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Abstract: Here, we investigate how the local properties of particles in a thermal bath may influence
the thermodynamics of the bath, and consequently alter the statistical mechanics of subsystems
that comprise the bath. We are guided by the theory of small-system thermodynamics, which is
based on two primary postulates: that small systems can be treated self-consistently by coupling
them to an ensemble of similarly small systems, and that a large ensemble of small systems forms
its own thermodynamic bath. We adapt this “nanothermodynamics” to investigate how a large
system may subdivide into an ensemble of smaller subsystems, causing internal heterogeneity across
multiple size scales. For the semi-classical ideal gas, maximum entropy favors subdividing a large
system of “atoms” into an ensemble of “regions” of variable size. The mechanism of region formation
could come from quantum exchange symmetry that makes atoms in each region indistinguishable,
while decoherence between regions allows atoms in separate regions to be distinguishable by their
distinct locations. Combining regions reduces the total entropy, as expected when distinguishable
particles become indistinguishable, and as required by a theorem in quantum mechanics for sub-
additive entropy. Combining large volumes of small regions gives the usual entropy of mixing for a
semi-classical ideal gas, resolving Gibbs paradox without invoking quantum symmetry for particles
that may be meters apart. Other models presented here are based on Ising-like spins, which are
solved analytically in one dimension. Focusing on the bonds between the spins, we find similarity
in the equilibrium properties of a two-state model in the nanocanonical ensemble and a three-state
model in the canonical ensemble. Thus, emergent phenomena may alter the thermal behavior of
microscopic models, and the correct ensemble is necessary for fully-accurate predictions. Another
result using Ising-like spins involves simulations that include a nonlinear correction to Boltzmann’s
factor, which mimics the statistics of indistinguishable states by imitating the dynamics of spin
exchange on intermediate lengths. These simulations exhibit 1/f -like noise at low frequencies (f ),
and white noise at higher f, similar to the equilibrium thermal fluctuations found in many materials.

Keywords: nanothermodynamics; fluctuations; maximum entropy; finite thermal baths; corrections
to Boltzmann’s factor; ideal gas; Ising model; Gibbs’ paradox; statistics of indistinguishable particles

1. Introduction

Thermodynamics and statistical mechanics provide two theoretical approaches for
interpreting the thermal behavior shown by nature [1–7]. In statistical mechanics, the local
symmetry of particles in the system is well known to influence their behavior, yielding
Maxwell–Boltzmann, Bose–Einstein, or Fermi–Dirac statistics. Lesser known is the im-
pact of local symmetry on thermodynamics. Difficulty in understanding local behavior in
standard thermodynamics is due to its two basic postulates: that all systems must be macro-
scopic, and homogeneous. Hence, accurate theories of local thermal properties require
that finite-size effects are added to thermodynamics, such as in fluctuation theorems [8,9]
and stochastic thermodynamics [10,11]. These approaches are remarkably successful at
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describing thermal dynamics, including far-from-equilibrium processes. However, in gen-
eral, these theories require that, at least at some time during the dynamics, the system
must have ideal thermal contact to an ideal heat bath; specifically, the system must be
weakly, rapidly, and homogeneously coupled to an effectively infinite heat reservoir. Here,
we focus on the theory of small-system thermodynamics [12–14], which is based on two
novel postulates: that small systems can be treated self-consistently by coupling them to
similarly small systems (without correlations between the small systems so that they form
an ensemble), and that a large ensemble of small systems becomes its own effectively infi-
nite heat reservoir. Thus, this “nanothermodynamics” provides a fundamental foundation
for connecting thermal properties across multiple size scales: from microscopic particles,
through mesoscopic subsystems, to macroscopic behavior.

Although small-system thermodynamics was originally developed to treat individual
molecules and isolated clusters, we use nanothermodynamics as a guide to study how
large systems are influenced by internal heterogeneity, especially on the scale of nanome-
ters [15–17]. Here, we focus on how thermal equilibrium often involves subdividing a large
system into an ensemble of subsystems, usually requiring that the number of particles
and volume of each subsystem fluctuate freely, without external constraint. We call these
freely fluctuating subsystems “regions,” and the self-consistent system of independently
fluctuating nanometer-sized regions the “nanocanonical” ensemble.

A common assumption in standard thermodynamics is additivity. For example, it is
assumed that if the size of a system is doubled, then all of its extensive variables (e.g., in-
ternal energy E, entropy S, and number of particles N) will precisely double, and all of its
intensive variables (e.g., temperature T, pressure P, and chemical potential µ) will remain
unchanged. In fact, the Gibbs–Duhem relation (found from assuming that all extensive
variables increase linearly with N) is often used as a test of consistency in thermodynamics.
Thus, Gibbs’ paradox [18–21] comes from the apparent discrepancy between the predictions
of thermodynamics and classical statistical mechanics. Specifically, standard thermody-
namics states that when a partition is reversibly removed between two identical systems
the total entropy should be exactly twice the entropy of each initial system, while Maxwell–
Boltzmann statistics of a classical ideal gas predicts an additional term proportional to
Nln(2) due to the entropy of mixing. Here, we obtain several results where various thermo-
dynamic quantities (including E, S, and µ) contain terms that depend nonlinearly on N,
and we focus on how these finite-size effects are necessary to conserve total energy and
maximize total entropy.

The broad generality of thermodynamics can be a distraction to many scientists who
prefer the concrete models and microscopic details that constitute statistical mechanics.
For similar reasons, statistical mechanics is often said to be a foundation for thermody-
namics. However, the fundamental physical laws are in the thermodynamics, and strict
adherence to these laws is necessary before statistical mechanics can fully represent the
real world. Here, we briefly explain how the laws of thermodynamics can be extended
to length scales of nanometers, and why applying the resulting nanothermodynamics to
statistical models may improve their accuracy and relevance to real systems.

2. Background
2.1. Standard Thermodynamics

Thermodynamics establishes equations and inequalities between thermodynamic
variables which must be obeyed by nature. Thermodynamic variables usually come in
conjugate pairs, whose product yields a contribution to the internal energy of a system.
The fundamental equation for reversible changes in thermodynamics (aka the Gibbs equa-
tion, which combines the first and second laws) states that the total internal energy of
the system can be changed by changing one (or more) of the thermodynamic variables.
For example, the fundamental equation of N particles in volume V is
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dE = TdS− PdV + µdN (1)

Equation (1) gives three ways to reversibly change the internal energy of a system
(dE): heat can be transferred (TdS), work can be done (PdV), or the number of particles can
be changed (µdN).

The primary conjugate variables in Equation (1) used to define thermal equilibrium [1]
are T and S. Temperature is the familiar quantity that is “hotness measured on some definite
scale” [4], but entropy is a more subtle concept [22–25]. Although entropy is often associ-
ated with randomness, any system with sufficient information about the randomness may
also have low entropy. Thus, a more general definition of entropy comes from quantifying
the amount of missing information. Entropy is a main focus of our current study, especially
in how total entropy can be maximized by proper choice of thermodynamic ensemble.

Equation (1) describes changes to a fundamental thermodynamic function (E), with
dE = 0 when internal energy is conserved, characteristic of the microcanonical ensemble
that applies to isolated systems. Fundamental functions in other standard ensembles are
free energies that also do not change in the relevant equilibrium. The ensemble that is
most appropriate to a system depends on how it is coupled to its environment. In gen-
eral, each pair of conjugate variables that contribute to the internal energy in Equation
(1) includes an “environmental” variable (controlled by the environment, e.g., researcher)
and its conjugate that responds to this control. Different sets of environmental variables
form distinct thermodynamic ensembles. Different ensembles may be connected to statis-
tical mechanics using ensemble averages that are equated to thermodynamic quantities.
In principle, for simple systems having three pairs of conjugate variables there are eight
(23) possible ensembles [26]. In practice, however, only seven of these ensembles are well
defined in standard thermodynamics. Examples include the fully-closed microcanonical
ensemble, as well as the partially-open ensembles: canonical, Gibbs’, and grand-canonical.
The fully-open generalized ensemble, involving three intensive environmental variables
(e.g., µ, P, T), is ill defined in standard thermodynamics because at least one extensive
environmental variable is needed to control the size of the system. Thus, nanothermo-
dynamics is the only way to treat fully-open systems in a consistent manner, allowing
the system to find its equilibrium distribution of subsystems without external constraints.
In fact, the nanocanonical ensemble is necessary for the true thermal equilibrium of any
system having independent internal regions, especially from localized internal fluctuations.
Because large and homogeneous systems all yield equivalent behavior for all ensembles,
it is sometimes said that the choice of ensemble can be made merely for convenience [14].
However, for small systems, and for bulk samples that subdivide into an ensemble of
small regions, the choice of ensemble is crucial, so that the correct ensemble must be used
for realistic behavior. Indeed, the correct ensemble is essential for fully-accurate descrip-
tions of fluctuations, dynamics, and the distribution of independent regions inside most
samples [15–17].

2.2. Standard Statistical Mechanics

The usual foundation for statistical mechanics is Boltzmann’s factor, e−E/kT . This
e−E/kT is used to obtain the probability of finding states of energy E at temperature T, yield-
ing Maxwell–Boltzmann statistics for distinguishable particles, Bose–Einstein statistics
for symmetrical bosons, and Fermi–Dirac statistics for anti-symmetrical fermions. This
e−E/kT also provides the foundation for most modern results involving stochastic ther-
modynamics and fluctuation theorems [8–11,27–32]. However, e−E/kT is based on several
assumptions [33–35]. Specifically, the degrees of freedom must be in ideal thermal contact
with an ideal heat bath, i.e., there must be fast (but weak) thermal contact to a homoge-
neous and effectively infinite heat reservoir, whereas several experimental techniques have
shown that most primary degrees of freedom couple slowly to the heat reservoir, with
energies that are persistently localized on time scales of the primary response (e.g., 100 s to
100 µs) [36–42]. Furthermore, other techniques [43–48] have established that this localiza-
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tion involves regions with dimensions on the order of nanometers (e.g., 10 molecules to
390 monomer units [49]). Thus, the basic requirements of standard statistical mechanics
for fast coupling to a homogenous heat reservoir are absent for the primary response in
most materials, including liquids, glasses, polymers, and crystals. Moreover, molecular
dynamics (MD) simulations of crystals with realistic interactions exhibit excess energy
fluctuations that diverge like 1/T as T→ 0, deviating from standard statistical mechanics
based on e−E/kT , but quantitively consistent with energy localization on length scales of
nanometers [50]. Nanothermodynamics is necessary to treat independent subsystems
that have a distribution of sizes, with realistic particles and heterogeneous interactions,
allowing the laws of thermodynamics that govern statistical mechanics to be extended
across multiple size scales, down to individual atoms.

