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Abstract: We present a new analytical method to find the asymptotic stable equilibria states based
on the Markov chain technique. We reveal this method on the Susceptible-Infectious-Recovered
(SIR)-type epidemiological model that we developed for viral diseases with long-term immunity
memory. This is a large-scale model containing 15 nonlinear ordinary differential equations (ODEs),
and classical methods have failed to analytically obtain its equilibria. The proposed method is used
to conduct a comprehensive analysis by a stochastic representation of the dynamics of the model,
followed by finding all asymptotic stable equilibrium states of the model for any values of parameters
and initial conditions thanks to the symmetry of the population size over time.

Keywords: markov chain; random variable transformation technique; asymptotic stable equilibria
state; three age group SIIRD model

1. Introduction and Related Work

A large group of epidemiological models are extensions of the Susceptible-Infected-
Recovered (SIR) model [1]. These models were used for both prediction of the pandemic
spread and to find optimal intervention policies for multiple types of diseases, such as
polio [2], COVID-19 [3], ebola [4], and influenza [5]. These models use a wide range of anal-
yses and extensions for the SIR model to properly represent the epidemiological and biologi-
cal properties unique to each disease. One can use these models to obtain multiple interven-
tion policies and the properties of the pandemic dynamics [3], for example, to predict the
required number of intensive care units (ICU) to treat all severely infected individuals [6],
in order to estimate the influence of the pandemic on the economy [3,7]. Wang et al. [8]
provided a review of multiple intervention policies and modeling approaches for the pan-
demic spread, showing the advantage of the stochastic approach for SIR-type models as
compared to deterministic models in representing real-world dynamics.

However, as models become large, it becomes complicated to numerically solve them
and to obtain the model analytical properties. A specific property of interest is asymptotic
stable equilibria states [9]. The way of obtaining these steps is significantly dependent
on the system and its representation. For example, one can obtain the asymptotic stable
equilibria states of an ordinary differential equation (ODE) system numerically using a
proportional-derivative controller [9]. On the other hand, one may use analytical methods,
which first obtain the equilibria states by setting the gradient of the system’s state to zero
and then solve them to find the system’s state. In order to find the stability properties
of such equilibria, one may use several methods, such as adding errors to the equilibria
to show if this either decreases or increases and under which conditions [10]. Another
option is to show that under given conditions the eigenvalues of the Jacobin matrix in the
equilibria states are negative [2]. An additional common option is using the Lyapunov
stability theorem [11–14]. While these methods are useful, they require some level of
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expertise to understand how to configure a specific dynamic system for each method.
Furthermore, these methods first require one to find the equilibria states of the model,
which may be a time- and resource-consuming task in itself. Therefore, the analytical
analysis of large-scale systems a complex task remains challenging.

One method shown to be useful in modeling dynamics in epidemics is the Markov
chain method [15,16]. In the context of epidemics, the Markov chain method represents the
dynamics, that is, the rapid spread of the disease in the population, using a transmission
matrix [15].

Since the pandemic spread is subject to multiple complex factors whose nature is
uncertain [16], and these factors change based on the current state of the disease spread, the
Markov chain method is a natural approach to use in order to model such dynamics [17–19].
It was shown that the Markov chain method approximates the deterministic SIR model
very well [20,21]. In addition, using the Markov chain method it is possible to obtain
multiple analytical properties such as equilibria states and asymptotic states [22].

We propose a novel method to obtain all asymptotic stable equilibria states of an
extended SIR for three age groups and for five epidemiological states, which we develop
to describe long-term immunity memory in the airborne infection pandemic model [3].
Our method approximates the continuous extended SIR model using a discrete, stochastic,
Markov chain representation. The paper is organized as follows. First, we introduce an
extended SIR model, consisting of 15 ODEs. Second, we present the asymptotic equilibrium
state of the proposed model. Third, we compare the proposed method with a classical
method. Finally, we discuss the main advantages and limitations of the proposed method.

