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Abstract: We study the local convergence of a family of fifth and sixth convergence order derivative
free methods for solving Banach space valued nonlinear models. Earlier results used hypotheses up
to the seventh derivative to show convergence. However, we only use the first divided difference
of order one as well as the first derivative in our analysis. We also provide computable radius of
convergence, error estimates, and uniqueness of the solution results not given in earlier studies.
Hence, we expand the applicability of these methods. The dynamical analysis of the discussed family
is also presented. Numerical experiments complete this article.

Keywords: Banach spaces; local convergence; divided difference; fréchet derivative; complex dynamics

1. Introduction

One of the major goals of this study is to arrive at an estimated solution x∗ of
the equation

F(x) = 0, (1)

where the operator F : D ⊆ X → Y is Fréchet derivable with values in a Banach space
Y and D is a convex subset of a Banach space X. A number of challenging problems in
applied sciences and engineering can be formulated for the issue of solving equations of
the form (1). This is why the task of approximating solutions of these equations has always
been of central significance in mathematics. Closed form solutions to these equations
are almost impossible to compute. Therefore, scientists and researchers often focus on
iterative techniques to estimate the desired solution. Among the iterative procedures for
addressing (1), Newton’s approach is the most popular scheme, having a convergence
rate of two. In the last few years, a host of researchers have suggested and are currently
designing advanced iterative procedures of higher order [1–16] for solving the problem (1).

In the research of iterative schemes, estimating the convergence domain is an impor-
tant issue. In most cases, the domain of convergence is small. Thus, the enlargement of the
convergence domain is necessary without applying any additional condition. Additionally,
it is important to estimate precise error bounds in the convergence study of iterative pro-
cesses. The study of local analysis of an iterative scheme offers radii of convergence balls,
error distances, and uniqueness result for a solution. Many authors [17–27] deduced the
local results for different iterative processes. In these studies, essential outcomes, like mea-
surements on error estimates, calculable convergence radii, and improved utility of highly
efficient iterative algorithms have been derived. Recently, Argyros and George [28] studied
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the local convergence analysis of a seventh order iterative algorithm without inverses of
derivatives. This method can be written, as follows.

yn = xn − B−1
n F(xn)

zn = yn − (3I − 2B−1
n [yn, xn; F])B−1

n F(yn)

xn+1 = zn −
13
4

I − B−1
n [zn, yn; F](

7
2

I − 5
4

B−1
n [zn, yn; F])B−1

n F(zn), (2)

where x0 is a starting point, B(x) = [x + F(x), x − F(x); F], Bn = B(xn) and [., .; F] :
D ×D → L (X, Y) satisfies

[u1, u2; F](u1 − u2) = F(u1)− F(u2) f or each u1, u2 ∈ D

and
[u1, u1; F] = F′(u1) f or each u1 ∈ D ,

if F is differentiable.
On the other hand, the study of complex dynamical properties of a family of it-

erative approaches, applied on second degree polynomials with complex coefficients,
offers essential information regarding its reliability and stability. Complex dynamical
behaviors of Chebyshev–Halley methods, Kim’s family of methods, and other classes
of iterative schemes have been described by authors, like Amat et al. [29,30], Argyros
and Magreñán [18,19], Cordero et al. [31–33], and others [26,34–36]. In these works,
important dynamical planes have been found showing periodical behavior and other
convergence properties.

Our ultimate purpose in this article is to derive the local result and dynamical prop-
erties of a fifth and sixth convergence order family of iterative techniques. Behl and
Martínez [3] designed a family of iterative procedures to address the problem (1), whose
iterative steps are defined by

yn = xn − F′(xn)
−1F(xn)

zn = xn − αF′(xn)
−1(F(xn) + F(yn))− (1− α)[yn, xn; F]−1F(xn)

xn+1 = zn − [yn, zn; F]−1F(zn), (3)

where α ∈ R, [., .; F] : D ×D → L (X, Y) is a divided difference of order one. It is shown
to be order six for α = −1 by applying hypotheses up to the seventh Fréchet derivative of
F. The usage of these algorithms is restricted due to such hypotheses on the higher order
derivative. To show this, we introduce Ω = [− 1

2 , 3
2 ] and defined a function F on Ω by

F(x) =
{

x3 ln(x2) + x5 − x4, if x 6= 0
0, if x = 0

.

