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Abstract: The majority of the population identifies as right-hand dominant, with a minority 10.6%
identifying as left-hand dominant. Social factors may partially skew the distribution, but it remains
that left-hand dominant individuals make up approximately 40 million people in the United States
alone and yet, remain underrepresented in the motor control literature. Recent research has revealed
behavioral and neurological differences between populations, therein overturning assumptions of
a simple hemispheric flip in motor-related activations. The present work showed differentially
adaptable motor programs between populations and found fundamental differences in methods of
skill acquisition highlighting underlying neural strategies unique to each population. Difference
maps and descriptive metrics of coherent activation patterns showed differences in how theta
oscillations were utilized. The right-hand group relied on occipital parietal lobe connectivity for
visual information integration necessary to inform the motor task, while the left-hand group relied on
a more frontal lobe localized cognitive based approach. The findings provide insight into potential
alternative methods of information integration and emphasize the importance for inclusion of the left-
hand dominant population in the growing conceptualization of the brain promoting the generation
of a more complete, stable, and accurate understanding of our complex biology.

Keywords: theta oscillations; imaginary coherence; hand dominance; skill acquisition; graph theory

1. Introduction

Functional roles of distributed brain regions connected by dense axonal networks are
defined by their inputs and outputs [1,2]. The complex circuitry connecting brain regions
is a critically important aspect of brain function, enabling the coordination of distinctly
different brain areas. Brain functions support adaptable and complex movements. The
expression or suppression of movement is weighted by cognitive and sensory processes
that can be mathematically simplified and represented as a Bayesian inference, an out-
come weighted by two sources of information: the current sensory state and memories of
previous sensory states. Theoretical neuroscientists often include this Bayesian decision
theory to conceptualize an internal model that governs motor behavior and have shown
these mechanisms to be critical for learning new movements and skills [3–6]. The con-
tinuous and coordinated integration of sensory information, both about the environment
and the current state of the body, is presumably used to determine the appropriate set
of muscle forces needed to generate a desired movement or action. The coordination
between the nervous system and the musculoskeletal system enables the sensorimotor
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plasticity that fosters adaptability. Sensorimotor integration is a multifaceted fusion of
incoming signals condensed into one outgoing motor message. One of the factors to influ-
ence sensorimotor integration properties and processes is hand dominance. Prior work
has shown that left- and right-hand dominant individuals differ in their structural and
functional neural organization, overturning previously held assumptions of hemispheric
chirality [7]. Hand dominance is now understood to influence fundamental interactions
with the environment [8].

Functionally, hand dominance indicates an innate asymmetrical preference for the
use of one hand over the other. Structurally, hand dominance was associated with a
comparatively larger volume of the hand motor cortical area contralateral to the domi-
nant hand, however recent findings have found the changes in brain structure associated
with left handedness to be more subtle [9]. The matter, which is no longer conclusive,
highlights again, the lack of understanding regarding hand dominance preference. Behav-
iorally, left-hand dominant (LH) individuals tend to present as more bilateral compared
to right-hand dominant (RH) individuals [10–12]. Thus, neurologically, hand dominance
results in organizational tendencies influencing the networks that form the communication
pathways necessary for the signal transfer responsible for facilitating all complex thought
and behavior, including the acquisition and regulation of movement. A study examining
twins with different limb dominance found that bilateral occipital and frontal resting state
electroencephalographic (EEG) spectral power was a covariate of hand dominance [13].
Another study with left- and right-hand dominant participants observing images of left and
right hands executing a motor task found clear differences in neural activation patterns [14].
In this study by Kelly et al., RH individuals observing right- and left-handed task execution
exhibited connectivity patterns distinctly lateralized to the hemisphere contralateral to
the hand observed, whereas LH observers presented with a more bilateral distribution
of neural connectivity regardless of the hand observed [14]. Evidence now supports the
hypothesis of underlying difference in the neural networks of left- as compared to right-
hand dominant individuals. However, the exact nature and extent of how the populations
differ, and especially how hand dominance influences, or is influenced by, neurological
organization in the context of overt motor control and sensorimotor integration, is largely
unknown and unreported in the literature. This is in part due to the exclusion of the
left-hand dominant populations in motor control studies [15].