Entropy in statistical mechanics usually involves calculating the number of distinct
microscopic states that yield the same macroscopic state. This may be expressed in terms of
the multiplicity (Ωi) of microstates that yield the ith macrostate, or in terms of the average
probability of finding the ith macrostate (ρi). The Gibbs (or Boltzmann-Gibbs) expression
for average entropy is given by S/k = −∑i ρi ln ρi, where k is Boltzmann’s constant and the
sum is over all possible macrostates. Alternatively, Boltzmann’s expression for the entropy
of each macrostate is Si/k = ln(Ωi). In the microcanonical ensemble, where all microstates
are assumed to be equally likely, both expressions yield identical values for equilibrium
average behavior S = ∑i Si. (Generalized entropies have been introduced to investigate
the possibility that all microstates are not equally likely [51], but here we focus on specific
non-additive and non-extensive contributions to entropy that arise naturally from finite-
size effects in thermodynamics.) Gibbs’ expression has the advantage that it also applies to
other macroscopic ensembles, while Boltzmann’s expression has the advantage that it can
accommodate non-equilibrium conditions [52], including small systems that may fluctuate.
Here, we stress how nanoscale thermal properties must also govern large systems that
subdivide into a heterogeneous distribution of subsystems, and how nanothermodynamics
impacts the statistical mechanics of specific models.

The remainder of this overview is organized as follows. Section 3 is an introduction
to nanothermodynamics. Section 4 is a review of how standard statistical mechanics is
extended by nanothermodynamics. In Section 5.1 we apply nanothermodynamics to the
semi-classical ideal gas, and in Sections 5.2–5.6 we apply it to various forms of Ising-
like models for binary degrees of freedom (“spins”) in a one-dimensional (1-D) lattice.
In Section 6, we conclude with a brief summary.

3. An Introduction to Nanothermodynamics

The primary postulate in standard thermodynamics that systems must be homoge-
neous fails to account for measurements on most types of materials that show thermal and
dynamic heterogeneity [36–49]. We argue that this inability to explain heterogeneity can be
traced to sources of energy and entropy that arise from finite-size effects, especially sources
that occur on the scale of nanometers, which require nanothermodynamics to be treated in
a self-consistent and complete manner.

After Gibbs introduced the chemical potential in 1876, it was widely believed that
all categories of thermal energy were included in Equation (1); at least for a simple gas.
However, in 1962, Hill made a similar modification to the fundamental equation of thermo-
dynamics when he introduced the subdivision potential, E , and the number of subsystems,
η. One way to understand E is to compare it to µ. The chemical potential is the change
in (free) energy to take a single particle from a bath of particles into the system, whereas
E is the additional change in energy to take a cluster of interacting particles from a bath
of clusters into the system, and in general N interacting particles do not have the same
energy as N isolated particles, due to surface effects, length-scale terms, finite-size fluc-
tuations, local symmetry, etc. Many finite-size contributions to energy can be included
in the net Hamiltonian of the system. Indeed, already in 1872 Gibbs included surface
energies proportional to N2/3, and recent results have greatly extended these ideas to
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include shape-dependent terms [53–55]. Here, we focus on contributions to E that are
not explicitly contained in the microscopic interactions, instead emerging from nanoscale
behavior. One example is the semi-classical ideal gas, where E comes entirely from entropy
due to indistinguishable statistics of particles within regions, with particles in separate
regions distinguishable by their locations. Other examples utilize 1-D systems, where the
increase in entropy favoring a distribution of localized fluctuations can dominate the de-
crease in energy favoring uniform interactions, so that thermal equilibrium often involves
dynamic heterogeneity. Because E uniquely accommodates contributions to energy and
entropy from local symmetry and internal fluctuations, E is essential for strict adherence to
the laws of thermodynamics across all size scales, especially behavior that emerges on the
scale of nanometers.

Adding Hill’s pair of conjugate variables to Equation (1), using the formal definition
of the subdivision potential E = (∂Et/∂η)St ,Vt ,Nt

, the fundamental equation of nanother-
modynamics becomes [12–14]

dEt = TdSt − PdVt + µdNt + Edη. (2)

Here, subscript t denotes extensive variables for the large ensemble of small systems,
which are related to the corresponding quantities for small systems (E, S, V, and N) by
Et = ηE, St = ηS, Vt = ηV, and Nt = ηN. In Equation (2), Edη adds finite-size effects
as a way that internal energy can be changed, even for large systems. As examples,
when a large system is subdivided into smaller subsystems, energy can change due to
interface energies, excitation confinement, increased fluctuations, local symmetry, etc.
More importantly, a large system can subdivide itself into an equilibrium distribution of
nanoscale regions (the nanocanonical ensemble), which yields heterogeneity consistent
with many measurements [36–49]. Although finite-size effects in internal energy cause
non-intensive µ and contributions to S that depend nonlinearly on N, the subdivision
potential also includes emergent finite-size effects that are unique to nanothermodynamics.
One way to obtain E is to integrate Equation (2) from η = 0 to η (with T, P, and µ held
constant), then divide by η, yielding the Euler equation for nanothermodynamics [12–14]

E = TS− PV + µN + E . (3)

Thus, although E is never an extensive variable, it is added to extensive terms to
give the total internal energy. Combining Equations (2) and (3) yields the Gibbs–Duhem
equation for nanothermodynamics dE = −TdS + VdP− Ndµ. Both E and dE are always
negligible in homogeneous and macroscopic systems. However, heterogeneity and other
finite-size effects usually involve non-extensive contributions to energy and entropy, so that
nonzero E and dE must be considered for fully-accurate results.

In ideal gases and other non-interacting systems, E comes entirely from entropy.
For interacting systems, subdividing into smaller regions adds interfaces that often increase
the energy; but the increase in energy from interfaces can be relatively small for large
regions, so that energy reductions from finite-size effects and increased entropy from
added configurations can favor subdivision. Examples of energy reductions include added
surface states and increased fluctuations towards the ground state. In fact, E provides the
only systematic way to maximize total entropy and consider all contributions to energy
that emerge from nanoscale thermal fluctuations, surface states, and normal modes that
are influenced by transient disorder. Furthermore, E facilitates treating local symmetry
by using the statistics of indistinguishable particles within each region, while particles in
neighboring regions are distinguishable by their separate locations. Solving Equation (3)
for the entropy yields

S/k = (E + PV − µN − E)/kT (4)

In much of Hill’s work, he focused on average contributions to E from small-number
statistics and surface effects in small systems, which can also be treated by including appro-
priate terms in the Hamiltonian. Here, we focus on how his small-system thermodynamics
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can be adapted to treat subsystems from nanoscale heterogeneity inside bulk samples.
In general, this nanothermodynamics may include contributions to energy that do not
appear explicitly in the Hamiltonian, instead emerging from nanoscale behavior in a way
that requires nanothermodynamics for a full treatment.

Figure 1 depicts four models for how a system can be subdivided into η = 9 subsys-
tems [17]. Each model assumes subsystems that are small (e.g., on the scale of nanometers),
and uncorrelated with other subsystems to yield an ensemble of small systems, which dif-
fers from ensembles of large systems often used to develop standard thermodynamics [1,2].
Furthermore, subdividing a large system differs from the original small-system thermody-
namics that is based on combining separate small systems to form a large system [12–14],
but also differs from the standard cellular method of subdividing a large system into cells
with interactions between the cells [56]. Often, intercellular interactions are added to allow
divergent correlation lengths near critical points. Thus, these intercellular interactions are
added to bypass a basic constraint from assuming constant-volume cells, which can be
avoided by using variable-volume regions in the nanocanonical ensemble. Our models
for uncorrelated small subsystems inside macroscopic samples match the original theory
of small-system thermodynamics, and mimic the measured primary response in most
materials [36–49].
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ensembles [17]. For small and fluctuating subsystems, full accuracy requires that the correct ensemble
be used for the specific constraints, which may depend on the type and time scale of the dynamics.