The third order derivative F′′′ of the considered function F is unbounded on D . The local
convergence result for the family (3) that is described in [3] does not work for this example.
Additioanlly, no research regarding the convergence domain or radius of convergence ball
was done in the existing paper [3]. Accordingly, the local analysis theorem for the schemes
(3) is established in study by considering a set of assumptions only on F′. In specific,
we employ the ω-continuity condition only on F′ to expand the utility of this family of
methods. Furthermore, dynamical study of the parametric family (3) is presented in the
context of scalar nonlinear equations. This analysis is helpful in determining appropriate
values of α. Besides this, several anomalies, namely convergence to strange fixed points
or m-cycles and divergence to ∞ are observed by applying the procedures that are used
in [19,36]. By means of parameter planes and various dynamical planes, these anomalies
are shown.

The remaining part of this study is presented in the following manner. Local con-
vergence of the discussed class of algorithms (3) is established in Section 2. Section 3
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describes the complex dynamical analysis of this class. The last section contains a series of
numerical experiments.

2. Convergence

Let us consider some real functions. Assume:
(a) There exists function ω0 : [0, ∞)→ [0, ∞) non-decreasing and continuous such that

ω0(t)− 1 = 0, (4)

has a least root R0 ∈ (0, ∞).
Consider function ω : [0, R0) → [0, ∞) non-decreasing and continuous. Define

function g1 : [0, R0)→ [0, ∞) by

g1(t) =

∫ 1
0 ω((1− θ)t) dθ

1−ω0(t)
.

(b) Equation
g1(t)− 1 = 0 (5)

has a least root r1 ∈ (0, R0). Consider functions ω1 : [0, R0) → [0, ∞) and ω2 : [0, R0)×
[0, R0)→ [0, ∞) continuous and non-decreasing.

(c) Equation
ω2(g1(t)t, t)− 1 = 0 (6)

has a least root R ∈ (0, R0).
Set R1 = min{R0, R}. Define the function g2 : [0, R1)→ [0, ∞) by

g2(t) = g1(t) +
|1− α|(ω0(t) + ω2(g1(t)t, t))

∫ 1
0 ω1(θt) dθ

(1−ω0(t))(1−ω2(g1(t)t, t))

+
|α|
∫ 1

0 ω1(θg1(t)t) dθ

1−ω0(t)
g1(t).

(d) Equation
g2(t)− 1 = 0 (7)

has a least root r2 ∈ (0, R1).
(e) Equations

ω0(g2(t)t)− 1 = 0 (8)

and
ω2(g1(t)t, g2(t)t)− 1 = 0 (9)

have least roots R2, R3 ∈ (0, R0), respectively. Set R4 = min{R1, R2, R3}. Define function
g3 : [0, R4)→ [0, ∞) by

g3(t) =

[
g1(g2(t)t)

+
(ω0(g2(t)t) + ω2(g1(t)t, g2(t)t))

∫ 1
0 ω1(θg2(t)t) dθ

(1−ω0(g2(t)t))(1−ω2(g1(t)t, g2(t)t)

]
g2(t).

(f) Equation
g3(t)− 1 = 0 (10)

has a least root r3 ∈ (0, R4). Next,

r = min{rk}, k = 1, 2, 3 (11)
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is proved to be a convergence radius for the method (3). By the definition of r,

0 ≤ ω0(t) < 1, (12)

0 ≤ ω2(g1(t)t, t) < 1, (13)

0 ≤ ω0(g2(t)t) < 1, (14)

0 ≤ ω2(g1(t)t, g2(t)t) < 1 (15)

and
0 ≤ gk(t) < 1 hold for all t ∈ [0, r). (16)

It is worth noticing that, by the definition of R0 and r (see (4), and (11), respectively),
we have r < R0, so ω0(r) ≤ ω0(R0) = 1. However, in particular ω0(r) < ω0(R0) = 1,
since, otherwise, r is the least positive solution of Equation (4), contradicting the definition
of R0. Hence, ω0(t) is not reaching one, even if t = r. By a similar argument the rest of the
functions in (13)–(16) are not reaching one.