The arrangement of cortical networks enabling signal transfer and the propagation
of information is an area of active interest in neuroscience research. The nervous sys-
tem enables adaptation through neural coordination, organization, and neuromodula-
tion. Anatomical connections between brain areas provide the structural framework en-
abling all conscious thought and behavior. Mapping these neural networks to understand
brain function can provide information related to interregional information processing. The
current work was designed to examine the nature of the underlying functional, neuro-
biological differences driving limb preference in the context of motor performance. A
dynamic, visually-based force matching task involving dominant and non-dominant hands
was selected due to previous findings showing the two populations to have behavioral
differences [16]. Visual feedback was provided in real-time as movement errors in the
visual domain have been shown to influence cortical motor areas and shape neural activity
in motor and premotor regions [17–20]. Continuous EEG was used to capture coherent
neurological activations, allowing for the analysis of network activation patterns known
to undergo reconfiguration on multiple time scales, thus enabling observation of how
communication patterns change and develop with task repetition. The signal was pro-
cessed to enable the analysis of functional connectivity, a measure related to the temporally
dependent activation of distinct brain regions, representing transient relationships between
distinct neuronal populations. Cortical regions dynamically couple to form functional
networks that can be modeled as a set of mathematical dependencies between activations
of discrete neuronal populations or regions. Information encoded within oscillation pat-
terns serves to unite assemblies of neurons in either a state of activation or inhibition
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and can be measured from the EEG signal [21]. Each oscillatory cycle (wavelength) is a
temporal processing window, indicative of the initiation and termination of an encoded
message [21,22]. Generally, slower oscillations with longer cycle lengths (periods) can
transfer information to more remote locations, and often serve as global integrators. The
purpose of this study was to analyze the slow-wave theta band activity due to the novelty
of the task combined with practice and skill acquisition. Graph theory was applied to
represent the whole brain as a system and quantify interacting elements. In the context
of EEG, electrodes and underlying brain regions are defined as nodes with the edges
as measures of statistical association between the nodes. Graph Theory metrics, degree,
clustering coefficient, and global efficiency, were calculated to provide a description of the
network properties assigned to populations of hand dominance.

Based on the experimental design and the current state of the literature, our central
hypothesis was that the two hand dominant populations (LH and RH) would present with
different neural activation patterns. Specifically, we expected a more bilateral network
dispersion, with greater cross hemisphere communication for LH using both dominant
and non-dominant hands. We expected this bilateral activation to be reflected by a com-
paratively greater global efficiency. Conversely it was hypothesized that RH would have
more lateralized patterns expressed along the dominant hemisphere and decreased global
efficiency. We further expected that theta band connectivity would decrease with the
progression of trials, denoted by a diminished degree, for both groups. Finally, in the non-
dominant conditions, we expected the LH group would show a higher clustering coefficient
reflecting a more stable strategy as compared to the RH group using the non-dominant
left hand. What we found, was the two groups encoded the task differently, captured in
the differing patterns of theta connectivity. The different strategies imply different uses
of theta oscillations. Hand dominant groups were found to potentially optimize different
aspects of the task influencing tactics of skill acquisition.

2. Materials and Methods
2.1. Subjects and Experimental Design

Twelve left-hand dominant (9 female 3 male) and twelve right-hand dominant (4 female
8 male) individuals aged 18–35 participated in the study (Figure 1). Handedness was
determined by the Edinburgh Handedness Inventory [23], and potential participants with
a handedness score between −40 and +40 were considered ambidextrous and excluded
from the study. All participants self-reported as healthy with no previous neurological or
musculoskeletal injuries affecting upper extremity motor function, and all had normal or
corrected-to-normal vision. Experimental procedures were approved by the University and
Medical Center Institutional Review Board at East Carolina University, and informed con-
sent was obtained from all participants before participation. The inequitable distribution of
genders across the groups was not initially controlled for and do present a potential limita-
tion in the interpretation of the results. Gendered effects for hemispheric asymmetries have
been reported, however these findings between genders are subtle, only demonstratable
with much large sample sizes and are not directly related to the present task [24–26].