2. Model Definition

We describe an extended SIR epidemiological model proposed by us in [23], with
the addition of the new age group (elderly) and dividing the infection state into asymp-
tomatic and symptomatic subpopulations. A full description of the proposed model is as
follows: The model considers a constant population with a fixed number of individuals
N. Each individual belongs to one of the five subpopulations: susceptible (S), infected
asymptomatic (Ia), infected symptomatic (Is), recovered (R), and dead (D), such that
N = S + Is + Ia + R + D, such that each subpopulation is non-negative. When an individ-
ual in the susceptible subpopulation (S) is exposed to the infection, they are transformed
to either the asymptomatic or symptomatic infected subpopulation (Ia, Is) in rates βa, βs.
Individuals in the symptomatic infected subpopulation (Is) stay in this subpopulation
on average ds

I→R days, after which they are transformed to either the recovered (R) or
dead (D) subpopulation. Therefore, in each time unit, some portion of infected individ-
uals recover while others die or remain seriously ill. Individuals in the asymptomatic
infected subpopulation (Ia) stay in this subpopulation on average da

I→R days, after which
they are transformed to the recovered subpopulation (R). Thus, our extended SIR model
that consists of Susceptible, Infected-Asymptomatic, Infected-Symptomatic, Recovered
and Deceased subpopulations is called SIIRD. A schematic view of the transition of an
individual in the population between the model’s states is shown in Figure 1.

The population is divided into three classes based on age: children, adults, and elderly
because these subpopulations experience diseases in varying degrees of severity and have
different infection probabilities. Individuals below age A1 are associated with the “children”
age class, while individuals below age A2 are associated with the “adult” age class and
the complementary subpopulation are associated with the “elderly” age class. The specific
threshold ages (A1, A2) may differ in different locations but the main goal is to divide
the population into three representative age classes. Since it takes A1 years from birth
to move from a child to an adult age subpopulation and A2 − A1 from an adult to the
elderly subpopulation, the conversion rate is set as α1 := 1/A1 and α2 := 1/(A2 − A1).
In addition, children are born and the elderly die at a rate unrelated to the pandemic λ.
We assume that different age groups spend most of their time in separation from each
other, which results in a relatively small rate of infected individuals infecting a susceptible
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individual from different age groups. Therefore, we neglect these dynamics by setting
these to zero. By expanding the designation to three age classes, we let Sc, Ia

c , Is
c , Rc, Dc,

Sa, Ia
a , Is

a, Ra, Da, and Se, Ia
e , Is

e , Re, De to represent the susceptible, asymptomatic infected,
symptomatic infected, recovered, and dead subpopulations for children, adults, and the
elderly, respectively, such that

{x ∈ {c, a, e} | Nx := Sx + Ia
x + Is

x + Rx + Dx},

and N = Σx∈{c,a,e}Nx.

In addition, we mark n = 15 to be the number of the subpopulation in the model. Af-
terward, in order to obtain the distribution of the subpopulations sizes in the whole
population, we divide each subpopulation by the overall size of the population to obtain

{x ∈ {c, a, e}, p ∈ {S, Ia, Is, R, D} | px := px/N}.
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Figure 1. Schematic view of the three age group SIIRD model with transition between disease
stages, divided by age groups. Each node is an epidemiological age state in the form of Xy, where
X ∈ [S, Ia, Is, R, D] is the epidemiological state and y ∈ [c, a, e] is the age group. The edges are the
possible transformation, and the value next to them indicates the rate of the population that moves
from the source node to the target node. A detailed description of the dynamics is presented in
Equations (1)–(15).

Equations (1)–(15) describe the epidemic’s dynamics.
In Equation (1), dSc(t)

dt is the dynamic amount of susceptible individual children over
time. It is affected by the following four terms. First, at a rate of βcs, each symptomatic
infected child infects susceptible children. Second, at a rate of βca, each asymptomatic
infected child infects the susceptible children. Third, children grow and pass from the
children’s age class to the adult’s age class with a transition rate of α1, and are removed
from the children’s age class. Finally, at a rate of λ, the children born and the elderly die,
which is not related to the pandemic.