Let S(x∗, ρ), S(x∗, ρ) be the open ball and its and closure in X with center x∗ ∈ X and
radius ρ > 0. The following hypotheses (H) shall be used with the ω functions defined
previously. Assume:

(H1) F : D ⊆ X → Y is differentiable, [., .; F] : D ×D → L (X, Y), and x∗ is a simple
solution of (1).
(H2) ||F′(x∗)−1(F′(x)− F′(x∗))|| ≤ ω0(||x− x∗||) for all x, y ∈ D .
Set S0 = D ∩ S(x∗, R0).
(H3) ||F′(x∗)−1(F′(y) − F′(x))|| ≤ ω(||y − x||), ||F′(x∗)−1F′(x)|| ≤ ω1(||x − x∗||)
and ||F′(x∗)−1([y, x; F]− F′(x∗))|| ≤ ω2(||y− x∗||, ||x− x∗||) for all x, y ∈ S0.
(H4) S(x∗, r) ⊂ D , where r is given in (11).
(H5) There exist r4 ≥ r such that

∫ 1

0
ω0(θr4) dθ < 1. (17)

Set S1 = D ∩ S(x∗, r4).

Next, hypotheses (H) and the notation introduced shall be used to develop the
analysis of (3).

Theorem 1. Under the hypothesis (H), further choose a starter point x0 ∈ S(x∗, r) \ {x∗}.
Subsequently, sequence {xn} developed by Formula (3) is well defined in S(x∗, r), remains in
S(x∗, r) for each n = 0, 1, 2, . . . , and converges to x∗. Additionally, the following upper error
estimations are valid

||yn − x∗|| ≤ g1(||xn − x∗||)||xn − x∗|| ≤ ||xn − x∗|| < r, (18)

||zn − x∗|| ≤ g2(||xn − x∗||)||xn − x∗|| ≤ ||xn − x∗|| (19)

and
||xn+1 − x∗|| ≤ g3(||xn − x∗||)||xn − x∗|| ≤ ||xn − x∗||, (20)

where the functions gk are defined previously and r is given in (11). Furthermore, the only solution
of Equation (1) in the set S1 that is given in (H5) is x∗.

Proof. Estimates (18)–(20) shall be proved using induction. Let v ∈ S(x∗, r) \ {x∗} be
arbitrary. Afterwards, by hypotheses (H1), (H2), (11), and (12), we get, in turn, that

||F′(x∗)−1(F′(v)− F′(x∗))|| ≤ ω0(||v− x∗||) ≤ ω0(r) < 1. (21)
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Estimate (21), together with a lemma due to Banach [1,13] on operators with inverses,
imply F′(v)−1 ∈ L (Y, X) with

||F′(v)−1F′(x∗)|| ≤
1

1−ω0(||v− x∗||)
. (22)

By (3), for n = 0, v = x0 and (22) y0 is well defined. We can also write

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0)

= −
[

F′(x0)
−1F′(x∗)

][∫ 1

0
F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0)) dθ (x0 − x∗)

]
. (23)

However, then, (11), (16) (for k = 0), (H3), (22) (for v = x0), and (23) imply, in turn, that

||y0 − x∗|| ≤
∫ 1

0 ω((1− θ)||x0 − x∗||) dθ ||x0 − x∗||
1−ω0(||x0 − x∗||)