In Figure 1, the microcanonical (N,V,E) ensemble comes from assuming fully-closed
subsystems, separated by walls that are impermeable, rigid, and insulating, fully isolating
every subsystem from its environment, thereby conserving the number of particles, volume
and energy of each subsystem. The canonical (N,V,T) ensemble comes from assuming
subsystems separated by walls that are impermeable and solid, but thermally conducting,
allowing heat to pass freely in and out, so that energy fluctuates and T replaces E as
an environmental variable. The grand-canonical (µ,V,T) ensemble comes from assuming
subsystems separated by solid diathermal walls that are permeable, allowing particles to
exchange freely between regions, so that the number of particles fluctuates and µ replaces N
as an environmental variable. The nanocanonical (µ,P,T) ensemble comes from fully-open
regions, separated by “interfaces” that are diathermal, permeable, and flexible, so that
volume can change as particles and heat pass in and out, allowing density to be optimized.
In this nanocanonical ensemble, spontaneous changes in η occur except at the extremum
where total energy is minimized, E = (∂Et/∂η)St ,Vt ,Nt

= 0. This E = 0 condition also gives
the equilibrium distribution and average size of the regions [57]. Although in general
lim

N→∞
E/N = 0, usually E = 0 only at equilibrium in the nanocanonical ensemble.
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Various physical mechanisms could cause abrupt interfaces between regions. For semi-
classical systems, such as an ideal gas, interfaces could correspond to where wavefunction
decoherence breaks the quantum-exchange symmetry, allowing atoms in separate regions
to be distinguishable by their distinct locations. Similarly, because ferromagnetic interac-
tions require quantum exchange, realism in the standard Ising model (where each spin is
assumed to be localized to a single site) can be improved by allowing quantum exchange
between spins that are delocalized over a region. Because quantum coherence is unlikely
to occur across an entire ferromagnetic sample, abrupt decoherence of local wavefunc-
tions could again define an interface between regions. Such abrupt decoherence may be
facilitated by time-averaging: fluctuations within different regions occur at different rates,
so that mutual interactions across interfaces are soon averaged to zero. In any case, several
experimental techniques have established that such dynamical heterogeneity dominates
the primary response of most materials [36–49], consistent with nanoscale regions having
relaxation rates that can differ by orders of magnitude across abrupt interfaces [58–60]. An-
other way to form regions may involve fluctuations in particle density due to anharmonic
interactions, consistent with MD simulations [50]. In any case, the nanocanonical ensemble
removes all external constraints from inside the system, allowing bulk samples to find their
thermal equilibrium distribution of internal regions.

One explanation for why Hill’s crucial contribution to conservation of energy has
escaped broad attention is that its influence can be subtle. For example, despite the concep-
tual similarities between Edη and µdN, the magnitude of E is often less than the magnitude
of µ. However, only changes in energy are relevant to Equation (2). For example, systems
with a fixed number of particles have µdN = 0. Furthermore, one of the most important uses
of chemical potential is when µ = 0, yielding the thermal equilibrium of systems that have
no external constraints on N, such as for phonon or photon statistics. Similarly, perhaps the
most important use of the subdivision potential is when E = 0, used for the nanocanonical
ensemble and thermal equilibrium of systems that have no external constraints on their
internal heterogeneity [57]. In the theory of an ideal gas (Section 5.1), E contributes less than
6% to the total entropy per particle, whereas E controls 100% of the internal heterogeneity
that is prohibited in standard thermodynamics. Indeed, the importance of E comes not
from its magnitude, but from its broad applicability to a wide range of situations. In fact,
because Hill’s E is necessary for describing thermal heterogeneity and local equilibrium
inside most systems, even without external changes, E may have a broader impact than
many other parameters in thermodynamics.

Nanothermodynamics was first applied to macroscopic systems in a mean-field
model of glass-forming liquids [15]. The model provides a unified picture for stretched-
exponential relaxation and super-Arrhenius activation in terms of a phase transition that is
broadened by finite-size effects. Another early application also utilized mean-field theory
in the nanocanonical ensemble to explain non-classical critical scaling measured in ferro-
magnetic materials and critical fluids [16]. This mean-field cluster model treats Ising-like
spins with mean-field energies that are heterogeneously localized within nanoscale regions,
unlike the usual assumption of homogeneous interactions throughout macroscopic sam-
ples. Local mean-field energies may come from interactions that are time averaged within
each region, or location averaged across the region, attributable to exchange interactions
that occur only between particles within each region. The model gives excellent agreement
with many measurements, including at temperatures just above the critical point where
measured critical exponents increase as T is increased [17,61], opposite to the monotonic
decrease predicted by homogenous theories and simulations [62]. The mean-field cluster
model matches the measured T dependence of effective scaling exponents using µ/kT as a
basic constant for each system, instead of the non-classical scaling exponent as an empirical
parameter. Here, we utilize the 1-D Ising model to obtain analytic expressions for idealized
thermal behavior, without adjustable parameters.
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4. Extending Statistical Mechanics to Treat Multiscale Heterogeneity

Standard statistical mechanics usually starts by calculating a partition function from a
simplified model of a physical system. These partition functions are obtained by Legendre
transforms [26,63] that involve summing (or integrating) over all possible states of the
model, weighted by the probability of each state. An example is the canonical ensemble
partition function

QN,V,T = ∑E ΩN,V,Ee−E/kT (5)

Equation (5) is used to calculate the Helmholtz free energy A = −kT ln Q, the chemical
potential µ = (∂A/∂N)V,T , and the average internal energy

E = ∂ ln Q/∂(−1/kT) (6)

A second Legendre transform yields the partition function for the grand-canonical
ensemble

Ξµ,V,T = ∑E,N ΩN,V,Ee−E/kTeµN/kT , (7)

which gives the grand potential Φ = −kT ln Ξ and average number of particles N =
−(∂Φ/∂µ)V,T . Because nanothermodynamics includes non-extensive contributions to
energy, it allows a third Legendre transform into the nanocanonical ensemble

Yµ,P,T = ∑N,VE ΩN,V,Ee−E/kTeµN/kTe−PV/kT , (8)

which yields the subdivision potential E = −kT ln Y. Alternatively, the subdivision poten-
tial can be found by removing all extensive contributions to the internal energy, as given
by Equation (3).

Most examples presented here are based on the 1-D Ising model for binary degrees
of freedom (“spins”). The model was originally used by Ernst Ising [64] in an attempt to
explain ferromagnetic phase transitions using spins with a magnetic moment, m. Binary
states of the spins come from assuming that they are uniaxial, constrained to point either
“up” (m in the +z direction) or “down” (m in the –z direction). Ising’s model applies equally
well to other systems having binary degrees of freedom, such as the interacting lattice
gas of occupied or unoccupied sites, or the binary alloy of two types of atoms on a lattice.
The standard 1-D model in the thermodynamic limit, solved by Ising in 1925, does not
have a phase transition until T = 0. Onsager’s tour-de-force treatment of the Ising model
in 2-D was the first analytic solution of a microscopic model to show a phase transition at
T > 0. Note, however, because Onsager’s solution assumes an infinite homogenous system
in a specific ensemble, where each spin is distinguishable by its location without exchange
between neighboring sites, it may not apply to most real systems. Nevertheless, as the
simplest microscopic model having a thermal phase transition, the Ising model remains
widely studied to investigate how statistical mechanics can be used to yield thermodynamic
behavior. Because the spins are fixed to a rigid lattice, P and V play no role in the energy,
replaced by the conjugate variables of magnetic field (B) and total magnetic moment
(Mt = ηM). For the simple models presented here, B = 0, so that only two environmental
variables are needed to define the ensemble. The canonical ensemble partition function
becomes

QN,T = ∑E ΩN,Ee−E/kT (9)

As before, A = −kT ln Q gives the free energy, and Equation (6) the average internal
energy. Similarly, the nanocanonical partition function is

Yµ,T = ∑N QN,TeµN/kT (10)
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with the subdivision potential E = −kT ln Y. Alternatively, as with Equation (3), E can
be obtained from the Euler equation by solving for the non-extensive contributions to the
internal energy

E = TS + µN + E (11)

In what follows, we first describe nanothermodynamics for the semi-classical ideal
gas of noninteracting atoms. Subsequent examples involve the Ising model for interacting
uniaxial spins. We consider the usual case of spins that are distinguishable by their location,
but then treat spins that are indistinguishable in nanoscale regions, attributable to particle
symmetry due to an exchange interaction that is localized within each region.

5. Finite-Size Effects in the Thermal Properties of Simple Systems
5.1. Semi-Classical Ideal Gas

Thermal fluctuations and other finite-size effects are often assumed to negligibly
alter the average properties of large systems [65–67]. However, we now show that finite-
size effects may be necessary to find the true thermal equilibrium in systems of any
size. First focus on a large volume (V~1 m3) containing on the order of Avogadro’s
number of atoms (N~NA = 6.022 × 1023 atoms/mole). Assume monatomic atoms at
temperature T with negligible interactions (ideal gas), so that the average internal energy
comes only from their kinetic energy, E = 3N( 1

2 kT). Gibbs’ paradox [18–21] is often used to
argue that the entropy of such thermodynamic systems must be additive and extensive.
Nanothermodynamics is based on assuming standard thermodynamics in the limit of
large systems, while treating non-extensive contributions to thermal properties of small
systems in a self-consistent manner. Here, we review and reinterpret several results given
in chapters 10 and 15 of Hill’s Thermodynamics of Small Systems [13]. We emphasize that
sub-additive entropy, a fundamental property of quantum-mechanics [23,68], often favors
subdividing a large system into an ensemble of nanoscale regions, increasing the total
entropy and requiring nanothermodynamics for a full analysis.

Table 1 gives the partition function, fundamental thermodynamic function (entropy,
free energy, or subdivision potential) and other thermal quantities for an ideal gas of mass
m in the four ensembles of Figure 1, similar to the tables in [26]. (Subscripts on the entropy
and subdivision potential denote the ensemble.) Other symbols used in Table 1 include the
thermal de Broglie wavelength Λ = h/

√
2πmkT (where h is Planck’s constant), and the

absolute activity λ = eµ/kT . Table 1 elucidates several aspects of nanothermodynamics of
the ideal gas in various ensembles. The microcanonical partition function comes from the
multiplicity of microscopic states that have energy E. Partition functions in other ensembles
come from one or more Legendre transforms to yield other sets of environmental variables.
If the transform involves a continuous variable, it should be done using an integral over
the variable. However, if the variable is discrete (e.g., N), in nanothermodynamics it is
especially important to use a discrete summation, thereby maintaining accuracy down
to individual atoms, which also often simplifies the math and removes Stirling’s formula
for the factorials. Similarly, note that the chemical potential in the canonical ensemble is
calculated using a difference equation, not a derivative, so that again Stirling’s formula
can be avoided. Another general feature to be emphasized is that the variables shown in
the “Ensemble” column are fixed by the environment (e.g., types of walls surrounding a
subsystem); hence they do not fluctuate. In contrast, each conjugate variable fluctuates due
to contact with the environment, so that these conjugate variables are shown as averages.
Thus, as expected for small systems [14], it is essential to use the correct ensemble for
determining which variables fluctuate, and by how much.
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Table 1. Monatomic ideal gas.