dSc(t)
dt

= −(βcs Is
c (t) + βca Ia

c (t) + α1)Sc(t) + λ(Se(t) + Is
e (t) + Ia

e (t) + Re(t)). (1)
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In Equation (2), dIs
c (t)
dt is the dynamic amount of symptomatic infected individual

children over time. It is affected by the following four terms. First, at a rate of βcs, each
symptomatic infected child infects the susceptible children. Second, individuals recover
from the disease at a rate of γcr. Third, individuals die from the disease at a rate of γcd.
Finally, children grow and pass from the children’s age class to the adult’s age class at a
transition rate of α1, and are removed from the adult’s age class.

dIs
c (t)
dt

= βcs Is
c (t)Sc(t)− (α1 + γcr + γcd)Is

c (t). (2)

In Equation (3), dIa
c (t)
dt is the dynamic amount of asymptomatic infected individual

children over time. It is affected by the following three terms. First, at a rate of βca, each
asymptomatic infected child infects the susceptible children. Second, individuals recover
from the disease at a rate of γcr. Finally, children grow and pass from the children’s age class
to the adult’s age class at a transition rate of α1, and are removed from the adult’s age class.

dIa
c (t)
dt

= βca Ia
c (t)Sc(t)− (α1 + γcr)Ia

c (t). (3)

In Equation (4), dRc(t)
dt is the dynamic amount of recovered individual children over

time. It is affected by the following two terms. First, at each point, a portion of the
symptomatic and asymptomatic infected children recover at a rate of γcr. Second, children
grow from birth and pass from the children’s age class to the adult age class at a transition
rate of α1, and are removed from the children’s age class.

dRc(t)
dt

= γcr(Is
c (t) + Ia

c (t))− α1Rc(t). (4)

In Equation (5), dDc(t)
dt is the dynamic amount of dead individual children over time.

It is affected by the symptomatic infected children that die at a rate of γcd.

dDc(t)
dt

= γcd Is
c (t). (5)

In Equation (6), dSa(t)
dt is the dynamic amount of susceptible adult individuals over

time. It is affected by the following four terms. First, children grow and pass from the
children’s age class to the adult’s age class at a transition rate of α1, and are added to the
adult age class. Second, adults grow and pass from the adults’ age class to the elderly age
class at a transition rate of α2, and are removed from the adult’s age class. Third, at a rate
of βas, each symptomatic infected adult infects susceptible adults. Finally, at a rate of βaa,
each asymptomatic infected adult infects susceptible adults.

dSa(t)
dt

= α1Sc(t)− (α2 + βas Is
a(t) + βaa Ia

a (t))Sa(t). (6)

In Equation (7), dIs
a(t)
dt is the dynamic amount of symptomatic infected individual

adults over time. It is affected by the following five terms. First, children grow and pass
from the children’s age class to the adult’s age class at a transition rate of α1, and are added
to the adult age class. Second, adults grow and pass from the adults’ age class to the elderly
age class at a transition rate of α2, and are removed from the adult’s age class. Third, at a
rate of βas, each symptomatic infected adult infects susceptible adults. Forth, individuals
recover from the disease at a rate of γcr. Finally, individuals die from the disease at a rate
of γad.

dIs
a(t)
dt

= α1 Is
c (t) + βas Is

a(t)Sa(t)− (α2 + γar + γad)Is
a(t). (7)

In Equation (8), dIa
a (t)
dt is the dynamic amount of asymptomatic infected individual
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adults over time. It is affected by the following four terms. First, at a rate of βaa, each
asymptomatic infected adult infects susceptible adults. Second, individuals recover from
the disease at a rate of γar. Third, children grow and pass from the children’s age class
to the adult’s age class at a transition rate of α1, and are removed from the adult’s age
class. Finally, adults grow and pass from the adults’ age class to the elderly age class at a
transition rate of α2, and are removed from the adult’s age class.

dIa
a (t)
dt

= α1 Ia
c (t) + βaa Ia

a (t)Sa(t)− (α2 + γar)Ia
a (t). (8)

In Equation (9), dRa(t)
dt is the dynamic amount of recovered individual adults over time.