≤ g1(||x0 − x∗||)||x0 − x∗|| ≤ ||x0 − x∗|| < r (24)

proving (18) for n = 0 and y0 ∈ S(x∗, r). To show the existence of z0, we need to establish
the inversibility of linear operator [y0, x0; F]. Indeed, by (11), (13), (H3), and (24), we have

||F′(x∗)−1([y0, x0; F]− F′(x∗))|| ≤ ω2(||y0 − x∗||, ||x0 − x∗||)
≤ ω2(g1(||x0 − x∗||)||x0 − x∗||, ||x0 − x∗||)
≤ ω2(g1(r)r, r) < 1, (25)

leading to

||[y0, x0; F]−1F′(x∗))|| ≤
1

1−ω2(g1(||x0 − x∗||)||x0 − x∗||, ||x0 − x∗||)
. (26)

Next, we get

z0 − x∗

= x0 − x∗ − F′(x0)
−1F(x0) + F′(x0)

−1F(x0)− αF′(x0)
−1F(x0)

− αF′(x0)
−1F(y0)− (1− α)[y0, x0; F]−1F(x0)

= y0 − x∗ + (1− α)(F′(x0)
−1 − [y0, x0; F]−1)F(x0)− αF′(x0)

−1F(y0)

= y0 − x∗ + (1− α)F′(x0)
−1

(
([y0, x0; F]− F′(x∗))

+ (F′(x∗)− F′(x0))

)
[y0, x0; F]−1F(x0)

− αF′(x0)
−1F(y0). (27)
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Hence, by (22)–(27), (11), and (16) for k = 2, we can get

||z0 − x∗||
≤ ||y0 − x∗||

+

(
|1− α|(ω0(||x0 − x∗||) + ω2(||y0 − x∗||, ||x0 − x∗||))
(1−ω0(||x0 − x∗||))(1−ω2(||y0 − x∗||, ||x0 − x∗||))

)

×
∫ 1

0
ω1(θ||x0 − x∗||) dθ ||x0 − x∗||

+
|α|
∫ 1

0 ω1(θ||y0 − x∗||) dθ ||y0 − x∗||
1−ω0(||x0 − x∗||)

≤ g2(||x0 − x∗||)||x0 − x∗|| ≤ ||x0 − x∗|| (28)

proving (19) for n = 0 and z0 ∈ S(x∗, r). Hence, it follows that x1 is well defined and the
inversibility of F′(z0) and [y0, z0; F]. Indeed, as in (26), and using (14) and (15), we have,
in turn

||F′(x∗)−1(F′(z0)− F′(x∗))|| ≤ ω0(||z0 − x∗||)
≤ ω0(g2(||x0 − x∗||)||x0 − x∗||) < 1

and

||F′(x∗)−1([y0, z0; F]− F′(x∗))||
≤ ω2(||y0 − x∗||, ||z0 − x∗||)
≤ ω2(g1(||x0 − x∗||)||x0 − x∗||, g2(||x0 − x∗||)||x0 − x∗||)
≤ ω2(g1(r)r, g2(r)r) < 1,

so
||F′(z0)

−1F′(x∗)|| ≤
1

1−ω0(||z0 − x∗||)
(29)

and
||[y0, z0; F]−1F′(x∗)|| ≤

1
1−ω2(||y0 − x∗||, ||z0 − x∗||)

. (30)

Hence, x1 is well defined. We can have

x1 − x∗ = z0 − x∗ − F′(z0)
−1F(z0) + (F′(z0)

−1 − [y0, z0; F]−1)F(z0). (31)

It then follows from (11), (16) for k = 3, (29)–(31) that

||x1 − x∗||

≤
[

g1(||z0 − x∗||)

+
(ω0(||z0 − x∗||) + ω2(||y0 − x∗||, ||z0 − x∗||))

∫ 1
0 ω1(θ||z0 − x∗||) dθ ||x0 − x∗||

(1−ω0(||z0 − x∗||))(1−ω2(||y0 − x∗||, ||z0 − x∗||))