Ensemble Partition Function Fundamental Thermodynamic Function and Variables

Microcanonical
(N,V,E)

Ω1 = V π
4

(
8m
h2

)3/2√
E

ΩN ≈ 1
N!

[
V
(

4πmE
3Nh2 e

)3/2
]N

Smc/Nk = 1
N ln(ΩN) ≈ 3

2 + ln(V) + 3
2 ln
[

4πmE
3Nh2

]
− 1

N ln(N!)

≈ 5
2 − ln

(
N
V

)
+ 3

2 ln
[

4πmE
3Nh2

]
− 1

N ln
(√

2πN
)

Emc/kT ≈ ln
(√

2πN
)

canonical
(N,V,T)

Q1 =
∫ ∞

0 Ω1e−
E

kT dE
= V/Λ3

Λ = h/
√

2πmkT
QN = QN

1 /N!

A/kT = − ln(QN)= −N ln(Q1) + ln(N!)
≈ N ln

(
NΛ3/V

)
− N + ln

(√
2πN

)
E = ∂ ln QN

∂(−1/kT) =
3
2 NkT

µ/kT ≡ − ln(QN+1/QN) = ln
(
Λ3/V

)
+ ln (N + 1)

Sc/Nk =
(
E− A

)
/NkT ≈ 5

2 − ln
(

NΛ3/V
)
− 1

N ln
(√

2πN
)

Ec = Emc

grand canonical
(µ,V,T)

Ξ = ∑∞
N=0

1
N!

[
V
Λ3

]N
λN

λ = eµ/kT

Φ/kT = − ln(Ξ) = −Vλ/Λ3

N = −∂Φ/∂µ = Vλ/Λ3

λ = eµ/kT = NΛ3/V → µ/kT = ln
(

NΛ3/V
)

Sgc/Nk =
(
E−Φ− µN

)
/NkT = 5

2 − ln
(

NΛ3/V
)
Egc = 0

Nanocanonical
(µ,P,T) Y =

∫ ∞
0 e

V
Λ3 λ e−

PV
kT

[
P

kT

]
dV

Enc/kT = − ln(Y) = ln
[
1− kTλ/PΛ3]

N = λ∂ ln(Y)/∂λ =
(
kTλ/PΛ3)/[1− kTλ/PΛ3]→

kTλ/PΛ3 = N/
(

N + 1
)
Enc/kT = − ln

[
N + 1

]
Snc/Nk =

(
E + PV − µN − Enc

)
/NkT =

5
2 − ln

(
NΛ3/V

)
+ 1

N
ln
(

N + 1
)

Now focus on the entropy. Recall that the Sackur–Tetrode formula for the entropy
of an ideal gas is S0/k = 5N/2 − N ln

[
NΛ3/V

]
. Note that to make this entropy ex-

tensive, the partition function is divided by N!, which assumes that all atoms in the
system are indistinguishable, usually attributed to quantum symmetry across the entire
system. However, the need to use macroscopic quantum mechanics for the semi-classical
ideal gas remains a topic of debate [18–21]. Table 1 shows that in nanothermodynam-
ics, entropy is non-extensive due to contributions from subtracting the subdivision po-
tential S/k = S0/k − E/kT (see Equation (4)). For example, in the canonical ensemble
Ec/kT ≈ ln

√
2πN, which comes from Stirling’s formula for N!. Because the Legendre trans-

formation from N to µ is done by a discrete sum over all N, Stirling’s formula is eliminated
from the grand-canonical and nanocanonical ensembles. Instead, a novel non-extensive
contribution to entropy arises in the nanocanonical ensemble from Enc/kT = − ln

(
N + 1

)
.

Because this negative subdivision potential is subtracted from S/k, the entropy per particle
increases when the system subdivides into smaller regions. This entropy increase appears
only in the nanocanonical ensemble, where the sizes of the regions are unconstrained, a fea-
ture that is unique to nanothermodynamics. Figure 2 is a cartoon sketch of how net entropy
may change if a single system subdivides into subsystems: decreasing if subsystems are
constrained to have fixed V and N (canonical ensemble), but increasing if subsystems have
variable V and N (nanocanonical ensemble). As expected, total entropy increases if most
atoms can be distinguished by their nanoscale region, even if they may soon travel to other
regions to become indistinguishable with other atoms. In fact, for the semi-classical ideal
gas, the fundamental requirement of sub-additive quantum entropy [23,68] is found only
in the nanocanonical ensemble.
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Figure 2. Crude characterization of a system (top row) and its multiplicities for two types of
subdivision. The particles (dots) can be on either side of the system, but must be in separate volumes
for fixed N in canonical subsystems (second row). Nanocanonical subsystems have variable N,
and variable V, increasing the net entropy.

The subdivision potentials from Table 1 can be used to obtain the non-extensive cor-
rections to entropy of specific atoms in various ensembles. As an example, consider one
mole (N = 6.022 × 1023 atoms) of argon gas (mass m = 6.636 × 10−26 kg) at a temperature of
0 C (T = 273.15 K), yielding the thermal de Broglie wavelength Λ = h/

√
2πmkT ≈ 16.7 pm.

At atmospheric pressure (101.325 kPa), the number density of one amagat (N/V = 2.687 ×
1025 atoms/m3) gives an average distance between atoms of (V/N)1/3 =

(
V/N

)1/3 ≈
3.34 nm, and a mean-free path of ` = (V/N)/

(√
2πd2

)
≈ 59.3 nm (using a kinetic

diameter of d = 0.376 nm for argon). Under these conditions the Sackur–Tetrode for-
mula predicts a dimensionless entropy per atom of S0/Nk = 5/2− ln

[
Λ3N/V

]
≈ 18.39

(equal to 152.9 J/mole-K). In the canonical ensemble the subdivision potential is posi-
tive, Ec/kT ≈ ln

(√
2πN

)
, so that when subtracted from the Sackur–Tetrode formula the

entropy is reduced. Although the magnitude of this entropy reduction per atom is micro-
scopic, Ec/NkT = 4.70 × 10−23, even such a small reduction is used to justify the standard
thermodynamic hypothesis of a single homogeneous system. However, the hypothesis
breaks down if subsystems are not explicitly constrained to have a fixed size. Indeed,
regions in the nanocanonical ensemble have a sub-additive entropy that increases upon
subdivision. Specifically, Enc/kT = − ln

(
N + 1

)
is negative when N > 0, confirming that

any system of ideal gas atoms favors subdividing into an ensemble of regions whenever
the size of each small region is not externally constrained. Thermal equilibrium in the
nanocanonical ensemble is usually found by setting Enc = 0 [57], yielding N → 0 and
an increase in entropy per atom of: −Enc/NkT = lim

N→0
[ln
(

N + 1
)
/N] = 1, about 5.4% of

the Sackur–Tetrode component. However, the Sackur–Tetrode formula has been found
to agree with measured absolute entropies of four monatomic gases, with discrepancies
(0.07–1.4%) that are always within two standard deviations of the measured values [69].
Thus, the experiments indicate that N >> 1 in real gases, presumably due to quantum
symmetry on length scales of greater than 10 nm. For example, if quantum symmetry
(indistinguishability) occurs for atoms over an average distance of the mean-free path
(` = 58.3 nm), then N = `3(N/V) ≈ 5600 atoms. Now the subdivision potential per atom
yields −Enc/NkT = ln

(
N + 1

)
/N ≈ 0.0015, well within experimental uncertainty. In any

case, nature should always favor maximum total entropy, no matter how small the gain,
so that the statistics of indistinguishable particles may apply to semi-classical ideal gases
across nanometer-sized regions, but not across macroscopic volumes.

Having N � N for a semi-classical ideal gas implies that many atoms can be distin-
guished by their local region within the large system. Thus, as expected, a large system of
indistinguishable atoms can increase its entropy by making many atoms distinguishable
by their location. Furthermore, because the nanocanonical ensemble allows fluctuations
around V, local regions may adapt their size and shape to encompass atoms that are close
enough to collide, or at least to have wavefunctions that may overlap, which is the usual
criterion for the onset of quantum behavior.
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Figure 3 is a cartoon sketch depicting two ways of mixing gases from two boxes, with
the color of each box representing the particle density of each type of gas. The upper-
left sketch shows two boxes containing different gases, but with the same volume and
particle density, that combine irreversibly with a large increase in entropy due to mix-
ing, whereas the lower-left sketch shows two identical boxes containing the same type
of gas that combine reversibly, with negligible change in total entropy. First consider
the upper-left picture showing boxes with the same volume V, but different types of
gases. Let one box contain N1 particles of ideal gas 1, and the other box N2 = N1 par-
ticles of ideal gas 2, so that when combined, both specific densities are halved, e.g.,
N1/(V + V) = 1

2 N1/V. The Sackur–Tetrode formula yields an increased entropy from

mixing: ∆S0/k = N1

{
5/2− ln

[
Λ3N1/(V + V)

]}
+ N2

{
5/2− ln

[
Λ3N2/(V + V)

]}
−

N1

{
5/2− ln

[
Λ3N1/V)

]}
− N2

{
5/2− ln

[
Λ3N2/V

]}
= (N1 + N2) ln 2. This entropy of

mixing dominates all ensembles. In fact, because the subdivision potentials in Table 1
depend on the number of particles in the system, but not on the volume, finite-size effects
in the entropy are unchanged by mixing two types of gases. Specifically, for the canonical
ensemble: ∆Sc/k ≈ ∆S0/k − 2 ln

[√
2πN1

]
+ ln[

√
2πN1] + ln

[√
2πN2

]
= ∆S0/k. Simi-

larly, for the nanocanonical ensemble: ∆Snc/k = ∆S0/k + 2 ln
(

N + 1
)
− ln

(
N + 1

)
−

ln
(

N + 1
)
= ∆S0/k.
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Figure 3. Sketch showing the process of combining two dissimilar semi-classical ideal gases (upper
left), or two similar systems of semi-classical ideal gas (lower left). Although total particle density is
constant in both cases, entropy increases due to mixing if dissimilar gases are combined.