It is affected by the following three terms. First, at each point, a portion of the symptomatic
and asymptomatic infected adults recover at a rate of γar. Second, children grow from birth
and pass from the children’s age class to the adult age class at a transition rate of α1, and
are removed from the children’s age class. Finally, adults grow and pass from the adults’
age class to the elderly age class at a transition rate of α2, and are removed from the adult’s
age class.

dRa(t)
dt

= α1Rc(t) + γar(Is
a(t) + Ia

a (t))− α2Ra(t). (9)

In Equation (10), dDa(t)
dt is the dynamic amount of dead individual adults over time. It

is affected by the symptomatic infected adult that dies at a rate of γad.

dDa(t)
dt

= γad Is
a(t). (10)

In Equation (11), dSe(t)
dt is the dynamic amount of susceptible elderly individuals over

time. It is affected by the following four terms. First, adults grow and pass from the adults’
age class to the elderly age class at a transition rate of α2, and are added to the elderly age
class. Second, the elderly naturally die at a transition rate of λ, and are removed from the
elderly age class. Third, at a rate of βes, each symptomatic infected elderly person infects
susceptible elderly people. Finally, at a rate of βea, each asymptomatic infected elderly
person infects susceptible elderly people.

dSe(t)
dt

= α2Sa(t)− (λ + βes Is
e (t) + βea Ia

e (t))Se(t). (11)

In Equation (12), dIs
e (t)
dt is the dynamic amount of symptomatic infected individual

elderly people over time. It is affected by the following five terms. First, adults grow and
pass from the adult’s age class to the elderly age class at a transition rate of α2, and are
added to the elderly age class. Second, the elderly naturally die at a transition rate of
λ, and are removed from the elderly age class. Third, at a rate of βes, each symptomatic
infected elderly person infects susceptible elderly people. Forth, individuals recover from
the disease at a rate of γer. Finally, individuals die from the disease at a rate of γed.

dIs
e (t)
dt

= α2 Is
a(t) + βes Is

e (t)Se(t)− (λ + γer + γed)Is
e (t). (12)

In Equation (13), dIa
e (t)
dt is the dynamic amount of asymptomatic infected individual

elderly people over time. It is affected by the following four terms. First, at a rate of βea,
each asymptomatic infected elderly person infects susceptible elderly people. Second,
individuals recover from the disease at a rate of γer. Third, adults grow and pass from the
adult’s age class to the elderly age class at a transition rate of α2, and are removed from the
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adult’s age class. Finally, the elderly die naturally at a transition rate of λ, and are removed
from the elderly age class.

dIa
e (t)
dt

= α2 Ia
a (t) + βea Ia

e (t)Se(t)− (λ + γer)Ia
e (t). (13)

In Equation (14), dRe(t)
dt is the dynamic amount of recovered individual elderly people

over time. It is affected by the following three terms. First, at each point, a portion of the
symptomatic and asymptomatic infected elderly people recover at a rate of γer. Second,
adults grow from birth and pass from the adult’s age class to the elderly age class at a
transition rate of α2, and are removed from the children’s age class. Finally, the elderly
naturally die at a transition rate of λ, and are removed from the elderly age class.

dRe(t)
dt

= α2Ra(t) + γer(Is
e (t) + Ia

e (t))− λRe(t). (14)

In Equation (15), dDe(t)
dt is the dynamic amount of dead individual elderly people over

time. It is affected by the symptomatic infected elderly that die due to the pandemic at a
rate of γed.

dDe(t)
dt

= γed Is
e (t). (15)

Therefore, the system takes the following form:
dSc(t)