]
× ||z0 − x∗||
≤ g3(||x0 − x∗||)||x0 − x∗|| ≤ ||x0 − x∗||, (32)

proving (20) for n = 0, and x1 ∈ S(x∗, r). In order to complete the induction for (18)–
(20), we simply exchange x0, y0, z0, x1 by xm, ym, zm, xm+1 in the preceding estimations.
Subsequently, by the estimation

||xm+1 − x∗|| ≤ q||xm − x∗|| < r, q = g3(||x0 − x∗||) ∈ [0, 1), (33)
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we get lim
m→∞

xm = x∗ and xm+1 ∈ S(x∗, r). The uniqueness result is proved by setting

A =
∫ 1

0 F′(x∗ + θ(q − x∗)) dθ for some q ∈ S1 with F(q) = 0. Using (H2) and (H5),
we obtain

||F′(x∗)−1(A− F′(x∗))|| ≤
∫ 1

0
ω0(θ||q− x∗||) dθ∫ 1

0
ω0(θr4) < 1,

so q = x∗ by F(q)− F(x∗) = A(q− x∗).

3. Dynamical Analysis of the Discussed Class of Algorithms (3)

The complex dynamical properties of the class (3) are analyzed in detail in this segment.
In the research field of iterative algorithms, the dynamical study of a class of iterative
processes has emerged as a standard research approach for categorizing various iterative
procedures according to their convergence rate. Additionally, it enables the evaluation of
their numerical performance in relation to the selected initial estimation. This research
allows for the visualization of the set of starting values that converge to a solution or other
locations. Moreover, it shows the robustness and effectiveness of an iterative formula.

This report examines the dynamical features of the class of solvers (3). The family (3)
can be expressed, when X = Y = C as:

yn = xn −
F(xn)

F′(xn)

zn = xn − αF′(xn)
−1(F(xn) + F(yn))− (1− α)

F(xn)(xn − yn)

F(xn)− F(yn)

xn+1 = zn −
F(zn)(zn − yn)

F(zn)− F(yn)
. (34)

We study the dynamical the class (34) applied on a two degree complex polynomial
H (z) : C → C defined by H (z) = (z − s1)(z − s2). We discuss, by employing the
graphical software MATHEMATICA [18,19], the fixed points related to the class (34) and
their stability. Besides this, different anomalies in the considered family (34) are shown by
means of parameter spaces and several dynamical planes.

Let Ĉ stand for the Riemann sphere and R : Ĉ → Ĉ is a rational function. Subse-
quently, we have the following definitions [18,19,30–32].

Definition 1. The orbit of a point z0 ∈ Ĉ is defined as the set {z0, R(z0), R2(z0), . . . , Rn(z0)}.

Definition 2. A point z0 ∈ Ĉ is called a fixed point of R(z), if it verifies R(z0) = z0. The fixed
points that are not related to the roots of the polynomial H (z) are called strange fixed points.

Definition 3. z0 ∈ Ĉ is called a periodic point of period m > 1, if it satisfies Rm(z0) = z0 with
Rn(z0) 6= z0, for each n < m. Moreover, a point z0 is called pre-periodic if it is not periodic but
there exists a l > 0, such that R l(z0) is periodic.

Depending on the associated multiplier |R ′(z0)|, the fixed points can be categorized,
as follows.

Definition 4. A fixed point z0 is called:

(i) superattractor if |R ′(z0)| = 0,
(ii) attractor if |R ′(z0)| < 1,
(iii) repulsor if |R ′(z0)| > 1 and
(iv) parabolic if |R ′(z0)| = 1.
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Definition 5. A point z0 ∈ Ĉ is called a critical point of R(z), if it satisfies R ′(z0) = 0. Free
critical points are those critical points that are not related to the roots of H (z).

Definition 6. The basin of attraction of an attractor β is defined as A (β) = {z0 ∈ Ĉ : Rn(z0)→
β as n→ ∞}.

Definition 7. The Fatou set of the rational function R, F (R), is the set of points z0 ∈ Ĉ whose
orbits tend to an attractor (fixed point, periodic orbit, or infinity). Its complement in Ĉ is the Julia
set, J (R).

We apply the family of algorithms (34) on H (z) = (z− s1)(z− s2), where s1 6= s2.
Subsequently, we derive the rational operator

YH (z, α) = z5 z3 + 3z2 + α + 3z + 1
1 + (α + 1)z3 + 3z2 + 3z

, α ∈ C (35)

by considering the Möbius map M (z) = z−s1
z−s2

, such that M (s1) = 0, M (s2) = ∞ and
M (∞) = 1.