EEG data were collected during three conditions of a visually guided, handgrip force
modulation task. A 5′ × 3′ monitor displayed a target moving linearly along a repeating
trajectory (Figure 2). Subjects were instructed to use hand force scales (Innovative Sports
Training, Chicago, IL, USA) to control a cursor, also displayed in real-time, with the goal of
keeping the cursor within the target. Magnitude of force output correlated with the distance
from the origin; as the target moved further away from the origin, more force was required
to keep the cursor within the target. Target forces fell between the range of 0–6.25 N. Each
force trajectory pattern duration was approximately twenty-two seconds, with the target
moving at a pseudo constant rate of 1.6 cm/s to ensure that the participants were vigilant
in completing the task. This was accomplished with occasional points of mandatory contact
between target and cursor, if contact was not made, the target would pause until contact
was made and then it would continue along its trajectory. Participants completed ten
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consecutive trials with their dominant hand, ten consecutive trials with their non-dominant
hand, followed by ten consecutive trials with both hands simultaneously. The bimanual
condition followed the same pattern as both unimanual conditions with a single cursor
traversing between the two axes (horizontal and vertical) with each hand controlling the
direction practiced in the unimanual conditions. Between each trial, a six-second rest
period was sampled to collect baseline data. A minimum two-minute break occurred
between dominant, non-dominant, and bimanual conditions. The non-randomized order
of conditions was an effort to best mimic general strategies for learning; dividing a complex
task into simpler subtasks to be learned independently [27]. The dominant unimanual
condition served as a period for structural learning in which subjects explore how to
maximize information and assign errors. Maintaining the structure of the task applies the
skills acquired in structural learning to initiate parametric learning. This technique has
been used as a method to “speed up learning” [28–31].
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2.2. Data Analysis

EEG data were collected at 1 kHz using a 64-channel cap (Compumedics Neuroscan,
Charlotte, NC, USA) placed on the scalp in accordance with the international 10–20 system,
with impedance kept below 10 kΩ. Throughout the recording, events were marked using an
outgoing voltage pulse that was triggered with a conditional force and target threshold (if
<3 V & target 6= 0), marking the beginning and end of each trial. Continuous EEG data were
exported from the acquisition software (CURRY 7; Compumedics Neuroscan, Charlotte,
NC, USA), preprocessed with functions from the EEGLAB toolbox [32], and then analyzed
with custom Matlab software (The Mathworks, Natick, MA, USA). Data were cleaned
using high [1 Hz] and low [55 Hz] pass filters, linear detrended, and then referenced to the
average of the montage. Artifact subspace reconstruction [33] was used for the removal
of ocular and muscular artifacts. A Laplacian transform was applied as a spatial filter
to remove the potential for volume conduction artifact [34]. Data were downsampled to
250 Hz for subsequent analysis. A time-frequency wavelet decomposition was performed
on each trial of 21.875 s. with a 3–12 cycle range and 1 to 40 Hz minimum and maximum
frequency range. The complex cross-spectrum was calculated for each of the 62 channels
yielding a symmetrical matrix describing the correlation between all electrodes at each
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time point, and each frequency from 1 through 40 Hz. The first three trials (1:3) for each
condition (dominant, non-dominant, bimanual) and group (left hand dominant [LH] and
right hand dominant [RH]) were averaged to represent the early phase, while the final three
trials (8:10) were averaged to represent the late phase, the middle trials were not included
in the analysis. The real and imaginary coherence between all channel pairs were calculated
from the complex cross-spectrum for each of the trial bins (early, late, and baseline) and
conditions (unimanual dominant, non-dominant, and bimanual) [35]. A corrective factor
was applied to the imaginary coherence to account for artificial suppression of connectivity
values near true sources [36]. The absolute value of the corrected imaginary coherence was
taken and theta [4–7 Hz] was extracted from the signal and normalized against the baseline
data, for frequency-specific normalization.
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bimanual in purple; denoting the target path and force modulated direction of the cursor. Asterisk
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half of each LH and RH group used dominant hand for each horizontal and vertical direction.

