ(n)(y1...yn)
∗ ∂r(rψ)(n+1)(y1...yn, rω)

]
(31)

=
2
h̄

Im

[
ψ(n)(y1...yn)

∗ g
√

n + 1
4π

∫
S2

d2ω lim
r↘0

∂r(rψ)(n+1)(y1...yn, rω)

]
, (32)

in agreement with the left-hand side of (24) and (30) at a configuration not on the boundary.
Equations (29) and (30) form the solution to the UV divergence problem that I want

to present:

Theorem 1 ([10]). Equation (30) provides a well-defined, self-adjoint operator HIBC on a dense
domain in Fock space F containing wave functions ψ that satisfy the IBC (29). The operator is
bounded from below.

This means that the UV divergence is absent from HIBC. Additionally, I argue below
that HIBC is a reasonable interpretation of the original expression Horig of (2).

Sometimes in QFT, one uses boundary conditions on 1-particle propagators, i.e., on
Green’s functions. The boundary condition (29) is not like that. For one thing, it is a
condition on the wave function, but more importantly, it is not a 1-particle condition but
instead links the n-particle sector with the n + 1-particle sector.

2.4. Why It Works and Why It Is Reasonable

Two things may seem surprising: First, how the divergence problem can be absent
if the δ3 that was the root of the trouble is still present and, second, why anyone would
regard the middle line of (30) as a reasonable interpretation of the middle line of (2).

Here is why δ3 does not cause trouble any more: Note that ψ(n) diverges at the
boundary ∂Q(n) like 1/r, with r being the distance from the boundary,

ψ(n)(y1...yn−1, rω) ≈ c r−1 (33)

with a complex coefficient c that depends on y1, . . . , yn−1. Note further that the Laplacian
of 1/r is a delta function,

∇2
y

1
|y| = −4πδ3(y), (34)
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a fact familiar from electrostatics, where the potential φ obeys the Poisson equation
∇2φ = −4πρ with the charge density ρ, and the potential of a point charge ρ = δ3 is
the Coulomb potential 1/r. As a consequence, the Laplacian of ψ(n) will contain δ3 con-
tributions, and they cancel exactly the δ3 contributions in the definition (30) of HIBC, with
the effect that HIBCψ is actually a square-integrable function and thus lies in F . Indeed,
putting (33) and (34) together, we obtain that

− h̄2

2my
∇2

nψ(n)(y1...yn) = c 4πh̄2

2my
δ3(yn) + a function , (35)

where we separated the singular (distributional) part (that involves a Dirac delta) from the
regular part (that is a function). By virtue of the IBC (29),

c = −
g my

2πh̄2√n
ψ(n−1)(y1...yn−1) , (36)

so
− h̄2

2my
∇2

nψ(n)(y1...yn) = −
g√
n

δ3(yn) ψ(n−1)(y1...yn−1) + a function , (37)

which cancels exactly the δ3 in the nth summand of the last line of (30).
Let us turn to a comparison between the middle line of (30) and that of (2). Suppose for

a moment (I will relax this supposition by the end of the subsection) that ψ(n+1)(y1...yn, rω)
can be expanded into powers of r,

ψ(n+1)(y1...yn, rω) =
∞

∑
`=−1

c` r` (38)

starting at exponent −1, with complex coefficients c` that may depend on y1, . . . , yn and
ω. Then,

∂r

(
rψ(n+1)(y1...yn, rω)

)
= ∂r

(
r

∞

∑
`=−1

c` r`
)

(39)

= ∂r

∞

∑
`=−1

c` r`+1 (40)

=
∞

∑
`=0

c` (`+ 1) r` (41)

starting at exponent 0, and taking r → 0, only the ` = 0 term remains, yielding c0. Thus,
the middle line of HIBC in (30) equals

g
√

n + 1
4π

∫
S2

d2ω c0(y1...yn, ω) . (42)

For comparison, the middle line of Horig in (2) asks us to evaluate ψ(n+1) at (y1...yn, 0);
since ψ(n+1) diverges there, reasonable interpretations could be either to take the leading
coefficient c−1 or to use the nondivergent part ∑∞

`=0 c` r` and to evaluate that at r = 0,
which yields c0. Since the IBC (29) fixes c−1, as it demands that

c−1(y1...yn, ω) = −
g my

2πh̄2√n + 1
ψ(n)(y1...yn) , (43)

this first interpretation would not actually couple Hψ(n) to ψ(n+1) and therefore would
not work. That leaves us with the second interpretation, according to which the middle
line of (2) means g

√
n + 1 c0(y1...yn, ω). Here, the question arises which ω to use, and an

obvious choice is to average over all ωs, which leads us to (42), which coincides with the
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middle line of HIBC in (30). By the way, it turns out that, for ψ in the domain of HIBC, both
c−1 and c0 are actually independent of ω (or else ∇2ψ would not be square-integrable
away from the boundary; see ([11] Sec. 3.3 Rem. 7)), so that averaging over ω becomes
unnecessary.