Next consider the lower-left picture in Figure 3 showing identical boxes, each of vol-
ume V with N1 particles of ideal gas 1. When the boxes are combined, the particle density
does not change (N1 + N1)/(V + V) = N1/V. From the Sackur–Tetrode formula for effec-
tively infinite systems of indistinguishable particles, the total entropy also does not change:
∆S0/k = (N1 + N1)

{
5/2− ln

[
Λ3(N1 + N1)/(V + V)

]}
− 2N1

{
5/2− ln

[
Λ3N1/V

]}
= 0.

Adding finite-size effects to the canonical ensemble (row 2 in Table 1), combining identical
systems increases the total entropy: ∆Sc

k ≈ ∆S0
k − ln[

√
2π(N1 + N1)] + 2 ln

[√
2πN1

]
=

ln
[√

πN1
]
. Quantitatively, if each box initially contains one mole of particles, then N1 =

6.022 × 1023 yields ∆Sc/k ≈ 27.95. Although the entropy increase per particle is extremely
small, any increase in entropy inhibits heterogeneity in bulk systems, supporting the
standard thermodynamic assumption of large homogeneous systems. However, this en-
tropy increase applies only to ensembles having subsystems of fixed size. In contrast,
combining boxes in the nanocanonical ensemble decreases the total entropy. Specif-
ically, in thermal equilibrium at constant density, both N and V remain constant so
that N/V = N1/V, yielding a decrease in total entropy when boxes are combined:
∆Snc/k = ∆S0/k + ln

(
N + 1

)
− 2 ln

(
N + 1

)
= − ln

(
N + 1

)
. The per-particle entropy

change is again extremely small for large boxes, but the inverse process of subdividing into
small internal regions should proceed until the increase in per-particle entropy reaches its
maximum: lim

N→0
− ∆Snc/Nk = 1. As previously discussed (following Figure 2), the fact

that real gases do not show such deviations from the Sackur–Tetrode formula [69] implies
N � 1; but any increase in entropy is favored by the second law of thermodynamics, and
required by a fundamental property of quantum mechanics for sub-additive entropy [23,68].



Symmetry 2021, 13, 721 13 of 26

Moreover, similarly uncorrelated small regions are found to dominate the primary response
measured in liquids and solids [36–49].

To summarize this subsection, all ensembles yield primary contributions to entropy
that match the Sackur–Tetrode formula for combining ideal gases. However, nanother-
modynamics allows an ideal gas to maximize its entropy and mimic measured changes
in entropy, without resorting to macroscopic quantum behavior for semi-classical ideal
gas particles that may be meters apart, and therefore distinguishable by their location.
Furthermore, because the nanocanonical ensemble allows the number of particles in a
particular region to fluctuate, the number of indistinguishable particles in a specific region
may be N >> 1, due to particles that are close enough to collide, or to have coherent wave
functions. In any case, nature favors maximizing the total entropy whenever possible using
any allowed mechanism. Hence, a novel solution to Gibbs’ paradox comes from including
finite-size effects in the entropy of ideal gases, without requiring quantum symmetry for
macroscopic systems. This fundamental result stresses the importance of treating energy,
entropy, and symmetry across multiple size scales, which requires nanothermodynamics
for a fully-accurate analysis.

5.2. Finite Chain of Ising Spins

Simple models of magnetic spins provide a basic scenario for studying finite-size
thermal effects between interacting particles. The fundamental equation of nanothermody-
namics for reversible processes in magnetic systems is given in Figure 4. As in Equation (2),
the equation in Figure 4 gives changes in total internal energy of a macroscopic system
from changes in total quantities, plus finite-size effects from the subdivision potential,
E = (∂Et/∂η)St ,B,Nt

. Figure 4 also shows a set of cartoon sketches of energy-level diagrams
indicating how various contributions change the internal energy. Each sketch shows three
energy levels, with dots depicting the relative occupation of each level. The occupation of
these levels for an initial internal energy is shown by the left-most energy-level diagram.
The next three energy-level diagrams, from left-to-right, respectively, show that when done
reversibly: adding heat (TdSt) alters the relative occupation of the levels, doing magnetic
work (−MtdB) changes the energy of the levels, while adding spins (µdNt) increases the
occupation of all levels. The right-most energy-level diagram represents novel contribu-
tions to energy from the subdivision potential (Edη). Inside a system of fixed total size
(Nt), when the number of subsystems increases (dη > 0), the average subsystem size (N)
decreases, the energy levels may broaden from finite-size effects due to surface states,
interfaces, thermal fluctuations, etc. The subdivision potential in nanothermodynamics
uniquely allows systematic treatment of these finite-size effects, thereby ensuring that
energy is strictly conserved, even on the scale of nanometers.
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The Ising model for uniaxial spins (binary degrees of freedom) demonstrates the
power and utility of nanothermodynamics for finding the thermal equilibrium of finite-
sized systems. Exact results can be obtained analytically in 1-D in zero magnetic field,
B = 0, but first consider B > 0. Assume N Ising spins, each having magnetic moment m that
can align in the +B or −B direction, with interactions only between nearest-neighbor spins.
Let the spins favor ferromagnetic alignment, so that the energy of interaction (exchange
energy) is −J if the two neighboring spins are aligned, and +J if they are anti-aligned.
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The usual solution to the 1-D Ising model includes contributions to energy from mB and
from the exchange interaction, yielding the partition function [2,3]

QN,B,T ≈
{

eJ/kT cosh(mB/kT) +
[
e−2J/kT + e2J/kTsin h2(mB)

]1/2
}N

. (12)

If B = 0, the resulting free energy becomes

A = −kT ln QN,T ≈ −NkT ln[2cos h(J/kT)] (13)

The approximations in Equations (12) and (13) come from assuming large systems
with negligible end effects, or equivalently spins in a ring. However, most real spin systems
do not form rings, so that these equations are valid only in the limit of large systems,
N → ∞ . We now address finite-size effects explicitly.

Consider a finite linear chain of N + 1 spins, yielding a total of N interactions (“bonds”)
between nearest-neighbor spins [70]. It is convenient to write the energy in terms of the
binary states of each bond, bi = ±1. Using +J for the energy of anti-aligned neighboring
spins, and −J between aligned neighbors. The Hamiltonian is

E = −J ∑N
i=1 bi, with bi = {−1,+1}. (14)

Assuming x high-energy bonds (bi = −1), with (N − x) low-energy bonds (bi = +1),
the internal energy is E = −J(N − 2x). The multiplicity of ways for this energy to occur is
given by the binomial coefficient

Ω =
2N!

x!(N − x)!
= 2

(
N
x

)
. (15)

The factor of 2 in Equation (15) is needed to accommodate both alignments of neigh-
boring spins for each type of bond. The thermal properties of this finite-chain Ising model
in various ensembles are given in Table 2. Note that although the summation for the
nanocanonical ensemble starts at N = 0, because the number of spins is N + 1 every
region contains at least one spin, as required for spontaneous changes in the number of
subsystems [57]. Additionally, note that due to end effects, the Helmholtz free energy
from Table 2 for N − 1 bonds (N spins) is A = −(N − 1)kT ln[2 cosh(J/kT)] − ln 2, ap-
proaching Equation (13) only when N → ∞ . Thus, if an unbroken chain is forced to have a
macroscopic number of spins, all ensembles yield similar results. However, if the length
of the chain can change by adding or removing spins at either end, thermal equilibrium
requires the nanocanonical ensemble. As with the ideal gas, this nanocanonical ensemble
is the only ensemble that does not externally constrain the sizes of the regions, so that
the system itself can find its equilibrium average and distribution of sizes. From Table 2,
setting the subdivision potential to zero yields an average number of spins in each chain of:
N + 1 = cosh(J/kT) + 1. Thus, at high temperatures the average chain contains two spins
connected by one bond, whereas when T → 0 the average chain length diverges.
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Table 2. N + 1 Ising spins (N bonds) in zero field with x high-energy bonds (+J) and (N − x) low-energy bonds (−J).