2.3. Graph Theory Metrics

In an effort to understand the brain as a dynamic system, the whole brain was taken
into consideration and evaluated as a network. We employed a branch of mathematics,
graph theory, which focuses on the properties and behaviors of networks defined as systems
consisting of a set of nodes (electrodes) linked by edges (connections or interactions) [37].
As described above, we first determined connectivity profiles associated with the different
groups (LH and RH) and conditions to generate a profile of statistical dependency between
brain regions (nodes). This enabled the evaluation of how network elements interacted [38].
From these networks, we calculated several graph theory measurements. Degree, a node
parameter indicative of the number of links connected to a particular node, suggests a level
of interaction for that node with other nodes in the network. This allowed for indirect quan-
tification of network, or signal, density [39]. Degree was calculated by determining how
many connections each of the electrodes made with each other. Hubs were defined as nodes
possessing a degree of four or greater. The clustering coefficient metric determines the
local interconnectedness and has been associated with high local efficiency of information
transfer and stability [40]. The clustering coefficient was calculated as the faction of closed
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triangles among three nodes. Contrarily, global efficiency was established to determine
the connectedness of spatially distant regions that are necessary for the integration of
specialized information but may be costly in terms of energy and material [41]. Global
efficiency was computed by finding the distance between each of the connected nodes.
For each of the metrics, an average was taken for each of the groups per conditions and
time. Graph metrics are all depicted and reported as a way of quantifying the imaginary
coherence networks for each of the groups (figures located in Appendix A).

2.4. Statistics

No assumption could have been made about the underlying distribution of the data,
thus a nonparametric permutation statistical approach, based on the FieldTrip toolbox [42],
was taken. At the individual participant level, corrected imaginary coherence data were
used to create a null statistical distribution or a distribution that would be true if there was
no dependence on specific channel pairs in the actual distribution of connectivity estimates.
This was accomplished by randomly permuting electrode labels through 1000 permutations.
A Fisher’s Z-statistic map (Zmap) was then calculated. A critical value (t = 1.6449 for
p < 0.05) was then used to threshold the Zmap, therein removing values falling below the
critical value. The Zmap was then used to mask the true connectivity matrix, leaving only
connectivity values that were statistically reliable according to the permutation test. A
similar statistical permutation process occurred at the group level for comparisons of
interest. First, all thresholded individual adjacency matrices were made symmetrical and
then concatenated for two conditions (i.e., LH and RH). The true connectivity difference
was calculated as the difference of the means of the subject-specific connectivity matrices
across conditions. The null distribution was then calculated as above, after both group
and electrodes labels were shuffled through 1000 permutations. A similar process was
used to calculate a Zmap of the condition differences, and the true difference matrix was
thresholded to leave only connectivity values that were statistically reliable according to
the permutation test. Each comparison yielded two difference matrices depending on
the sign of the differences in the true difference matrix (e.g., Condition A > Condition
B and Condition B > Condition A). Post hoc t-tests were used to determine appropriate
testing of the graph theory metrics. With significance (p < 0.05) a mixed design repeated
measures ANOVA (factors and levels) was used to determine group, condition and time
differences, with significance set at p < 0.05. Effect size was calculated using Cohen’s d and
reported in the Results Section. Group variance was determined using standard error of
the mean, (SD/

√
(n)).

3. Results

Neurological findings are reported as differences maps with each group comparing
the significant coherence patterns and reporting the significant differences found between
the two conditions (Figure 3a). Importantly, the results discussed and displayed are not
expressing raw activation, but rather the patterns of connectivity that are different across
conditions. Weighted imaginary coherence maps depicting raw activation patterns for
each group, condition, and time bin, are located in Appendix A. The overall purpose of
the study was to identify patterns of cortical activation unique to left-hand dominant and
right-hand dominant individuals evoked upon the repeated performance of the dynamic
force regulation task with high levels of visuomotor integration. Graph network metrics
were applied to quantify the differences. Differences between LH and RH groups executing
the motor task are clear when looking within the theta frequency band. Importantly,
differentially adaptable motor programs are seen to be detectable on a 10-trial time scale.