As a technical remark, we can drop the supposition that ψ(n+1)(y1...yn, rω) can be
expanded into powers of r as in (38). As proven in [10], every ψ in the domain of HIBC is,
as r → 0, of the asymptotic form

ψ(n+1)(y1...yn, rω) = c−1(y1...yn) r−1 + f (y1...yn, rω) (44)

with a function f from the second Sobolev space; for such an f , both f and ∂r f possess a
finite limit as r → 0, so that

lim
r→0

∂r

(
rψ(n+1)(y1...yn, rω)

)
= f (y1...yn, 0) , (45)

which is the analog of the c0(y1...yn) mentioned before and leads us again to the conclusion
that the middle line of HIBC in (30) agrees with a reasonable interpretation of the middle
line of Horig in (2).

2.5. Comparison to Renormalization

Another argument to the effect that HIBC is a reasonable interpretation of Horig comes
from renormalization. Here, renormalization means to introduce a UV cutoff into the
Hamiltonian and to then take a limit of removing the cutoff, possibly after adding a counter-
term, in order to obtain a limiting Hamiltonian H∞ called the renormalized Hamiltonian.
For the model discussed above, it has long been known that such a limit H∞ exists [7,8],
and it has recently turned out [10] that H∞ agrees with HIBC up to addition of a constant
(i.e., of a multiple of the identity),

H∞ = HIBC + E (46)

for some E ∈ R. Needless to say, Hamiltonians that differ only by the addition of a constant
E, H′ = H + E, are usually regarded as physically equivalent because the time-evolved
state vectors they generate differ only by a global phase factor,

e−iH′t/h̄ψ0 = e−iEt/h̄e−iHt/h̄ψ0 , (47)

and are thus considered physically equivalent. The fact that two different approaches to
obtaining a well-defined Hamiltonian from the expression Horig lead to the same result
suggests that this result is indeed a reasonable, physically appropriate interpretation
of Horig.

In more detail, to introduce a cutoff here means to replace the delta distribution δ3 in
Horig by a regular function ϕ : R3 → R approximating it. We may assume that ϕ is smooth,
compactly supported, square-integrable, and perhaps rotationally symmetric. The cutoff
Hamiltonian is then given by

(Hϕψ)(n)(y1...yn) = −
h̄2

2my

n

∑
k=1
∇2

kψ(n)(y1...yn) + nE0 ψ(n)(y1...yn)

+ g
√

n + 1
∫
R3

d3y ϕ(y) ψ(n+1)(y1...yn, y)

+
g√
n

n

∑
k=1

ϕ(yk) ψ(n−1)(y1...yk−1, yk+1...yn) . (48)

where δ3 was replaced by ϕ in the last line and evaluation at 0 was replaced by the inner
product with ϕ in the last variable in the middle line. Hϕ is known (e.g., [7]) to be well-
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defined and self-adjoint. One may think of ϕ as a continuous charge distribution, with
the effect that the x-particle is no longer a point particle but spread out and can emit and
absorb y-particles not only at the origin 0 but also in a whole neighborhood.

To remove the cutoff then means to take a limit in which ϕ converges to δ3 (denoted
ϕ→ δ3). As I will outline at the end of this subsection, it can be shown [7,8,10] that, if the
rest energy E0 in (48) is positive, then there exists a self-adjoint operator H∞ and for every
ϕ a real number Eϕ such that Eϕ → ∞ and

Hϕ + Eϕ → H∞ as ϕ→ δ3. (49)

Remarkably, although the existence of H∞ has long been known, it had not been realized
until recently that the functions in the domain of H∞ satisfy the IBC (29) and that H∞ acts
on them according to the formula (30) up to the addition of a constant.

The trick to taking the limit ϕ→ δ3 [7] is to write Hϕ, which is

Hϕ =
∫

d3k
(

ω(k) a†(k) a(k) + g ϕ̂(k)∗a(k) + g ϕ̂(k) a†(k)
)

(50)

with ω(k) = h̄2k2/2my + E0, in the form of completing the square,

Hϕ =
∫

d3k ω(k)
(

a†(k) + g
ϕ̂(k)∗

ω(k)

)(
a(k) + g

ϕ̂(k)
ω(k)

)
−
∫

d3k g2

∣∣ϕ̂(k)∣∣2
ω(k)

, (51)

and to regard the last integral as Eϕ. The unitary Bogolyubov transformation (dressing opera-
tor)

Wϕ := exp
(∫

d3k
ϕ̂(k)∗

ω(k)
a(k)−

∫
d3k

ϕ̂(k)
ω(k)

a†(k)
)

(52)

intertwines Hϕ + Eϕ with the free Hamiltonian,

Hϕ + Eϕ = Wϕ Hfree W†
ϕ, (53)

and, for E0 > 0, possesses a limit Wϕ → W∞ as ϕ̂(k) → const. or ϕ → δ3, as already
suggested by the fact that 1/ω(k) is still square integrable, so that the right-hand side
of (52) is well defined when replacing ϕ̂ with a real constant. Putting the pieces together,
Hϕ + Eϕ → H∞ = W∞ Hfree W†

∞.
As a future project, it would also be of interest to carry out a comparison of the IBC

approach with the Epstein–Glaser approach [12,13] for renormalization of the perturbation
series for the scattering matrix.