Ensemble Partition Function Fundamental Thermodynamic Function and Variables

Microcanonical
(N + 1,x) Ω = 2N!

x! (N−x)!
Smc/k = ln(Ω) = ln[N!] + ln(2)− ln[x!]− ln[(N − x)!]
≈ N ln(N)− x ln(x)− (N − x) ln(N − x)− ln[

√
2πx(1− x/N)]

canonical
(N + 1,T) Q =

N
∑

x=0
Ω e

(N−2x)J
kT

A/kT = − ln(Q) = − ln[2(eJ/kT + e−J/kT)
N

]
= −N ln[2 cosh(J/kT)]− ln(2)
E/J = (2x− N) = −Ntan h(J/kT)
µ/kT = − ln[2cos h(J/kT)]
Sc/k =

(
E− A

)
/kT = −N(J/kT) tan h(J/kT)+ N ln[2 cosh(J/kT)]+ ln(2)

Nanocanonical
(µ,T) Y =

∞
∑

N=0
Q e

(N+1)µ
kT

Enc/kT = − ln(Y)
= ln

[
1
2 e−µ/kT − cosh(J/kT)

]
= 0→ µ/kT = − ln{2[cosh(J/kT) + 1]}

N + 1 = ∂ ln(Y)/∂(µ/kT)
= 1

2 e−µ/kT = cosh(J/kT) + 1→ µ/kT = − ln
{

2
[
N + 1

]}
Snc/k =

(
E− µN − Enc

)
/kT =

−N(J/kT) tan h(J/kT) + N ln{2[cosh(J/kT) + 1]}

As expected, Table 2 shows that the entropy of Ising spins increases with decreasing con-
straints, so that again (as in Table 1) the nanocanonical ensemble has the highest total entropy.
Specifically, the entropy per bond in the nanocanonical ensemble exceeds that in the canonical
ensemble by the difference ∆S/Nk = (Snc − Sc)/Nk = ln{[cosh(J/kT) + 1]/ cosh(J/kT)}
− ln(2)/N = ln

[(
N + 1

)
/N
]
− ln(2)/N. At high T where N → 1 , ∆S/Nk→ 0 . At low

T where N � 1, ∆S/Nk ≈ 1/N − ln(2)/N → 0 . Numerical solution yields a maximum
entropy difference of nearly 6% (∆S/Nk = 0.0596601 . . . ) at kT/J = 0.687297 . . . where N =
2.25889 . . . Hence, Ising spins in the nanocanonical ensemble always have higher entropy
than if they were constrained to be in the canonical ensemble, but the excess is small at both
low, and high T. Nevertheless, if a mechanism exists to change the length of the system,
an infinite chain will shrink until there is on average N + 1 = cosh(J/kT) + 1 spins in each
region, thereby maximizing the entropy of system plus its environment with no external
constraints on the internal heterogeneity. In fact, because it can be difficult to fix the size of
internal regions, their size should vary without external constraints, limiting the usefulness
of the canonical ensemble for describing finite-size effects inside most real systems.

A key feature of the nanocanonical ensemble is that thermal equilibrium is found by
setting the subdivision potential to zero [57]. Indeed, Enc = 0 ensures that the system finds
its own equilibrium distribution of regions, without external constraint, similar to how
µ = 0 in standard statistical mechanics yields the equilibrium distribution of phonons and
photons, without external constraint. Specifically, because Enc is the change in the total
energy with respect to the number of subsystems, spontaneous changes in η occur unless
Enc = 0. However, Enc = −kT ln(Y) = 0 requires Y = 1 without any normalization, so that
all factors must be carefully included in the partition function. For example, suppose
that the factor of 2 in the numerator of Ω (Equation (15)) is ignored from neglecting the
degeneracy of each sequence of spins and its inversion. Because averages in the canonical
ensemble (e.g., E) are normalized by the partition function, they do not change, but the
average number of bonds in the nanocanonical ensemble becomes N = 2 cosh(J/kT), twice
the value of N = cosh(J/kT) from Table 2.

5.3. The Subdivided Ising Model: Ising-Like Spins with a Distribution of Neutral Bonds

Results similar to those for the finite-size Ising model in the nanocanonical ensemble
(Section 5.2) can be obtained in the canonical ensemble by modifying the Ising model to
include “neutral bonds,” from nearest-neighbor spins that do not interact. (Our model
differs from dilute Ising models [71] that assume empty lattice sites at fixed locations.)
Physically, neutral bonds may come from neighboring spins having negligible quantum
exchange (which suppresses their interaction), or from neighboring spins with uncorrelated
fluctuations so that their interaction is time averaged to zero. Again, start with the standard
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Ising model having N + 1 spins (N bonds), but now let there be η’ neutral bonds (yielding
η = η’ + 1 subsystems). In addition, let there be x high-energy bonds between anti-aligned
spins, leaving N − η’ + 1 − x low-energy bonds between aligned spins. Figure 5 shows a
specific configuration of 11 spins (N = 10 bonds) with x = 2 high-energy bonds (X), η’ = 3
neutral bonds (O), and N − η’ − x = 5 low-energy bonds (•). It is again convenient to write
the energy in terms of the bonds, which may now have three distinct states, yielding the
Hamiltonian

E = −J ∑N
i=1 bi, with bi = {−1, 0,+1}. (16)
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Figure 5. Sketch of 11 Ising-like spins in a chain connected by N = 10 bonds. Here, η’ = 3 bonds are
neutral (O) (yielding η = 4 regions), x = 2 bonds are high-energy (X), and N − η’ − x = 5 bonds are
low energy (•).

The internal energy of the system is E = −J(N − η′ − 2x). The canonical ensemble
involves two sums. The first sum is over x for fixed η’, with a multiplicity given by the
trinomial coefficient for the number of ways that the high- and low-energy bonds can
be arranged among N − η’ interacting bonds. An extra factor of 2η’ arises because each
neutral bond has two possible states for its neighboring spin. This first sum yields a type
of canonical ensemble for the system with fixed η’. A second sum is over all values of η’.
The multiplicity is given by the binomial for the number of ways that the neutral bonds
can be distributed, which arises from the trinomial after the first summation. The behavior
of this model is summarized in Table 3.

Table 3. N + 1 Ising-like spins with η’ neutral bonds (energy = 0), x high-energy bonds (+J), and N − η’ − x low-energy
bonds (−J).

Ensemble Partition Function Fundamental Thermodynamic Function and Variables

microcanonical
(N + 1,η’,x) Ω = 2N! 2η′

x!η′!(N−η′−x)!
Smc/k = ln(Ω) = ln[N!] + ln

(
2η′+1)− ln[x!]− ln[η′!]− ln[(N − η′ − x)!]

≈ N ln(N)− x ln(x)− η′ ln(η′/2)− (N − η′ − x) ln(N − η′ − x)

quasi-canonical
(N + 1,η’,T) Z =

N−η′
∑

x=0
Ω e

(N−η′−2x)J
kT

Z = 2N+1
[
cosh( J

kT

)
]N−η′N!/[η′!(N − η′)!]

N − η′ − 2x = ∂ ln Z/∂(J/kT) = (N − η′)tanh(J/kT)
E/J = −(N − η′ − 2x) = −(N − η′)tan h (J/kT)

canonical
(N + 1,T) Q =

N
∑

η′=0

N!
η′!(N−η′)! Z

A/kT = − ln(Q) = −(N + 1) ln(2)− N ln[1 + cos h(J/kT)]
N − η′ = cosh(J/kT)∂ ln Q/∂cos h(J/kT) =
N cosh(J/kT)]/[1 + cosh(J/kT)]
E/J = −(N − η′)tan h (J/kT) = −Nsinh(J/kT)/[1 + cosh(J/kT)]
Sc/k = −N(J/kT)sinh(J/kT)/[1 + cosh(J/kT)] + N ln[1 + cosh(J/kT)]

We now compare the results in Table 3 for the subdivided Ising model with those from
Table 2 for the finite-size Ising model. In the canonical ensemble, the average energy of
the subdivided system is higher (not as negative) as that of the finite system, as expected
when neutral bonds replace an equilibrium mixture of predominantly low-energy bonds.
However, the average energy per interacting bond (E from Table 3, divided by N − η′) is
−Jtanh(J/kT), the same as E/N from Table 2. Another similarity comes from using the
average number of subsystems, η′ = N/[1 + cosh(J/kT)], to obtain the average number
of spins in each region,

n =
N + 1
η′+ 1

=
1 + cosh(J/kT)

1 + [cosh(J/kT)]/(N + 1)
(17)
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Hence, in the limit of N → ∞ , Equation (17) gives n− 1 ≈ cosh(J/kT) for the average
number of bonds in the subdivided Ising model in the canonical ensemble, approaching
N = cosh(J/kT) from Table 2 for the finite-size Ising model in the nanocanonical ensemble.
In other words, if the initial system is large enough, both approaches to nanothermody-
namics are equivalent: a large ensemble of small systems (Table 2) and a large system that
is repeatedly subdivided into independent subsystems (Table 3). Furthermore, models
with distinct Hamiltonians—Equation (16) here for a system of three-state bonds and
Equation (14) for a system of two-state bonds—may yield equivalent results. However,
equivalence requires that the correct ensemble is used for each system, canonical ensemble
here for the subdivided Ising model, and nanocanonical in Section 5.2. Thus, the choice
of ensemble is crucial for obtaining fully-accurate behavior, even for systems that are in
thermal equilibrium and in the thermodynamic limit.

5.4. Finite Chains of Effectively Indistinguishable Ising-Like Spins

We now consider an Ising-like model with local symmetry from particle exchange
that allows nanoscale regions in the system to mimic the statistics of indistinguishable
particles. Although the standard Ising model assumes that each spin can be distinguished
by its location, the main mechanism causing ferromagnetism is the exchange interaction
that occurs only between indistinguishable particles. Finite-size effects on the scale of
nanometers inside bulk samples can be attributed to symmetry from particle exchange
that is spatially localized within regions, causing the heterogeneity that defines the re-
gions. Another consequence of particle exchange is that interaction energies are not static,
i.e., the alignment between neighboring spins is not fixed, which decreases the multiplic-
ity of degenerate energy states that become indistinguishable. Here, we discuss some
consequences of nanoscale symmetry on simple systems.

We again start with the finite-size Ising model comprised of a linear chain of N bonds
between N + 1 spins. The Hamiltonian (Equation (14)) yields the interaction energy E =
−J(N − 2x) for x high-energy bonds and (N − x) low-energy bonds. The average energy in
the canonical ensemble is given by

E = −J ∑N
x=0 Ω(N − 2x)e(N−2x)J/kT

∑N
x=0 Ωe(N−2x)J/kT

Ω =

 2
(

N
x

)
distinguishable

2 indistinguishable

(18a)
(18b)

The binomial coefficient for the multiplicity of distinguishable states, Equation (18a),
yields the usual expression for the average energy of the Ising model, E = −NJtanh(J/kT),
as given in Table 2. However, if excited states are distinguishable by their macrostate
(number of high-energy bonds x), but not by their microstate (location of each bond),
then most states have their degeneracy reduced. We assume that all energy states are
doubly degenerate, Equation (18b), attributable to the Pauli exclusion principle for spin- 1

2
particles, yielding results that are summarized in Table 4. Note that the average energy
mimics the Brillouin function, consistent with regions having degenerate discrete states.