3.1. Stability of the Fixed Points

The fixed points of YH (z, α) are determined by solving YH (z, α) = z. Solving the
earlier equation is equivalent to solving z(z− 1)(z6 + 4z5 + 7z4 + (α + 8)z3 + 7z2 + 4z +
1) = 0. It is easy to notice that the points z = 0 and z = ∞ are the fixed points of YH (z, α)
and associated with s1 and s2, respectively. It follows from the definition that the point
z = 1 is a member of the set of strange fixed points of the operator YH (z, α). Moreover,
the solutions of z6 + 4z5 + 7z4 + (α + 8)z3 + 7z2 + 4z + 1 = 0 are other six strange fixed
points. These points depend on α and they are denoted by e f pk(α), k = 1, 2, . . . , 6.
We consider the expressions e f pk(α) = Root[1 + 4#1 + 7#12 + (8 + α)#13 + 7#14 + 4#15 +
#16 &, k], k = 1, 2, . . . , 6, for these points using MATHEMATICA software. Figure 1 shows
the points e f pk(α) when e f pk ∈ R, k = 1, 2, . . . , 6.

Figure 1. Behavior of e f pk(α), k = 1, 2, . . . , 6.

It is mandatory to obtain Y ′H (z, α) for describing the stability of z = 1 and e f pk(α),
k = 1, 2, . . . , 6. We have using (35) that

Y ′H (z, α) =
z4

(1 + 3z + 3z2 + z3(1 + α))2

(
5(1 + α) + 5z6(1 + α) + 6z(5 + 2α)

+ 6z5(5 + 2α) + z2(75 + 9α) + z4(75 + 9α) + 2z3(50 + 2α + α2)

)
. (36)
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It is confirmed from (36) that the points z = 0 and z = ∞ belong to the set of
superattracting fixed points of YH (z, α). Next, we investigate the stability properties of
the fixed point z = 1. We use the notation Str1(α) for indicating the stability function
|Y ′H(1, α)| of z = 1. The stability functions of e f pk are denoted by Strk+1(α), k = 1, 2, . . . , 6.
We discuss the stability of z = 1 in the below result.

Theorem 2. The stability characterization of the strange fixed point z = 1 can be described,
as follows.

1. z = 1 is a superattracting strange fixed point for α = −20.
2. z = 1 is an attracting point if |α + 24| < 8.
3. For |α + 24| = 8 the point z = 1 is parabolic.
4. Lastly, if |α + 24| > 8, then z = 1 is repulsor.

Proof. Using Equation (36), we obtain

Str1(α) =

∣∣∣∣40 + 2α

α + 8

∣∣∣∣. (37)

It is clear that Str1(−20) = 0. Also,
∣∣∣ 40+2α

α+8

∣∣∣ ≤ 1 is equivalent to |40 + 2α| ≤ |α + 8|.
Set α = a1 + ia2 a complex number. Next,

1600 + 4a2
1 + 160a1 + 4a2

2 ≤ a2
1 + 64 + 16a1 + a2

2. (38)

We obtain
512 + a2

1 + 48a1 + a2
2 ≤ 0 (39)

by simplifying (38). Further, we get form (39), which

(a1 + 24)2 + a2
2 ≤ 64.

Thus, |Str1(α)| ≤ 1 if and only if |α + 24| ≤ 8.

Thus, the area where |α + 24| ≤ 8 represents the stability region of z = 1. Figure 2
provides a graphical view of this stability area.

Figure 2. Region of z = 1: Stability.

It is extremely difficult to determine the stability of e f pk, k = 1, 2, . . . , 6 in an analytical
approach. Nevertheless, the graphical software MATHEMATICA can be employed to
visualize the stability areas for the points e f p5 and e f p6. These stability regions are
presented in Figure 3a,b, respectively.
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(a) Stability region of e f p5(α)

(b) Stability region of e f p6(α)

Figure 3. Stability regions.