Group conditions were separately evaluated in two phases, or time bins: an initial
phase (first three trials), and a final phase (last three trials) (Figure 3a). Generally, the
RH group (bottom portion of Figure 3a) had comparatively greater reliance on posterior
connectivity, suggesting a reliance on visual information to complete the task. The LH
group [top portion of Figure 3a] had comparatively more frontal connectivity suggesting
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a more cognitive strategy that relied on executive function. The network metrics were
calculated on each group’s connectivity matrix (not the permuted differences maps) and
are thus reflective of the actual activation patterns rather than descriptions of the permuted
differences between the groups. All network metric findings are displayed however, only
clustered coefficient and global efficiency were statistically allowed to be evaluated with a
post hoc t-test. The significantly different global efficiency findings allude to fundamentally
different neural strategies adopted by the two-hand dominant populations, a manifestation
of a different utilization of slow-wave theta oscillations.
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Figure 3. The large head plots labeled a. display differences across populations (LH-top RH-bottom) within the condition
and trial bins (initial (i) final (f) dominant hand (D) non-dominant hand (N) bimanual (B)). The smaller head plots labeled b.
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corresponding electrode.

3.1. Initial and Final—Dominant Hand (Condition 1)

The initial three trials of the task were executed with the dominant hand. The RH
group presented with differential bilateral connectivity, particularly along the posterior
occipital and parietal-occipital regions, as well as over the midline motor area. The LH
group had connectivity differences expressed anteriorly along the midline frontal area.
Both groups possess occipital lobe hub locations while only the LH group had a frontal
lobe hub. In the final dominant hand conditions, the RH group showed bilateral midline
posterior, midline, and frontal lobe connectivity that extended laterally. The LH group
showed a posterior shift in the frontal lobe connectivity, with an additional increase in LH
temporal lobe connectivity. The increase in global efficiency in the RH group is suggestive
of improved global integration.
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3.2. Initial and Final—Non-Dominant Hand (Condition 2)

The LH group using the non-dominant hand initially had a much more dispersed
bilateral connectivity pattern ranging between anterior and posteriorly as compared to the
RH groups using the non-dominant hand. The RH group appeared to adopt a very similar
strategy when using their dominant hand (difference maps of the same hand across time are
shown in Figure 3b), which is supported by the reemergence of hubs in the occipital lobe.
Transitioning into the later trials, the RH group again showed occipital lobe connectivity
extending anteriorly with a noteworthy right lateral parietal occipital network. The LH
group’s final non-dominant trials exhibited much more condensed connectivity differences
with an anterior–posterior shift of connectivity, with another connectivity shift toward the
right lateral hemisphere accompanied by a hub. A left lateral parietal occipital network also
remained, again marked with a hub. The LH group had a decreased clustering coefficient
between final dominant and non-dominant trials and increased global efficiency, which was
indicative of a generally diminished need for strategy stability. Rather, the group adopted
a stable neural activation strategy allotting for increase efficiency via global integration.
Alternately, the RH group had an increase in the clustering coefficient and decreased global
efficiency, suggestive of the need for signal stability rather than information integration.

3.3. Initial and Final—Bimanual (Condition 3)

The bimanual conditions did not present with fundamentally different connectivity
patterns that were engaged during unimanual trials. The LH group had a midline frontal
lobe pattern with lateral networks extending posteriorly. These networks diminished in
the final trials with increased midline activation extending into the midline motor regions.
The RH group again utilized bilateral occipital lobe connectivity, along with some posterior
frontal lobe connectivity with a left hemisphere consolidation. Additionally, the RH groups
had a marked increase in signal action particularly extending anteriorly from the occipital
lobe and along the left lateral hemisphere frontal lobe to the midline. Here again, the
network properties were shown to differ with the LH group showing an increase across
network metrics while the RH group showed an increase in global efficiency only.