2.6. Other Models and Literature

The mathematical analysis of IBC Hamiltonians is similar to that of point interaction
(zero-range interaction) [14], i.e., potentials involving Dirac delta distributions as in

Hψ(x) = −∇2ψ + g δ3(x) ψ(x) . (54)

In fact, point interaction can also be expressed through a boundary condition on the wave
function, the Bethe–Peierls boundary condition [15]

lim
r↘0

(
α +

∂

∂r

)(
rψ(rω)

)
= 0 (55)

with a given constant α ∈ R.
The IBC (29) is not the only possible IBC for an x-particle fixed at the origin. Rather,

there is a 4-parameter family of IBCs and associated self-adjoint Hamiltonians [4,10,16,17],
which can be thought of as having, in addition to the particle creation and annihilation at
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the origin, also a point interaction at the origin [10,18]. These Hamiltonians and IBCs can
be characterized as follows. On wave functions that diverge on the boundary like 1/r, we
can define two annihilation operators, A and B, that extract from ψ as in (38) the coefficient
c0 of order 0 and c−1 of order −1, respectively:

Aψ(n)(y1...yn) =
√

n + 1 c0(y1...yn) , Bψ(n)(y1...yn) =
√

n + 1 c−1(y1...yn) . (56)

Then, the IBC (29) can be rewritten as

Bψ = −
g my

2πh̄2 ψ , (57)

and the action of the Hamiltonian H (30) can be rewritten as

HIBC = Hfree + gA + ga†(0) . (58)

Now, replacing A → eiθ(αA + βB) and B → eiθ(γA + δB) with real constants α, β, γ, δ, θ
subject to αδ − βγ = 1 yields further members of the 4-parameter family of IBCs and
self-adjoint Hamiltonians ([10] Section 4). The families of possible IBCs for higher spins
were identified in [19].

While the model of Sections 2.1–2.5 above assumes that the x-particle is fixed at the
origin, a more realistic model assumes several moving x-particles. The Hilbert space is
then of the form H = Fx ⊗Fy with Fx being a fermionic and Fy being a bosonic Fock
space, and the configuration space is of the form Qx ×Qy with each factor being a copy of
the Q as in (1). The relevant boundary is then the set

∂Q =
{
(x1...xm, y1...yn) ∈ Qx ×Qy : xj = yk for some j, k

}
(59)

of “collision configurations” (i.e., ones in which an x and a y meet). As shown by Lam-
part [20], there exists a well-defined, self-adjoint IBC Hamiltonian for this model. This is
particularly remarkable insofar as no renormalized Hamiltonian H∞ was known for this
case prior to Lampart’s work. Moreover, since in this model the formal expression for the
interaction Hamiltonian is, instead of (5),

Hint = g
∫

d3x b†(x)
(
a(x) + a†(x)

)
b(x) (60)

with b being the fermion annihilation operator, the model is also an example in which the
Hamiltonian is not quadratic in the creation and annihilation operators.

IBCs have been studied mathematically for several other cases: Lampart and Schmidt [21]
proved the existence of an IBC Hamiltonian for a model with moving x-particles in 2 di-
mensions as well as for a model with a different dispersion relation, replacing the Laplace

operator − h̄2

2my
∇2 by the pseudo-relativistic 1-particle Hamiltonian

√
m2

y −∇2, a model
for which Nelson [22] could prove the existence of a renormalized Hamiltonian in 1964.
IBC models in 1 dimension were studied in [23,24]. Early works on the model with x fixed
at 0 [17,25] used a truncated Fock space with only 2 or 3 sectors.

Profiles other than δ3 for the emission and absorption terms are often desired in
connection with relativistic dispersion relations; they lead to conditions that are no longer
literally boundary conditions but have been termed “abstract boundary conditions” [26];
the IBC approach has been extended in this direction in [21,27–30].

The considerations of probability transport in Section 2.2 apply literally in the Bohmian
picture, in which the particles are attributed trajectories that can begin and end at emission
and absorption events, corresponding to jumps in the actual configuration from Q(n) to
∂Q(n+1) or vice versa [11,31].