dt = −(βcs Is
c (t) + βca Ia

c (t) + α1)Sc(t) + λ(Se(t) + Is
e (t) + Ia

e (t) + Re(t)),

dIs
c (t)
dt = βcs Is

c (t)Sc(t)− (α1 + γcr + γcd)Is
c (t),

dIa
c (t)
dt = βca Ia

c (t)Sc(t)− (α1 + γcr)Ia
c (t),

dRc(t)
dt = γcr(Is

c (t) + Ia
c (t))− α1Rc(t),

dDc(t)
dt = γcd Is

c (t),

dSa(t)
dt = α1Sc(t)− (α2 + βas Is

a(t) + βaa Ia
a (t))Sa(t),

dIs
a(t)
dt = α1 Is

c (t) + βas Is
a(t)Sa(t)− (α2 + γar + γad)Is

a(t),

dIa
a (t)
dt = α1 Ia

c (t) + βaa Ia
a (t)Sa(t)− (α2 + γar)Ia

a (t),

dRa(t)
dt = α1Rc(t) + γar(Is

a(t) + Ia
a (t))− α2Ra(t),

dDa(t)
dt = γad Is

a(t),

dSe(t)
dt = α2Sa(t)− (λ + βes Is

e (t) + βea Ia
e (t))Se(t),

dIs
e (t)
dt = α2 Is

a(t) + βes Is
e (t)Se(t)− (λ + γer + γed)Is

e (t),

dIa
e (t)
dt = α2 Ia

a (t) + βea Ia
e (t)Se(t)− (λ + γer)Ia

e (t),

dRe(t)
dt = α2Ra(t) + γer(Is

e (t) + Ia
e (t))− λRe(t),

dDe(t)
dt = γed Is

e (t).

(16)
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In this notation, the parameters

P = {βcs, βca, βas, βaa, βes, βea, γcr, γcd, γar, γad, γer, γed, λ, α1, α2}, (17)

are rates and define the changes in the population entirely and not on the individual level.
One can model the pandemic dynamics using a stochastic process due to the unstable

nature of the parameters of the pandemic used in the model, such as the infection rates
(βcs, βca, βas, βaa, βes, βea) and recovery rates (γcr, γcd, γar, γad, γer, γed), which differ over
time. This is because these models are affected by multiple parameters that are unnecessar-
ily taken into consideration or are even unmeasurable in real-world settings. Therefore, it
is possible to treat these parameters as an average probability that an event would hap-
pen. Following these assumptions, one can represent the epidemiological dynamics as a
transition matrix between two consecutive states of the model, which is represented by an
n-dimensional vector, corresponding to the number of subpopulations, as follows:

Sc(t + h)
.
.
.

De(t + h)

 = T


Sc(t)

.

.

.
De(t)

, (18)

where h ∈ R is an arbitrary small step in time and T ∈ Rn×n is the transformation matrix.
The model’s state at time t is defined by

M(t) := [Sc(t), Ia
c (t), Is

c (t), Rc(t), Dc(t), Sa(t), Ia
a (t), Is

a(t), Ra(t), Da(t), Se(t), Ia
e (t), Is

e (t), Re(t), De(t)}; (19)

therefore, Equation (18) takes the following form:

M(t + h) = TM(t). (20)

The transformation matrix is defined as T := I + hΦ, where

Φ =



φ1 −ξcs −ξca 0 0 0 0 0 0 0 λ λ λ λ 0
0 φ2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 φ3 0 0 0 0 0 0 0 0 0 0 0 0
0 γcr γcr φ4 0 0 0 0 0 0 0 0 0 0 0
0 γcd 0 0 φ5 0 0 0 0 0 0 0 0 0 0
α1 0 0 0 0 φ6 −ξas −ξaa 0 0 0 0 0 0 0
0 α1 0 0 0 0 φ7 0 0 0 0 0 0 0 0
0 0 α1 0 0 0 0 φ8 0 0 0 0 0 0 0
0 0 0 α1 0 0 γar γar φ9 0 0 0 0 0 0
0 0 0 0 0 0 γad 0 0 φ10 0 0 0 0 0
0 0 0 0 0 α2 0 0 0 0 φ11 −ξes −ξea 0 0
0 0 0 0 0 0 α2 0 0 0 0 φ12 0 0 0
0 0 0 0 0 0 0 α2 0 0 0 0 φ13 0 0
0 0 0 0 0 0 0 0 α2 0 0 γer γer φ14 0
0 0 0 0 0 0 0 0 0 0 0 γcd 0 0 φ15