3.4. Graph Network Metrics

The graph network metrics of degree (Figure 4), clustering coefficient (Figure 5) and
global efficiency (Figure 6) were modulated along with the coherent activity (Figure 3)
as the two groups expressed different patterns across trials and conditions. Between the
two groups, degree appeared to be diminished in the right-hand group compared to the
left-hand group across initial (Cohen’s d = 0.6591) and final (d = 0.8994) dominant hand
conditions. The clustering coefficient was significantly decreased in the final bilateral
condition from LH (0.06) to RH (0.04) (d = 0.1109). The global efficiency was significantly
different between groups in the initial dominant (LH: 0.14, RH: 0.12) (d = 0.5091), final
non-dominant (LH: 0.19, RH: 0.1) (d = 1.0532), and initial bilateral (LH: 0.15, RH: 0.17)
(d = 0.2540). The LH clustering coefficient decreased from final dominant to final non-
dominant hand conditions (d = 0.1109) while the trial progression from initial bimanual to
final bimanual experienced a significant increase in the clustering coefficient (r = 0.1400).
The global efficiency measure in the LH group was significantly increased with repetition
from the final dominant hand to initial non-dominant (d = 0.4690) and then to both initial
and final bimanual trials (d = 0.5569). This pattern was not seen to the same extent in
the RH group, who showed a global efficiency increase in the dominant (d = 0.8973) and
bimanual (d = 0.8419) hand conditions from initial to final trials but a decrease in the initial
to final non-dominant condition (d = 0.5790).
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4. Discussion

In the present study, we examined cortical communication strategies in left- and
right-hand dominant individuals and compared dynamic force tracking tasks guided by
visual input. Subjects completed 10 trials for each of the three conditions, using first their
dominant hand to modulate a cursor via dynamic force output, followed by their non-
dominant hand, and finally the bimanual modulation of a single cursor tracking the target
moving along the resultant trajectory of the two unimanual conditions executed just prior,
with each hand controlling the respective direction of the cursor assigned in the initial
unimanual conditions. The organization of the trials was intended to promote learning [28].
The first three trials were averaged as an early representation of motor strategy, and the
last three trials were averaged to represent the developed strategy after skill acquisition.
Communication pathways were determined using corrected imaginary coherence, and
results represent neural connectivity difference maps that highlight dissimilarities found
between groups, trials, and conditions.

Previous work has shown that LH and RH individuals exhibit outward behavioral
discrepancies and differences in connectivity patterns when observing actions [14]. Those
neurological differences could be simplified into hemispheric dichotomies. However, we
found that group differences in a dynamic motor execution task did not follow those from
the action observation-based studies. We hypothesized that theta band connectivity would
decrease with trial progression, which would be marked by a decreased degree. This was
not found to be generalizable for either group, although the LH group did have diminished
degree in both unimanual dominant hand conditions, due to the ANOVA, it did not
qualify for post hoc testing, and thus no further extrapolation is possible. The greater cross
hemispheric communication that we hypothesized would exist in the LH group was also
not explicitly supported; the LH group presented with comparatively greater frontal theta
midline activity and the RH group had comparatively greater bilateral occipital-parietal
activity, thus the finding could not be generalized into hemispheric tendencies or patterns.
The hypothesized greater global efficiency in the LH group was generally found to be
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supported; while not as simple as predicted, a statistically significant decrease across time
was found within the LH group and not in the RH group. Our hypothesis of increased
behavior of networks regarding degree and clustering coefficient was unfounded. While
these hypotheses were generally not supported, the findings do suggest that the network
metrics may be of value when evaluating skill acquisition. Our data suggest that initial
strategies between LH and RH dominant groups differed, and furthermore, that as the
trials progressed and cortical reorganization occurred, group strategies remained distinct.