A pedagogical introduction to IBCs can be found in [16]; the behavior of IBCs under
time reversal was studied in [18]. Apart from the boundary sets (9) and (59), it is natural
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to also consider other domains with boundaries and, among them, in particular with
boundaries of codimension 1 (whereas (9) and (59) have codimension 3). First discussed
in [16,31], IBCs on codimension-1 boundaries were systematically studied in [19] for the
Laplacian (i.e., for nonrelativistic Hamiltonians) and in [24,32] for the Dirac equation.
Lienert and Nickel [24] developed a QFT model in 1-space dimension in which moving
x-particles emit and absorb other xs, x � 2x, based on the Dirac operator as the free
Hamiltonian; they specified an IBC and proved results implying the existence of a well-
defined, self-adjoint Hamiltonian.

In 3 space dimensions, in contrast, the free Dirac operator does not allow for a bound-
ary condition on the set of collision configurations (or any subset of codimension 3) and
thus not for an IBC [33]. That sounds discouraging at first. However, in nature, the rel-
evant particle reaction is not x � 2x but x � x + y, with the y-particles being photons,
governed not by the Dirac equation but by the Maxwell equation, and this case has not
been settled yet. Moreover, despite the impossibility theorem just described, a model in
which Dirac particles are emitted and absorbed by a spin-0 particle fixed at the origin
has been proven [33] to possess a well-defined and self-adjoint IBC Hamiltonian if the
Dirac particles feel a sufficiently strong 1/r potential (such as a Coulomb or gravitational
potential), regardless of whether the potential is attractive or repulsive. It would be of
interest to study rigorously whether an IBC Hamiltonian exists for Dirac particles in a
general-relativistic gravitational field of a point mass (such as the Reissner–Nordström
space–time geometry); preliminary (non-rigorous) considerations in this direction can be
found in [34].

2.7. Interior-Boundary Conditions for the Dirac Equation

Let me give some explicit examples of what IBCs look like for the Dirac equation. I
will stay away from the difficulties and technicalities associated with the situation in which
the boundary has codimension 3, a situation that arises in 3 space dimensions when the
boundary is the set of configurations in which two particles meet, as in (9) and (59). Instead,
I will consider the more elementary example of a boundary of codimension 1 [24,32],
which arises either when we consider space dimension 1 or when we study an artificially
simplified example of a boundary. Here, we do the latter.

Therefore, consider, as a simple example, the free 1-particle Dirac equation

ih̄∂tψ = −ih̄α · ∇ψ + mβψ (61)

in 3 space dimensions in a region Ω ⊂ R3 with 2D boundary surface ∂Ω. For concreteness,
let us consider the upper half space Ω = {(x1, x2, x3) : x3 ≥ 0} with the x1x2-plane as the
boundary ∂Ω.

The boundary conditions for the Dirac equation specify two out of the four compo-
nents of ψ at every boundary point and leave the other two components arbitrary. More
precisely, they split the Dirac spin space S = C4 into a direct sum of two 2D subspaces,
S = U ⊕V; specify the part ψU of ψ = ψU + ψV in U; and put no condition on the other
part ψV .

For example, let us look at the best known case of a reflecting boundary condition, viz.,
the boundary condition of the “MIT bag model” of quark confinement [35],

(γ3 − i)ψ(x1, x2, 0) = 0 . (62)

(Here, i means i times the identity matrix.) Since γ3 is unitarily diagonalizable with
eigenvalues ±i and 2D eigenspaces, γ3 − i is −2i times an orthogonal projection; therefore,
this condition says that, at every boundary point, ψ has to lie in the eigenspace with
eigenvalue +i; put differently, U is the eigenspace with eigenvalue −i, ψU is prescribed to
vanish, V is the eigenspace with eigenvalue +i, and no condition is put on ψV .

If the situation that half of the components can be prescribed seems unfamiliar, then it
may be useful to note that, in the nonrelativistic case, a boundary condition may involve,
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at every boundary point x ∈ ∂Ω, the value ψ(x) as well as the normal derivative ∂nψ(x) to
the boundary at x. If ψ has s components, then (ψ(x), ∂nψ(x)) has 2s components and the
boundary condition will usually be of the form

A(x)ψ(x) + B(x) ∂nψ(x) = 0 (63)

with s× s matrices A and B. Therefore, the condition consisting of s equations specifies
half of the components while putting no condition on the other half (more precisely, it
specifies the part of (ψ(x), ∂nψ(x)) in an s-dimensional subspace of C2s, that is, in half of
the dimensions, if the juxtaposition of A and B has rank s).