3.2. Study of Parameter Spaces and Critical Points

We determine the critical points of the operator YH (z, α) by finding the solutions of
Y ′H (z, α) = 0. From (36), we have that 0 and ∞ are critical points of YH (z, α). The free
critical points of YH (z, α) are the solutions of 5(1 + α) + 5z6(1 + α) + 6z(5 + 2α) + 6z5(5 +
2α) + z2(75 + 9α) + z4(75 + 9α) + 2z3(50 + 2α + α2) = 0. These points can be represented
for k = 1, 2, . . . , 6 by f cpk(α) = Root[5 + 5α + (30 + 12α)#1 + (75 + 9α)#12 + (100 +
4α + 2α2)#13 + (75 + 9α)#14 + (30 + 12α)#15 + (5 + 5α)#16 &, k] using MATHEMATICA
software. Figure 4 provides the behavior of f cpk(α) (when f cpk ∈ R, k = 1, 2, . . . , 6).

The dynamical analysis of the discussed class of algorithms (34) are described by ap-
plying the procedure that was used in [18,19]. We consider the free critical points f cp4(α)
and f cp6(α) to present the parameter planes that are related to them in Figures 5 and 6,
respectively. We use the point z0 = f cpk(α) as a starter for the members of the considered
family. Various colors are applied on the starting estimation z0 to show different conver-
gence behavior of the corresponding sequence of iterates {zn} on the complex plane. The
convergence of {zn} to 0 or ∞ is denoted by cyan color. Additionally, convergence of {zn}
to z = 1 is assigned in yellow. We execute maximum 1000 iteration with the tolerance 10−6.
Convergence to e f pk(α), k = 1, 2, . . . , 6 is presented in magenta. Other colors like light
green, orange, blue, dark orange, dark green, dark red, and white are applied to z0 if {zn}
convergence to m-cycles for m = 2, 3, 4 . . . , 8, respectively. Convergence of {zn} to other
m-periodic orbits are displayed in black . It is found that there exist non-cyan regions in the
parameter spaces. In these areas, the sequence {zn} converges to e f pk(α), k = 1, 2, . . . , 6
or to m-cycles or even to ∞. Therefore, one should avoid these regions while selecting α for
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practical use. Additionally, there are wide cyan regions in the parameter planes, and this
confirms that the family contains some numerically stable iterative elements.

Figure 4. Behavior of free critical points.

Figure 5. Critical point f cp4(α) and the parameter plane.

We move forward to discuss several important dynamical planes in order to study
some special anomalies. Orange and cyan color are employed to display the convergence
to ∞ and 0, respectively. If convergence of the iterative algorithm of the class (34) is not
related to either 0 or ∞, then it is indicated in black color. We consider 1000 iterations
or the tolerance 10−6 as a stopping condition. In Figure 7a,b, yellow regions represent
that the iterative elements (for α = −27 and α = −20) convergence to the point z = 1. In
Figure 8a,b, appearance of attracting fixed points e f p5 and e f p6 is displayed in black color.

The dynamical plane that is associated with the algorithm extracted from the con-
sidered family for α = −15 is given in Figure 9a. In this figure, an attracting 2-cycle
{0.9788− 0.2047i, 0.9788 + 0.2047i} appeared. In addition to this, the existence of another
attracting 2–periodic orbit is displayed in Figure 9b. The existence of a 3-periodic is given
in Figure 9c. In these Figs., black color is used to present the convergence of the respective
method to various m-periodic orbits, since this convergence is not related to s1 and s2.

Finally, we provide dynamical planes for α = −1 and α = −0.5 in Figure 10a,b,
respectively. In Figure 11a,b, dynamical planes for α = 0 and α = 1 are presented. In these
planes, the convergence is related to s1 or s2 only; consequently, these algorithms of the
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discussed class are highly stable. Hence, these iterative techniques are superior to other
schemes of the class in terms of practical application.

Figure 6. Critical point f cp6(α) and the parameter plane.
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(a) α = −27
Figure 7. Cont.
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Figure 7. Dynamical Planes.
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Figure 11. Dynamical Planes.