(21)
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such that

φ =



−α1
ξcs − α1 − γcr − γcd

ξca − α1 − γcr
−α1

0
−α2

ξas − α2 − γar − γad
ξaa − α2 − γar

−α2
0
−λ

ξes − λ− γer − γed
ξea − λ− γer
−λ
0



,

where the model’s parameters P (see Equation (17)) are probabilities rather than rates, as
they represent the probabilities for state transfer at the individual level. The transformation
matrix (T) obtained by solving dM(t)

dt = ΦM(t), where dM(t)
dt , is taken from Equation (16),

after performing linearization on the βkl Il
kSk terms to be

k ∈ {c, a, e}, l ∈ {a, s} : βkl Il
kSk → ξkl Il

k, (22)

such that ξkl = βklSk(t). Therefore, the parameter ξkl is the probability that an infected
individual will infect other individuals in the population, while βkl is the probability that
a suspicious individual will be infected by an infected individual. The parameter ξkl
changes over time as Sk(t) changes over time, but it can be treated as a constant because
ξkl is a random variable in nature, and so incorporates sufficient variability to capture
the dynamics of Sk(t) over time. The motivation for using this linearization is that the
alternative, βkl Il

kSk → βklSk, provides a worse approximation. For example, consider
the following case: k ∈ {c, a, e}, l ∈ {a, s} : Il

k = 0∧ Sk > 0. Following the approximation
βkl Il

kSk → βklSk means that some portion of the suspicious population become infected,
which is impossible from an epidemiological perspective. On the other hand, following the
linearization in Equation (22) results in k ∈ {c, a, e}, l ∈ {a, s} : Il

k = 0 in this scenario.
Therefore, matrix T is the stochastic, linear, approximation of the transformation

between two states of the ODE-based model (see Equation (16)). Nevertheless, the models
described in Equation (16) (ODE, the deterministic model) and Equations (20) and (21) (the
linear transformation matrix, the stochastic model) analytically differ since in Equation (16),
the parameters P can be assigned any real value. While it may no longer describe epidemi-
ological dynamics, the mathematical model is well defined in such a scenario. On the other
hand, Equations (20) and (21) required the parameters to be ∀p ∈ P : p ∈ (0, 1] according
to Equation (21), which is a stochastic matrix and therefore satisfies that each row sums
to 1. This condition is not met if ∀p ∈ P : p ∈ (0, 1] does not hold. Therefore, the model
represented by Equation (16) includes the model represented by Equations (20) and (21).

However, for the subspace where both models are defined, they are numerically equal
for any finite time. Indeed, this is true for a given norm function || · || : Rn → R, start
condition M(0), and time interval [0, tmax]. The state of the stochastic SIIRD (Equations (20)
and (21)) Ms(t) and the state of the deterministic SIIRD (Equation (16)) Md(t) satisfy

∀t ∈ [0, tmax] ∀ε > 0∃h > 0 : ||(Ms(t)−Md(t)|| < ε,

where the parameters {c, a, e}, l ∈ {a, s} : ξkl(t) = βklSk(t) are updated at each point in
time t.

By approximating the deterministic representation (Equation (16)) system using the
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forward Euler method [24] in each of the states, the approximation introduces O(h2) errors
for each step in time. Now, one needs to take tmax

h steps in time to cover [0, tmax], which
introduces an overall tmax

h ·O(h2) = O(tmaxh) error. Therefore, ||Md −Ms|| < tmaxh. As
a result, for h < ε/tmax, the condition ∀t ∈ [0, tmax] : ||(Ms(t)−Md(t)|| < ε is satisfied.
Thereafter, we define a stochastic process of the dynamics in Equations (20) and (21) at
each point in time (t) for each subpopulation Mi(t) ∈ M(t), in which there are three
possible options for each individual in the population in respect to this subpopulation.
First, an individual can be transformed from Mi(t) to Mj(t + 1) (i 6= j ∈ [1, . . . , n]) at a
probability α, which results in Φi,j = α. Second, an individual can transform from Mj(t) to
Mi(t + 1) at a probability ξ, which results in Φj,i = ξ in a symmetric way to the first case.
Third, an individual in Mi(t) can stay in Mi(t + 1). This is a default case and happens at
probability 1−Σn

j=1(Φi,j), which is the complementary probability to all the probabilities of
an individual to transform from Mi(t). These are the only options possible for an individual
in each subpopulation Mi(t) as ∀t : N = Σn

i=1Mi(t) is constant in time. Therefore, it is
possible to define the transformation between each two states in time as follows:

Sc(t + h) = (1− α1)Sc(t)− ξca Is
c (t)− ξcs Ia

c (t) + λ(Se(t) + Is
e (t) + Ia

e (t) + Re(t)),

Is
c (t + h) = (1− α1 − γcr − γcd + ξcs)Is

c (t),

Ia
c (t + h) = (1− α1 − γcr + ξca)Is

c (t),

Rc(t + h) = (1− α1)Rc(t) + γcr(Is
c (t) + Ia

c (t)),

Dc(t + h) = Dc(t) + γcd Is
c (t),

Sa(t + h) = (1− α2)Sa(t)− ξaa Is
a(t)− ξas Ia

a (t) + α1Sc(t),

Is
a(t + h) = (1− α2 − γar − γad + ξas)Is

a(t) + α1 Is
c (t),

Ia
a (t + h) = (1− α2 − γar + ξaa)Is

a(t) + α1 Ia
c (t),

Ra(t + h) = (1− α2)Ra(t) + α1Rc(t) + γar(Is
a(t) + Ia

a (t)),

Da(t + h) = Da(t) + γad Is
a(t),

Se(t + h) = (1− λ)Se(t)− ξea Is
e (t)− ξes Is

e (t) + α2Sa(t),

Is
e (t + h) = (1− λ− γer − γed + ξes)Is

e (t) + α2 Is
a(t),

Ia
e (t + h) = (1− λ− γer + ξea)Ia

e (t) + α2 Ia
a (t),

Re(t + h) = (1− λ)Re(t) + α2Ra(t) + γar(Is
e (t) + Ia

e (t)),

De(t + h) = De(t) + γad Is
e (t).

(23)

The representation in Equation (23) is isomorphic to the one in Equations (20) and (21).
However, Equation (23) treats the dynamic as a stochastic process in nature rather than ap-
proximating the deterministic ODE-based dynamics while restoring the underline behavior
of the epidemiological system.

3. Asymptotic Stable Equilibria States

In epidemiology, there are two types of cases that interest decision makers. First, the
state of the population in the long term after the end of a pandemic. Second, the equilibria
points and their stable or unstable nature.
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The state of the population in the long term after the pandemic can be mapped to
the asymptotic state of the pandemic in time because after long enough (e.g., t→ ∞), the
population either survives and its regular dynamics are restored or becomes extinct. While
the second scenario is trivial as the population is distributed between the different death
states of the model, the first scenario holds a larger amount of options. Specifically, the
pandemic can die out (i.e., the size of the infected population is zero) and, as a result, after
a few generations, only susceptible individuals would remain. On the other hand, in some
settings, the pandemic may not die out but be kept under control, such that the pandemic
converges to a steady state.

The equilibria states are important for decision makers as these promise a scenario that
remains the same unless some action is taken or a major event takes place. However, the
equilibria states should be divided into two groups. On the one hand, unstable equilibria
states provide some level of stability but are still problematic due to their unstable nature,
in which even a relatively small change results in a drastic outcome. On the other hand,
stable equilibria do not have this issue.

Therefore, in this section, we analyze the model’s asymptotic equilibria states. One
may try to obtain the asymptotic equilibria states and their stability properties from
the ODE-based representation (e.g., Equation (16)). Nevertheless, this approach would
require one to solve a n-dimensional, nonlinear, heterogeneous, ODE system, which is
both numerically and analytically complex and time consuming. On the other hand, by
defining a nonhomogeneous discrete-time Markov chain represented by the transformation
function (Equation (23)) with state space M(t) (Equation (18)), in respect to the states in
Equation (16), one can find the asymptotic equilibrium as follows. First, in order to model
the dynamics as a Markov chain, one needs to show that

P(Mt+h = j|Mt = it, . . . , M0 = i0) = P(Mt+h = j|Mt = it), (24)

where {M}t is a stochastic process with values in the state space for all t ≥ 0 and all states
i0, . . . it, j, and h is an arbitrary small step in time [25]. T satisfies Equation (24) if any value
in M(t + h) depends only on the previous state M(t). Indeed, as T does not depend on t or
any value of M(t) or the previous state, the condition is satisfied.