Now, I describe an example of an IBC analogous to (62). For such an example, we
need at least two sectors of the wave function and of configuration space. Therefore, let
us assume, for simplicity, that there are exactly two sectors: that the configuration space
is Q = Q(0) ∪ Q(1), where Q(0) has just one element (the “empty configuration”) and
Q(1) = Ω, and that the Hilbert space is H = C⊕ L2(Ω,C4). The function ψ(1) obeys the
Dirac equation (61) at every point in the half space Ω, while

ih̄
∂ψ(0)

∂t
=
∫
R2

dx1 dx2 N(x1, x2)
† ψ(1)(x1, x2, 0) , (64)

where N(x1, x2) is a fixed spinor field that is square-integrable and satisfies

N†(x1, x2) γ3γ0 N(x1, x2) = 0 (65)

at every (x1, x2) ∈ R2. The IBC reads

(γ3 − i)ψ(1)(x1, x2, 0) = − i
h̄ (γ

3 − i)γ3γ0N(x1, x2)ψ(0) . (66)

Again, the boundary condition prescribes the part of ψ(1)(x1, x2, 0) in U while putting no
condition on its part in V, and again, the condition couples the two sectors of ψ. The spinor
N remains arbitrary as a parameter of the model. See [32] for a proof of self-adjointness of
the Hamiltonian defined by (61) and (64) on a domain of wave functions satisfying the IBC
(66) (in a slightly different setting with compact ∂Ω) and a discussion of further variants of
this IBC.

3. Quantum Electrodynamics

IBCs have not yet been made to work for QED, but I want to describe reasons for
thinking that they can and, more generally, for thinking that wave functions in the particle-
position representation can be helpful in QED. To this end, I first need to talk about
multi-time wave functions.

3.1. Multi-Time Wave Functions

Wave functions in the particle-position representation are functions of the positions of
the particles, ψ = ψ(x1...xn). In the nonrelativistic picture, this wave function evolves with
time. In the relativistic picture, it does not seem appropriate any more to consider several
space points at the same time coordinate, as that situation would depend on the choice of
Lorentz frame. The natural relativistic version would be to consider wave functions that
are functions of several space–time points, φ = φ(x1...xn) with each xj ∈ R4 or xj ∈ M
with M the space–time manifold. We usually take φ to be defined on the set of space-like
space–time configurations

S =
∞⋃

n=0
Sn =

∞⋃
n=0

{
(x1...xn) ∈M n : xj = xk or xj×xk for all j, k

}
, (67)
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where x×y means that x and y are space-like separated. Since φ involves several time
variables x0

1, . . . , x0
n, it is called a multi-time wave function. This concept, a covariant

expression of the state vector, was suggested early on in the history of quantum physics
by Eddington [36] and Dirac [37]; see [38] for a comprehensive discussion and further
references.

Since φ(n) = φ
∣∣
Sn

depends on n time variables, its time evolution, if governed by
PDEs, needs n equations, one for each time variable, as in

ih̄
∂φ(n)

∂x0
j

= H(n)
j φ , (68)

where H(n)
j is an operator called the jth partial Hamiltonian; it can roughly be thought of

as collecting the terms in the Hamiltonian pertaining to xj, and we have set c = 1. Such a
system of equations can be inconsistent, but consistency has been verified for relativistic
versions of the Lee model analogous to (2) [24,39,40]. An upshot at this point is that the
particle-position representation fits nicely together with Lorentz invariance.

A version of the Born rule appropriate for φ is the curved Born rule [41,42]: If detectors
are placed along a (possibly curved) Cauchy surface Σ (i.e., a space-like 3-surface) in M , then
the probability density (relative to the Riemannian volume measure) of finding the configuration
(x1, . . . , xn) ∈ Σn is given by

ρ(x1...xn) = |φ(n)(x1...xn)|2 , (69)

with | · |2 suitably understood, such as,

|φ(x1...xn)|2 = φ(x1...xn)
[
γµ1 nµ1(x1)⊗ · · · ⊗ γµn nµn(xn)

]
φ(x1...xn) (70)

for Dirac wave functions with nµ(x) being the future unit normal vector to Σ at x.

3.2. Landau and Peierls

In 1930, Landau and Peierls [43] wrote down a version of QED (simplified without
positrons) in the particle-position representation. Here, I reproduce their equations in a
multi-time form developed recently [44]. The wave function depends on the space–time
points x1, . . . , xm of a variable number m of electrons, as well as the space–time points
y1, . . . , yn of a variable number n of photons, φ = φ(x1...xm, y1...yn). We take it that the
wave function of a single electron is a Dirac wave function with 4 complex components
labeled by the index s = 1...4 and that the wave function of a single photon is a complexified
Maxwell field represented by its vector potential Aµ, also with 4 complex components but
now labeled by the index µ = 0...3. Thus,

φ = φ
(m,n)
s1...smµ1...µn(x1...xm, y1...yn) . (71)

A Lorentz transformation acts on each xj and each yk in the usual way, on each index µk as
on the index of a world vector, and on each index sj as on the index of a Dirac spinor; thus,
the action on φ(m,n) is the product of representations of the proper Lorentz group. The
domain of definition of φ is the set of space-like configurations of xs and ys, i.e., where any
two of x1...xm, y1...yn are either space-like or equal. φ is symmetric against permutation of
the photons (permuting the space–time points yk and the indices µk in the same way) and
anti-symmetric against permutation of the electrons (of xj and sj alike). Let e and mx denote
the charge and the mass of the electron. The time evolution is governed by 3 equations,
(72), (73), and (74) below. For now, we will not worry about UV divergence and simply
write down Dirac delta distributions.
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The equation in xj is the Dirac equation with an additional term:

(iγµ
j ∂xj ,µ −mx)φ

(m,n)(x1...xm, y1...yn) = e
√

n + 1 γ
ρ
j φ

(m,n+1)
µn+1=ρ (x1...xm, y1...yn, xj) (72)

where γ
µ
j means γµ acting on the index sj and most indices have not been made explicit.