Table 4. N + 1 Ising-like spins, N indistinguishable bonds: x high-energy bonds (+J) and (N − x) low-energy bonds (−J).

Ensemble Partition Function Fundamental Thermodynamic Function and Variables

microcanonical
(N,x) Ω = 2 Smc/k = ln(Ω) = ln(2)

canonical
(N,T) Q =

N
∑

x=0
Ω e

(N−2x)J
kT

A/kT = − ln(Q) = − ln{2sinh[(N + 1)J/kT]/sinh(J/kT)}
E/J = (2x− N) = −(N + 1)cot h[(N + 1)J/kT]+coth(J/kT)
µ/kT = ln[sinh(NJ/kT)]− ln{sin h[(N + 1)J/kT]}
Sc/k =

(
E− A

)
/kT

nanocanonical
(µ,T) Y =

∞
∑

N=0
Q e

(N+1)µ
kT

Enc/kT = − ln(Y) = ln[cosh(µ/kT)− cosh(J/kT)]= 0
µ/kT = −acosh[cosh(J/kT) + 1]

N + 1 =
√
[cosh(J/kT) + 1]2 − 1

Snc/k =
(
E− µN − Enc

)
/kT
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5.5. Entropy and Heat in an Ideal 1-D Polymer

Although adiabatic demagnetization provides a well-known connection between en-
tropy and heat in spin systems [4,41,72], this connection is often more familiar in the context
of ideal polymers. Furthermore, the basic behavior of the polymer can be experienced at
home using a rubber band [73]. Here, for a simplified analysis related to the 1-D Ising
model, we treat an ideal polymer comprised of freely jointed monomers (units) in 1-D [6].
Consider a polymer of N units, each of length a. Let one end of the 1st unit be freely
jointed (free to invert) about the origin (X = 0), with the far end of the Nth unit unconnected.
All other units have both ends freely jointed to neighboring units. For simplicity assume all
units are uniaxial (1-D), with x segments pointing in the –X direction and N − x segments
in the +X direction. The free end of the polymer is at position X(x) = (N − 2x) a. The multi-
plicity matches that of Equation (18a) for the standard Ising model, and Table 2 gives the

resulting microcanonical entropy Smc/k = ln
[

2
(

N
x

)]
. The elastic restoring force from

the entropy [1] is: F = − T ∆S/∆X Note that this model involves differences (not differen-
tials) because it is comprised of discrete polymer units in 1-D. Such discrete differences
circumvent Stirling’s formula, improving the accuracy, especially for small systems. For an
incremental shortening of the polymer ∆X = −2a, using half integers to best represent
the average values at each integer, the change in configurational entropy of the polymer

is ∆Smc/k = ln
[

N!
(x+ 1

2 )!(N−x− 1
2 )!

]
− ln

[
N!

(x− 1
2 )!(N−x+ 1

2 )!

]
= ln

[
N−x+ 1

2
x+ 1

2

]
. Solving for the

average number of negatively aligned units as a function of F gives x =
N+ 1

2 (1−e2aF/kT)
1+e2aF/kT ,

yielding the equilibrium endpoint of the polymer X(x) = (N + 1) atanh(aF/kT). At high-
temperatures X(x) ≈ (N + 1) a2F

kT , similar to the standard expression for the ideal 1-D
polymer if N >> 1.

This model shows a common characteristic of polymers under tension: their average
length varies inversely proportional to temperature. This decrease in X with increasing T,
opposite to the behavior of most other solids, arises from the dominance of configurational
entropy in polymers. Such length contraction can be observed by heating a rubber band
that holds a hanging mass, demonstrating a simple conversion of heat into work. The con-
verse conversion of work into heat can be experienced by the increased temperature of a
rubber band that is rapidly stretched while in contact with your lips. Cyclic heat-to-work
conversion is shown by the heat engine made from a wheel with rubber-band spokes,
where an incandescent lamp causes the wheel to rotate continuously [73]. The heat-to-work
mechanism comes from increased thermal agitation around the polymer, increasing its
entropy and coiling it more tightly. Similarly, the work-to-heat conversion involves energy
added to the heat bath when entropy is reduced as the polymer is stretched.

The purpose of this brief digression is to emphasize how changing the configurational
entropy of a polymer by changing its length alters the energy of the heat bath, thus altering
the entropy of the bath. We assume that an analogous change in the entropy of the polymer
during a fluctuation causes a similar exchange of entropy with the bath. In other words, we
assume that the heat bath cannot discern whether changes in entropy of a polymer are due
to external forces, or internal fluctuations. Next, we assume that equilibrium (reversible)
fluctuations occur with no net loss in entropy, so that the second law of thermodynamics is
strictly obeyed. Specifically, we make the ansatz that during equilibrium fluctuations the
entropy of the polymer plus the entropy of its local heat bath (SL(X)) never deviate from a
maximum value:

S(X) + SL(X) = Smax (19)

We now expand on the concept of local heat baths in nanothermodynamics [35,74] to
show how Equation (19) facilitates reversible fluctuations. In standard thermodynamics,
reversible processes must proceed at infinitesimal rates, allowing the system to couple
uniformly to the effectively infinite heat reservoir. However, many thermal fluctuations
are fast and heterogeneous. Nanothermodynamics is based on independent small systems,
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often with energy and entropy isolated from neighboring systems, consistent with the
energy localization and local T deduced from experiments [36–42] and simulations [50].
For the specific model presented here, imagine a large sample containing a polymer
melt. Let independent polymers (or their independent monomers [49,58]) and a local
heat bath occupy a nanoscale volume inside the sample. During fast fluctuations, each
volume is effectively isolated from neighboring volumes, conserving local energy and local
entropy (Equation (19)), characteristic of the microcanonical ensemble (upper-left boxes
in Figure 1). Note, however, that for fluctuations about equilibrium, the microcanonical
boxes would have a distribution of sizes and shapes, basically a frozen snapshot of the
lower-right regions in Figure 1. During sufficiently slow fluctuations, energy and particles
can transfer freely between variable volumes to maximize the total entropy and maintain a
thermal equilibrium distribution of regions in the nanocanonical ensemble. Thus, accurate
evaluation of thermal fluctuations often involves two ensembles, the fully-closed ensemble
for fast fluctuations, and the fully-open ensemble for slow fluctuations. Partially-open
ensembles (e.g., canonical and grand-canonical), which restrict the exchange of some
quantities but not others, are often artificially constrained. Specifically, because excess
energy is persistently localized during the primary response in liquids, glasses, polymers,
and crystals [36–42], sometimes for seconds or longer, particle exchange will usually
accompany these slow changes in energy. Therefore, the relatively fast transfer of energy
needed for a well-defined local temperature, without also changing size and particle
number, is unlikely for the primary fluctuations inside most realistic systems.

We now evaluate equilibrium fluctuations that include energy from configurational
entropy, which is often ignored in standard fluctuation theory. Let there be no external force
on the polymer, so that the average position of its endpoint is X(x) = 0, corresponding to
its maximum configurational entropy. From Equation (19), as S(X) decreases when X 6= 0,
SL(X) must increase, and vice versa. Quantitatively, using the microcanonical entropy
for the polymer (adapted from Table 2), allowing fast fluctuations that are localized and
reversible, the entropy of the local bath is:

SL(X) = Smax − ln(N!) + ln{[(N − X)/2]!}+ ln{[(N + X)/2]!} (20)

We assume that Boltzmann’s factor, commonly used to weight large-reservoir states,
also weights the local-bath states wL = eSL(X)/k. Thus, when thermally averaged, every
length of the polymer is equally likely, wL Ω = eSL(X)/keS(X)/k = eSmax/k. In other words,
maintaining maximum entropy during equilibrium fluctuations removes degeneracies
from systems of classical particles that have the same macrostate (e.g., same X, N, or E),
mimicking the statistics of indistinguishable particles. In previous work it has been shown
that removing the alignment degeneracy from systems with the same X yields 1/f -like
noise, with several features that match the low-frequency fluctuations measured in metal
films and tunnel junctions [17,74–76]. Here, we describe how removing the energy de-
generacy from systems with the same E yields similar 1/f -like noise at lower frequencies,
combined with Johnson-Nyquist-like (white) noise at higher frequencies.

5.6. Simulations of Finite Chains of Effectively Indistinguishable Ising-Like Spins

We explore consequences of including contributions from configurational entropy in
the total energy during equilibrium fluctuations. The manner in which we add this entropy
reduces the degeneracy of most energy states, mimicking the statistics of indistinguishable
particles, Equation (18b). We study the 1-D Ising model using Monte Carlo (MC) simula-
tions for the dynamics. The 1-D Ising model is used for simplicity, having its multiplicity
of energy states given exactly by the binomial coefficient in Equation (18a). Although MC
simulations are too simplistic for microscopic dynamics, they can accurately simulate slow
thermal processes around equilibrium [77,78]. A novel ingredient in our simulations is
to introduce a type of orthogonal dynamics, where changes in energy are independent of
changes in alignment. Specifically, each MC step conserves energy, or alignment, with no
step allowing both to change simultaneously. Such constraints on the dynamics can be jus-
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tified by the fact that energy and alignment contribute to distinct thermodynamic variables,
and each is governed by a separate conservation law. Analogous decoupling of degrees of
freedom has been found in supercooled fluids [79,80]. This orthogonal Ising model yields
a combination of 1/f -like noise at low frequencies, and white noise at higher frequencies,
similar to behavior often found in nature.