The relatively slow rate of theta oscillations allows for long-range transfer of infor-
mation, necessary for global integration. However, even the slow-wave theta can have
rapid local influence necessary for error detection and correction [43–45]. As such, the
role of theta oscillations has been partly determined by location [44,46]. The presence of
frontal midline theta is reflective of cognitive control and error monitoring, while spatial
and memory encoding occurs posteriorly at the parietal occipital junction [43–45]. Theta
band oscillations have a well-established role in working memory [47–49], and theta os-
cillations localized over the frontal lobe with frontoparietal extensions have repeatedly
been suggested to reflect the transfer and integration of spatial information for the organi-
zation and maintenance of working and episodic memory [43–45]. In this theta function,
the predominant strategy for the LH group can be simplified to preferential use of the
frontal, particularly midline, activation pathways. Localized theta activity in this area
extending into the lateral prefrontal regions are associated with error detection and general
action monitoring [50]. The LH group’s early trials present with general dispersion over
the frontal lobe regions consolidating with task repetition, indicative of either decreased
error or increased monitoring efficacy [44]. While present throughout, the later trials in all
conditions had particularly concise connectivity over the medial frontal cortex, indicating
a shift out of working memory and evidence of positive skill progression [51]. There was a
slightly more anterior frontal focalization noticeable in the RH group, particularly in the
later trials across conditions which may be indicative of ongoing goal-directed behavior
and memory maintenance [48].

The visual nature of the motor task was expected to elicit parieto-occipital projections,
a pathway with known visual-spatial function [52,53]. The parietal cortex has a particular
role in sensory control of action coupled with activation of the occipital lobe in ongoing,
sequential, visually guided behavior [54,55]. Both groups were expected to show this
pattern, with a hypothesized greater bilateral involvement for LH and a comparatively
lateralized connectivity pattern in RH [14]. Both groups did show evidence of attending to
the task using visual input seen in occipital lobe connectivity with localized occipital lobe
hubs across conditions for the initial trial bins. However, individuals in the LH group did
not appear to use the parietal-occipital junction to the same extent as the RH group. The RH
group had a commonly expressed hub at the temporal-parietal junction, an area well known
for sensory integration [56], which may be related to the relationship between force output
and cursor position in the RH group. Individuals in the RH group differentially exhibited
classic activation patterns with known goal-directed spatial encoding functions [55]. This
“classic activation” pattern may be a function of the majority of previous studies being
exclusively conducted on right-handed individuals. While the LH group did initially
exhibit occipital based hub across conditions, the group appeared to adopt a strategy
based more on utilizing the ventral stream with some additional support of the dorsal
stream showing differential projections of left lateral to left midline activity. This pattern
is typically associated with transmitting visual information to the temporal lobe, often
relaying highly processed descriptive information. This is indicative of a LH strategy
that heavily relied on the visual information of the location or route of the target on the
screen, to dictate the motor action [35]. With repeated task execution, the visual information
became less influential, as seen by the decreased projections from the occipital lobe and
a shift toward the midline. This likely reflects increased utilization of the dorsal stream,
responsible for the decoding of spatial properties related to positional relations, motion
direction, and speed of movement [52,53].
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Based on the different patterns of theta connectivity, we suggest that LH and RH
groups encoded the task differently. With different strategies and different uses of theta os-
cillations, hand dominant groups potentially optimize different aspects of the task, therein
influencing skill acquisition tactics. The LH group presented with organized frontal mid-
line activity. The RH group presented with some anterior frontal midline connectivity
in the unimanual conditions that decreased in the dominant hand late trials, a pattern
not seen in the non-dominant condition. In fact, in the late trials for both non-dominant
and bimanual conditions, frontal theta activity appeared to increase, signifying ongoing
error monitoring. These patterns are indicative of the state of the task, with the LH group
expressing comparatively greater successful task encoding, while the RH group demon-
strated a continued reliance on the working memory and visual input. The binned group
averages of conditional graph metrics of theta connectivity patterns provide additional
insight as to the neural strategy differences.

Assessing the LH and RH groups’ raw connectivity patterns as a network, revealed
differences in how the networks organized and responded to the task. As the degree
or density of the coherent signal was modulated, either clustering coefficient or global
efficiency would generally mirror. For LH dominant individuals, increased degree would
yield an increase in the clustering coefficient. This nearly unanimous pattern suggests
that an increase in signal density was used to increase local stability, perhaps yielding
redundant or repetitive encoded messages. The increased global efficiency paired with
decreased degree further supports this idea; a stable communication pattern fosters the
emergence of a more efficient global integration of information. The slow oscillation of
theta allows for the long-range integration of information, and it appears that integration
was possible regardless of the condition. The activation networks of right-hand dominant
individuals reflected the properties of different parameters. Generally, an increase in degree
was followed by an increase in global efficiency and a decrease in clustering coefficient, the
inverse pattern was also seen. The functionality of these patterns suggests the priority of
global integration, perhaps associated with a reliance on propagating visual information.