The equation in yk is the Maxwell equation with a source term:

2∂
µ
yk ∂yk ,[µφ

(m,n)
µk=ν]

(x1...xm, y1...yn) =

4πe√
n

m

∑
j=1

δ3
µ(yk − xj) γ

µ
j γjν φ

(m,n−1)
µ̂k

(x1...xm, y1...yk−1, yk+1...yn) . (73)

where [µν] means anti-symmetrization in the index pair as in S[µν] =
1
2 (Sµν − Sνµ); the

3-dimensional Dirac delta distribution wears a space–time index µ because it is a vector
field in the 4 dimensional set {x ∈ R4 : x = 0 or x×0} (corresponding to a 3-form that
can be integrated over any space-like surface through 0 ∈ R4 [44]); and µ̂k means that the
index µk is omitted.

The third equation is a gauge condition that is actually not Lorentz invariant,

3

∑
µk=1

∂
µk
yk φ

(m,n)
µk (x1...xm, y1...yn) = 0 , (74)

where µk = 0 is omitted. Again, most indices are not made explicit. This equation is
analogous to the Coulomb gauge condition

3

∑
µ=1

∂µ Aµ = 0 . (75)

To understand the Equations (72)–(74), let us compare them to 1-particle equations.
The 1-particle Dirac equation in an external electromagnetic field with vector potential
Aµ(x) reads

(iγµ∂µ −mx)φ(x) = e γρ Aρ(x) φ(x) . (76)

Equation (72) has the same structure with three differences: it applies to xj in a multi-time
function, the factor

√
n + 1 in a sense compensates overcounting due to symmetrization,

and most importantly, the external field Aµ has been replaced by the wave function of the
n + 1-st photon. If φ(m,n+1) factorized according to

φ
(m,n+1)
µn+1 (x1...xm, y1...yn+1) = Aµn+1(yn+1) φ(m,n)(x1...xm, y1...yn) , (77)

then (72) would reduce exactly to (76) applied to xj (except for the factor
√

n + 1 that stems
from our normalization convention). In other words, (72) is essentially the Dirac equation
in which the vector potential is provided by the wave function of the next photon.

The 1-photon equation, i.e., the complex Maxwell equation, with source term Jν(y) reads

2∂µ∂[µ Aν](y) = 4π Jν(y) , (78)

which is a reformulation of the well-known form ∂µFµν = 4π Jν using Fµν = 2∂[µ Aν].
Equation (73) has the same structure, up to the factor 1/

√
n that compensates overcounting,

with φµk playing the role of Aµ, yk playing the role of y, and the source term given by

Jν(y) = e
m

∑
j=1

δ3
µ(y− xj) γ

µ
j γj,ν φ

(m,n−1)
µ̂k

(ŷk) . (79)
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This term is indeed concentrated on the locations x1, . . . , xm of the electrons; moreover,
when the term is integrated over a horizontal surface with respect to the chosen Lorentz
frame, the Dirac delta contributes only for µ = 0, so γµγν becomes γ0γν = αν, which is the
matrix associated with the current in the wave function φ.

What I am getting at is that (72) and (73) are very natural equations; they are basically
the Dirac and Maxwell equations applied to particular variables of φ, with natural expres-
sions inserted for the vector potential and the source term, given that the photon aspect
of φ is analogous to Aµ and the electron aspect of φ should be the source for the Maxwell
equation. Moreover, the terms coupling the time derivatives of φ(m,n) to the neighboring
sectors φ(m,n+1) and φ(m,n−1) lead, in every Lorentz frame, to an evolution similar to (2),
with photons emitted and absorbed by electrons, as they should be. Obviously, (72) and
(73) are Lorentz invariant. The question of consistency of (72)–(74) is subtle and needs
further investigation [44]. If the system is consistent, then we can say that QED (in this sim-
plified form without positrons) fits very nicely into the framework of the particle-position
representation.