We start with a finite chain of Ising spins (Section 5.2), with ferromagnetic interaction
J between nearest-neighbor spins. The Hamiltonian is given by Equation (14). Consider
a state containing x high-energy bonds and N − x low-energy bonds. The interaction
energy of this state is E = −J(N − 2x), and its multiplicity is the binomial coefficient

Ω = 2
(

N
x

)
. Equilibrium behavior of this model in various thermodynamic ensembles

is given in Table 2, but these results restrict Boltzmann’s factor to include only the internal
energy from interactions. We now explore how adding the energy from configurational
entropy alters the behavior.

The Metropolis algorithm is often used to efficiently yield the Boltzmann distribution
of energy states in MC simulations. A standard MC simulation of the Ising model involves
choosing a spin at random, then inverting the spin if its change in interaction energy (∆E)
meets the Metropolis criterion

e−∆E/kT > [0, 1) (21)

where [0,1) is a random number uniformly distributed between 0 and 1. This criterion
comes from energy transfer with an ideal (effectively infinite and homogeneous) heat
reservoir due to changes in interaction energy; but crucial sources of energy from config-
urational entropy and the local thermal bath are neglected. We therefore add a second
criterion that must also be met if configuration changes

e−∆S(X)/k > [0, 1) (22)

where ∆S(X) = SL(X). Note that Equation (22) favors high entropy in the local bath, just as
Equation (21) favors high energy (and hence high entropy) in a large reservoir. Additionally,
note that Equation (19) gives SL(X) = Smax − S(X), the offset between the maximum
configurational entropy and its current value, not just the change in entropy between initial
and final states. Justification comes from the assumption that fast fluctuations involve local
properties that do not have time to couple to the large reservoir, and even localized thermal
process must not diminish the total entropy. Furthermore, S(X) for finite systems involves
nonlinear terms that cannot be reduced to linear differentials.

Symbols in Figure 6 show histograms of the energy from the Ising model at four
temperatures, using the standard Metropolis algorithm (open), and when contributions
from configurational entropy are added (solid). Solid curves come from the integrand in
the numerator of Equation (18a), showing that using Equation (21) alone yields the statistics
of distinguishable states, whereas dashed lines come from the integrand in the numerator
of Equation (18b), showing that adding Equation (22) yields behavior characteristic of the
statistics of indistinguishable states.

We now describe a dynamical sequence for simulating the Ising model which separates
energy-changing steps from alignment-changing steps, thereby separating the fundamental
laws of conservation of energy and conservation of angular momentum. For this orthogonal
Ising model, alignment is conserved using Kawasaki dynamics [81], where neighboring
spins exchange their alignments, or equivalently they exchange their locations without
changing their alignments. This exchange always conserves the net alignment, but net
energy often changes. Alternatively, alignment is changed without changing energy by
inverting only spins that have oppositely oriented neighbors. The simulation proceeds by
first choosing a spin at random from the chain, then randomly choosing whether to attempt
a spin exchange or a spin flip. If spin flip is chosen, and only if the spin’s neighbors are
oppositely aligned, then the spin is inverted, changing the net alignment without changing
the interaction energy. If instead spin exchange is chosen, and if the configurational-entropy
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criterion is met (Equation (22)), then one of its nearest-neighbor spins is chosen at random.
If exchanging the alignments of these two spins also meets the interaction-energy criterion
(Equation (21)) then spin exchange occurs, always preserving net alignment, but often
changing the interaction energy.
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Figure 6. Internal energy distributions from a 1-D Ising model with N = 50 bonds at four temperatures, given in the legend.
Symbols show histograms from simulations using the usual Metropolis algorithm that includes only interaction energy
(open), and when an offset entropy term is added (solid). Lines are fits to the data using the integrand in the numerator of
Equation (18a) (solid) or Equation (18b) (dashed).

Solid lines in Figure 7 show frequency-dependent power spectral densities (S(f ))
from simulations of the orthogonal Ising model (solid lines) and from measured flux
noise in a qubit (symbols) [82]. Simulated S(f ) comes from the magnitude squared of
the Fourier transform of time-dependent fluctuations in alignment. Note the general
feature that large chains exhibit a low-frequency 1/f -like regime that crosses over to a
white noise regime at higher frequencies. Thus, this model has a single thermodynamic
variable that exhibits both types of thermal noise that are usually found together in nature.
The basic mechanism involves slowly-fluctuating energy (with 1/f -like noise due to the
entropy-change constraint), which slowly modulates an envelope that limits the maximum
amplitude for the fast-fluctuating alignment. The orthogonal dynamics is crucial to prevent
all other intermixing between distinct thermodynamic variables.
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Figure 7. Frequency dependence of power spectral densities. Solid lines are from several simulations of an orthogonal Ising
model about an average temperature of kT/J ~ 200, with system size (N) given in the legend. Solid circles show measured
flux noise from a qubit [82]. The characteristic frequency (f 0) and amplitude of the simulations have been offset so that
N = 50 (red line) mimics the data, with no other adjustable parameters. The dashed line fitted to the N = 1000 simulation
has a slope of 0.92 ± 0.02, consistent with measurements of flux noise in qubits [83]. White noise (dotted line) occurs above
the crossover frequency, f > f c. The inset shows the N dependence of this f c.

Broken lines in Figure 7 show linear fits to the 1000-bond chain for the 1/f -like
(dashed) and white (dotted) noise regimes. The intersection of these lines (marked by
an arrow) yields the crossover frequency, fc(1000). The inset in Figure 7 shows the chain-
size dependence of this fc. Three distinct features shown by the simulations in Figure 7
mimic measured noise in quantum bits [82,83]: 1/f -like noise with a slope of magnitude
0.92 ± 0.02; S(f ) in smaller chains with discrete Lorentzian spectra; and white noise at
higher frequencies. Figure 7 also shows that there are two ways to reduce low-frequency
noise in the orthogonal Ising model. Specifically, at log(f/f 0) = 4 maximum noise occurs
when N ≈ 50. Noise decreases for larger N as fc shifts to lower frequencies, and decreases
for smaller N as 1/f -like noise saturates at low frequencies in small systems, avoiding
the divergence as f → 0 [76]. Thus, Figure 7 shows that the orthogonal Ising model
has fluctuations in alignment that yield measured frequency exponents for 1/f -like noise,
a crossover to white noise at higher f, and discrete Lorentzian responses; three distinct
features that mimic measured spectra.

6. Conclusions

The theory of small-system thermodynamics is needed to ensure conservation of
energy and maximum entropy in the thermal and dynamic properties of systems over
multiple scales, especially on the scale of nanometers. Here, we have emphasized that
this “nanothermodynamics” is also crucial for obtaining the thermal equilibrium of large
systems that can subdivide into an ensemble of independently fluctuating subsystems
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that we call “regions.” These regions are fully open—able to freely exchange energy and
particles between neighboring regions without external constraints—a unique feature of
the “nanocanonical” ensemble that is well defined only in nanothermodynamics. Several
results are presented to highlight various aspects of nanothermodynamics.

One result (Section 5.1) is to show how a large system of semi-classical ideal gas
“atoms” increases its net entropy by subdividing into an ensemble of small regions. Atoms
in each region are indistinguishable due to their proximity, but distinguishable from atoms
in neighboring regions due to their separate locations. Thus, the need for macroscopic
quantum symmetry for non-interacting point-like particles that may be meters apart is
avoided. Atoms become indistinguishable only if they occupy the same nanoscale region,
where they are close enough to have coherent wavefunctions, consistent with the usual
criterion for the onset of quantum behavior. If two macroscopic ensembles of these regions
are combined, they mimic the usual entropy of mixing for semi-classical ideal gas particles,
providing a novel solution to Gibbs’ paradox from finite-size effects in thermodynamics.
Careful analysis reveals that the sub-additive entropy found only in the nanocanonical
ensemble may be difficult to measure directly due to long-range correlations in real gases.
Nevertheless, because the total entropy decreases when an ideal gas is subdivided into
fixed volumes in the canonical ensemble, the fundamental property of quantum mechanics
requiring sub-additive entropy [23,68] also favors variable volumes in the nanocanonical
ensemble.

Other results presented here come from models based on Ising-like “spins,” which are
solved analytically in 1-D. One example (Section 5.2) is a chain of spins with variable length,
in thermal contact with an ensemble of similar chains, which lowers its free energy by
forming a nanocanonical ensemble comprised of chains with an equilibrium distribution
of all possible lengths. The average length approaches two spins (one bond) at high
temperatures, diverging to large systems only as the temperature goes to zero. Equivalent
behavior (Section 5.3) is found in the canonical ensemble for a three-state model in a single
chain of effectively infinite length. Section 5.4 describes the thermal behavior of a 1-D Ising-
like model comprised of spin states with constant multiplicity, attributable to the exchange
interaction between particles that makes many states indistinguishable. Sections 5.5 and 5.6
describe how similar results are obtained by including nanoscale contributions to energy
from configurational entropy during equilibrium fluctuations. Computer simulations
(Section 5.6) show that an Ising model with orthogonal dynamics (to separate changes
in energy from changes in alignment) exhibits three types of thermal noise often found
in nature. Specifically, the simulations show 1/f -like noise at low frequencies, Johnson-
Nyquist-like white noise at higher frequencies, with discrete Lorentzian modes visible for
sufficiently small systems.

In summary, nanothermodynamics provides a systematic way to calculate contribu-
tions to energy and entropy across multiple size scales. A general result is that the correct
ensemble is needed to describe the fluctuations, internal dynamics, and thermal equilibrium
of macroscopic systems, regardless of system size. Furthermore, different Hamiltonians in
specific ensembles can yield equivalent behavior, emphasizing the importance of including
all contributions to thermal energy, not just those from microscopic interactions. Another
result is a novel solution to Gibbs’ paradox that has quantum symmetry of semi-classical
ideal gas particles over length scales of nanometers, but not across macroscopic samples.
Additional insight into the thermal behavior of other systems may come from similarly
strict adherence to the laws of thermodynamics across multiple length scales.
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