4. Numerical Examples

We address numerical problems in this segment to explain the validity of our theo-
retical results. We use the proposed findings to measure the convergence radii for five
iterative schemes. These schemes are derived from the discussed family (3) by putting
α = −1, α = −0.5, α = 0, α = 0.75 and α = 1. The divided difference in all of the selected
examples is taken as [x, y; F] =

∫ 1
0 F′(y + θ(x− y)) dθ.

Example 1 ([35]). Let X = Y = R3 and D = S(0, 1). Consider F on D for x = (x1, x2, x3)
t as

F(x) = (ex1 − 1,
e− 1

2
x2

2 + x2, x3)
t
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Subsequently, we set for x∗ = (0, 0, 0)t, ω0(t) = (e− 1)t, ω(t) = e
1

e−1 t, ω1(t) = 2 and
ω2(t, s) = e−1

2 (t + s). Using Theorem 1, the values of r for different values of α are calculated and
presented in Table 1.

Table 1. Convergence radii for Example 1.

α = −1 α = −0.5 α = 0 α = 0.75 α = 1

r1 = 0.382692 r1 = 0.382692 r1 = 0.382692 r1 = 0.382692 r1 = 0.382692
r2 = 0.063309 r2 = 0.081572 r2 = 0.115386 r2 = 0.163070 r2 = 0.189799
r3 = 0.076949 r3 = 0.091046 r3 = 0.115386 r3 = 0.148095 r3 = 0.166247
r = 0.063309 r = 0.081572 r = 0.115386 r = 0.148095 r = 0.166247

Example 2 ([21]). Let us consider X = Y = C[0, 1] and D = S(0, 1). Introduce F on D by

F(x)(t) = x(t)− 5
∫ 1

0
tu x(u)3 du,

where x(t) ∈ C[0, 1]. We have x∗ = 0. Additionally, ω0(t) = 7.5t, ω(t) = 15t, ω1(t) = 2
and ω2(t, s) = 7.5

2 (t + s). The values of r for different α are obtained by applying Theorem 1 and
presented in Table 2.

Table 2. Convergence radii for Example 2.

α = −1 α = −0.5 α = 0 α = 0.75 α = 1

r1 = 0.066667 r1 = 0.066667 r1 = 0.066667 r1 = 0.066667 r1 = 0.066667
r2 = 0.012408 r2 = 0.016263 r2 = 0.023773 r2 = 0.027609 r2 = 0.029230
r3 = 0.015374 r3 = 0.018380 r3 = 0.023773 r3 = 0.026383 r3 = 0.027459
r = 0.012408 r = 0.0162627 r = 0.023773 r = 0.026383 r = 0.027459

Example 3 ([35]). Let us take X = Y = C[0, 1] and D = S(0, 1). We introduce the Hammerstein
type operator

F(x)(t) = x(t)−
∫ 1

0
G(t, u)

x(u)2

2
du,

with x(t) ∈ C[0, 1] and G(t, u) = is defined on [0, 1]× [0, 1] by

G1(t, u) =
{

(1− t)u, if u ≤ t
(1− u)t, if t ≤ u

.

We have x∗ = 0. Additionally, ω0(t) = ω(t) = 0.125t, ω1(t) = 2 and ω2(t, s) = t+s
16 . We apply

Theorem 1 to compute the values of r for different α. Table 3 presents these values.

Table 3. Convergence radii for Example 3.

α = −1 α = −0.5 α = 0 α = 0.75 α = 1

r1 = 5.333334 r1 = 5.333334 r1 = 5.333334 r1 = 5.333334 r1 = 5.333334
r2 = 0.876774 r2 = 1.128755 r2 = 1.594072 r2 = 2.277393 r2 = 2.666667
r3 = 1.064670 r3 = 1.259079 r3 = 1.594072 r3 = 2.063152 r3 = 2.328353
r = 0.876774 r = 1.128755 r = 1.594072 r = 2.063152 r = 2.328353
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