Here is what (73) has to do with IBCs. It is well known that part of the Maxwell
equations determine the time derivatives while another part is a constraint. In any fixed
Lorentz frame, the constraint equations contained in (78) read

∇ · B = 0 , ∇ · E = −4π J0 (80)

with Bi = εijkFjk and Ei = F0i. If J0(y) = eδ3(y), then integration of the second equation
over a ball Br(0) of radius r yields, by the Ostrogradski–Gauss integral theorem,

− 4πe =
∫

Br(0)

d3y (−4πe)δ3(y) =
∫

Br(0)

d3y∇ · E(y) =
∫
S2

d2ω r2ω · E(rω) . (81)

Suppose that, in the limit r ↘ 0, the radial component Er = ω · E of E does not depend on
the direction ω any more. Then, (81) yields that

lim
r↘0

r2Er(rω) = −e. (82)

For the wave function φ, this implies the following. For simplicity, consider a single x-
particle fixed at the origin. Then (because γ0γ0 = 1), when all time coordinates are set to 0,
the second equation of (80) becomes

lim
r↘0

r2Er(x = 0, y1...yn−1, rω) = −e φ
(1,n−1)
µ̂n

(ŷn) (83)

with Er being the appropriate yn-derivative of φ(1,n),

Er(x = 0, y1...yn−1, rω) =
3

∑
i=1

ωi

(
∂yn ,0φ

(1,n)
µn=i − ∂yn ,iφ

(1,n)
µn=0

)
(x = 0, y1...yn−1, rω) . (84)

Equation (83) is an IBC: It is a relation between values (or asymptotics) of φ (or its deriva-
tives) at r = 0 and values of φ at the configuration with one photon removed, i.e., at
the configuration related through the absorption of a photon. Note also that the IBC is
gauge invariant, as it is expressed in terms of components of Fµν, not Aµ. (On earlier
occasions [4,10], I had written that Landau and Peierls had the first IBC. Thinking again
about it, I find that statement too strong, as they wrote their constraint condition with delta
distributions, not with boundary conditions.)

I see two main open problems with the approach of Landau and Peierls (which might
be connected): the status of the gauge condition and the Born rule for photons. What
is puzzling about the gauge condition (74) is that, while Landau and Peierls thought of
it as a matter of convenience, it seems that we cannot simply dispense with any gauge



Symmetry 2021, 13, 577 16 of 19

condition at all without obtaining too many solutions to the system comprising only (72)
and (73) [44]. It also seems that the empirical predictions of the theory (even though it is a
simplified model that should not be expected to be fully empirically adequate) will depend
on the choice of gauge condition, as if there was one “correct” condition. However, which
one would that be, and why? The other problem deserves a section of its own.

3.3. The Problem of Born’s Rule for Photons

While it is widely agreed upon that the quantum state of a single free photon is
mathematically equivalent to a (complexified) Maxwell field Fµν, there is no agreed-upon
answer to what the Born rule for a single photon would say, i.e., for how to compute the
probability density ρ in the position space from the wave function Fµν. For comparison, for
a Dirac wave function ψ : R4 → C4, the probability density ρD or, equivalently, the time
component j0D of the probability current 4-vector jµ

D is determined by

jµ
D(x) = ψ(x) γµ ψ(x) . (85)

To be sure, there is a convincing way of computing the photon probability current jµ

provided that the photon wave function (or, equivalently, Maxwell field) Fµν is a plane wave
or at least a local plane wave (i.e., a function such that every point has a small neighborhood
on which the function is to a good degree of approximation a plane wave): Suppose

Aµ(x) = aµ eikλxλ
, Fµν(x) = 2i a[µ kν] eikλxλ

(86)

with future-light-like kµ and kµaµ = 0 to fulfill the free Maxwell equation ∂µFµν = 0. If
many photons have the same wave function, a classical regime with electromagnetic field
Fµν (or something closely related) should apply. Classically, the energy-momentum density
is given, up to constant factors, by the tensor field

Tµν = Re
[
F∗µλF λ

ν

]
− 1

4 gµνF∗λρFλρ , (87)

which for the plane wave (86) amounts to

Tµν = a∗λ aλ kµkν . (88)

If each photon has momentum h̄kµ according to the de Broglie relation and if photon
number density is proportional to the probability density jν for each photon, then the
energy-momentum density should be

Tµν = h̄kµ jν (89)

up to a constant factor. Therefore, we can obtain jµ by comparison with (88),

jµ = a∗λaλ kµ (90)

up to a constant factor.
However, not every Maxwell field is a local plane wave (even if perhaps, in most

present-day experiments, it is a local plane wave); therefore, the question remains, which
law determines jµ in general? Of the desired law, I would expect these properties:

1. The expression is quadratic in Aµ and its derivatives.
2. The expression is local, i.e., jν(x) depends only on Aµ and its derivatives at x.
3. jµ is future-time-like or -light-like.
4. ∂µ jµ = 0 if Aµ obeys the free Maxwell equations.
5. For a plane wave, jµ agrees with (90) up to a constant factor.
6. No choices need to be made, i.e., if the law requires a special gauge or Lorentz frame,

then it also specifies this gauge or Lorentz frame.
7. The law can be generalized to curved space–time.
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If the law involves Aµ, then it might also involve a gauge condition that selects a
particular gauge and replaces (74), thereby also solving the problem mentioned at the end
of Section 3.2. Several proposals for jµ have been made (e.g., [43,45,46]), but none of them
satisfies all of the properties above, so I am hesitant to accept any of them, even though
some of them may be useful approximations. It seems to me that the correct answer to the
question has not been found yet, although it seems to be a very basic question.