Based on the quantification of network properties we can further speculate that LH in-
dividuals are more readily able to adapt and acquire the motor plan needed to successfully
complete and encode the unimanual non-dominant motor task. The diminished degree
and clustering coefficient paired with increased global efficiency between the final domi-
nant and initial non-dominant and final non-dominant conditions support this successful
transfer of motor strategy. In contrast, RH individuals had a less consistent modulation
of the network metrics, global efficiency was increased in the dominant and bimanual
conditions transitioning from initial to final trials but decreased between the initial to final
trials in the non-dominant condition. While the clustering coefficient decreased between
final dominant and non-dominant trial/conditions. Degree also behaved in a sporadic
fashion, taken together the network behavior in the RH group alludes to an inconsistent
strategy adopted by the RH individuals, with little progress maintained across conditions.

While both LH and RH groups showed a preference for distinct visual pathway net-
works, those were not the sole networks used. Taken together, the differential connectivity
patterns and network metrics reflect a cognitively demanding task with enduring error
monitoring, memory maintenance, and global and local integration. The rate of skill acqui-
sition appears to be different between the two groups with the RH group unable to readily
adapt to the use of their non-dominant hand as dexterously as their LH group counterpart.
The different theta activation patterns suggest alternate uses of the slow oscillation, which
is supported by the network metrics that were applied to the raw connectivity patterns that
emerged across trials and conditions per group. While showing a stable strategy that relied
on visual input integration, the RH group had less stable network parameters, seeming to
rely on signal density and global integration to provide task stability. Alternately, the LH
group had a more established progression relying on an increased clustering coefficient
to gain stability followed by signal consolidation prior to global integration, seen in the
inverse relationship of degree and global efficiency.
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These data suggest that LH and RH groups are using different optimization principles
as well as performance strategies. These findings provide evidence that hand dominance
influences strategies used to encode visual information necessary for hand motor output.
Individuals in the LH group utilized a right lateral pathway, a strategy that mediated the
organization of working memory, incorporating multiple components of information and
memory maintenance. Individuals in the RH group relied on visual information to develop
a strategy fit to the task. It follows that RH individuals, being in the majority population,
can readily rely on a strategy based on integrating visual information to acquire a motor
skill. Alternately, LH individuals, being in the population minority [57], may have found
that encoded visual motor transformations are less reliable, which necessitates additional
processing of visual feedback and more vigilant error monitoring when acquiring a motor
skill. Practically, this is (potentially) reflective of most motor tasks being demonstrated by
or designed for a right-hand dominant individual.

5. Conclusions

In nature, left-right asymmetry presents the rule rather than the exception, the universe
itself has been found to exert a left-handed bias on particles [58,59]. Many motor control
studies have examined functional regions of the brain in motor tasks, however, few have
included left-hand dominant individuals. While the study does shed some light on how the
two populations differ, it does more to highlight the unknown and validates the inclusion
of this population in further studies of motor control and learning.

LH and RH dominant groups did present with overt strategic differences seen in the
functional connectivity patterns of neural activity in the theta band. RH does appear to
rely on a strategy that enforces local stability, seen in the increased clustering coefficient for
all final trials and both bands. This strategy appears to be adopted with practice and was
not transferable across conditions. The LH group appears to have greater success in skill
transfer, showing a progressive increase in the clustering coefficient that continues after
the shift from the dominant to the non-dominant hand condition with the final condition
having a marked minimum in the theta band. This was interpreted as an expression of the
successful acquisition of the skill, no longer requiring ongoing error monitoring to the same
extent, or requiring the stability afforded by local interconnectedness. While changes were
detectable and significant the two groups did not convincingly appear to have developed a
fully stable motor pattern for the task. An extended study that incorporated multiple-day
task execution would likely produce a more robust depiction of how hand-dominance
influences the sensorimotor learning process.
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