4. Detection Time and Boundary Conditions

Another boundary condition on wave functions deserves to be mentioned: an ab-
sorbing boundary condition used for formulating Born’s rule on a time-like 3-surface Σ.
Consider a 2-surface σ in 3 space, and suppose that detectors are placed along σ waiting
for a quantum particle to arrive. When and where on σ will the particle be detected?
In other words, where on the time-like 3-surface Σ = [0, ∞)× σ in 4-space–time will it
be detected? (Assuming the initial conditions are set up on the surface {x0 = 0}.) The
problem of computing the probability distribution of the detection point X ∈ Σ is known
as the time-of-arrival problem, although it would perhaps be more accurately called the
time-of-detection problem.

Let me focus again on the nonrelativistic case, and let us assume that σ is the boundary
of a 3-region Ω; for simplicity, I ignore the possibility that no detector ever clicks. General
measurement theory yields that there is a POVM (positive-operator-valued measure) E(·)
on Σ such that the probability distribution of X is given by

P(X ∈ B) = 〈ψ0|E(B)|ψ0〉 (91)

for every subset B of Σ and every initial wave function ψ0, but it does not tell us in an
accessible way which operator E(B) is.

However, heuristic considerations [47] suggest the following simple rule for calculat-
ing P(X ∈ B) for idealized detectors, called the absorbing boundary rule [47,48], and this is
what I want to explain in this section. In L2(Ω), solve the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m∇
2ψ(x) + V(x)ψ(x) (92)

subject to the boundary condition

n(x) · ∇ψ(x) = iκψ(x) for all x ∈ σ = ∂Ω (93)

with n(x) the unit normal vector to σ at x and κ a given constant such that h̄2κ2/2m is the
energy of maximal efficiency of the detectors. Then,

P(X ∈ B) =
∫

B
dt d2x n(x) · j(x, t) (94)

with j the usual probability current,

j = h̄
m Im[ψ∗∇ψ] . (95)

Due to the boundary condition (93), the integrand in (94) is actually nonnegative, as a
probability density should be:

n(x) · j(x, t) = h̄
m Im

[
ψ(x, t)∗ n(x) · ∇ψ(x, t)

]
(96)

= h̄
m Im

[
ψ(x, t)∗ iκψ(x, t)

]
(97)

= κh̄
m |ψ(x, t)|2 ≥ 0 . (98)
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This means that, on the boundary, the current always points outwards, not inwards, so that
the particle can cross the boundary only outwards, not inwards. It also implies that the L2

norm of ψt is not constant but shrinks with time,

d
dt
‖ψt‖2 =

d
dt

∫
Ω

d3x |ψ(x, t)|2 ≤ 0 . (99)

Thus, the time evolution is not unitary (but is what is called a contraction semi-group).
It is known [49] that the time evolution is well-defined, i.e., that Schrödinger’s equation
(92) with the boundary condition (93) possesses a unique solution for every ψ0 ∈ L2(Ω).
This fact reflects the intuitive idea that any part of the wave function Ψ of the object x and
detectors together that has crossed σ in the x variable has decohered, i.e., cannot any longer
form a coherent superposition with the part that has not crossed σ yet.

That is, the boundary condition here models the effect of the presence of the detector
on the wave function in Ω by precluding backflow of any part of the wave function from
outside of Ω. It can be shown [47,49] that this rule indeed defines a POVM E(·). It would be
of interest to study whether the absorbing boundary rule can be derived from a microscopic
quantum-mechanical model of the detectors.

There are several parallels between IBCs and the absorbing boundary condition (ABC)
(93). Both are conditions on the wave function. Both are perhaps best understood in
terms of their effects on probability transport. Both have been studied only rather recently.
Moreover, while the IBC provides a way around the UV divergence problem, the ABC
provides a way around the quantum Zeno effect that was long thought to make any
mathematically clean concept of a “hard” detector, i.e., one that detects the particle as soon
as it reaches the surface σ, impossible.

5. Conclusions

I have given a brief overview of recent research about two kinds of boundary condi-
tions: interior-boundary conditions and absorbing boundary conditions. Both are boundary
conditions on wave functions in the particle-position representation, the former for the
time evolution with particle creation at point sources and the latter for the time evolution
in the presence of hard detectors. As IBCs provide a way out of the UV divergence problem
often encountered in connection with particle creation, they are of interest in QFT. They
have been proven to work in the nonrelativistic case, while the relativistic case remains a
field for future research. I have outlined some aspects of how this research might proceed.
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