Therefore, we show that Equation (23) describes a Markovian process. As a result,
given the model’s initial condition (M(0)), the model’s state at some time t is defined by
M(t) = Tt M(0) [22]. Now, assume any initial condition M(0). From Equation (23) and
Figure 1, it is possible to see a few subprocesses in the dynamics. First, an individual that at
some time t reaches a death state (corresponding to lines 5, 10, and 15 in Equation (23)) stays
there as the coefficients of Dc, Da, and De is 1 for any parameter’s values. Second, if the
pandemic ended, namely, Is

c + Ia
c + Is

a + Ia
a + Is

e + Ia
e = 0, there are two possible cases: the

population is extended or some portion of the population (or even the whole population)
survived. In the case in which the population is extended, the obtained state is a distribution
over the {Dc, Da, De} states, while the other subpopulations are 0. In the second option, the
population is distributed over the {Sc, Sa, Se, Rc, Ra, Re, Dc, Da, De} as the infection states
are 0. However, after t > 1/α1, all the individuals at Rc transform to Ra. Similarly, after
time t > 1/α2, all the individuals at Ra transform to Re, and finally, after t > λ, all the
individuals at Re transform to Sc. As a result, after time t > 1/α1 + 1/α2 + 1/λ, the
subpopulations Rc = Ra = Re = 0. While at the same time, the remaining population at
Sc, Sa and Se circulate between these states. Finally, in the case in which the pandemic is
not finished, after some time t, the pandemic will end, as

∀t : Tt
{Is

c ,Ia
c ,Is

a ,Ia
a ,Is

e ,Ia
e } 6= I6×6,

which means these subpopulations eventually decrease over time. As a result, for any start
condition M(0), and parameters ∀p ∈ P : p ∈ (0, 1], at t→ ∞, the model’s asymptotic state
(limt→∞ M(t)) takes the following form:
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S∗c = ν1, Is∗
c = 0, Ia∗

c = 0, R∗c = 0, D∗c = ν2,
S∗a = ν3, Is∗

a = 0, Ia∗
a = 0, R∗a = 0, D∗a = ν4,

S∗e = ν5, Is∗
e = 0, Ia∗

e = 0, R∗e = 0, D∗e = ν6,
(25)

where {ν ≥ 0}6
i=1 and Σ6

i=1vi = N; and N is the total size of the population as defined in
Section 2.

The values {ν}6
i=1 are dependent on the initial conditions and the model’s parameters

and are thus complex and time consuming to find. Therefore, Equation (25) defined the
(six-dimensional) subspace in which all possible asymptotically stable states of the model
are located with the distribution of the population in the state space, which contains the
results of all possible outcomes of the model for any initial condition and model parameters.
That is to say, once the model’s state takes the form of Equation (25), it stays in this form
from this point on.

Therefore, one can take advantage of this property in order to obtain the asymptotic
stable equilibria, as they necessarily follow Equation (25). In order to obtain the asymptotic
equilibrium state, we set Equation (25) in Equation (18) and obtain

ν1(1− α1) + ν5λ
0
0
0
ν2

ν3(1− α2) + ν1α1
0
0
0
ν4

ν5(1− λ) + ν3α2
0
0
0
ν6



← T



ν1
0
0
0
ν2
ν3
0
0
0
ν4
ν5
0
0
0
ν6



. (26)

It is possible to divide the types of equilibria into two subgroups: where ν1 = ν3 = ν5 = 0
and otherwise. The first option corresponds to the scenario in which the population is
extended due to the pandemic. By setting ν1 = ν3 = ν5 = 0 in Equation (27), one can
obtain that all combinations of {ν2, ν4, ν6}, such that ν2 + ν4 + ν6 = N, are in equilibrium.
This results in (N + 1)2 for the population in size N as it is combinatorially equivalent
to dividing N items into three (allowing empty) groups. On the other hand, assuming
ν1 6= 0, ν3 6= 0, ν5 6= 0, the state is in equilibrium if and only if ν1(1− α1) + ν5λ

ν3(1− α2) + ν1α1
ν5(1− λ) + ν3α2

 =

ν1
ν3
ν5

, (27)

which means the asymptotic state is also in equilibrium if the following condition is fulfilled:

α1ν1 = α2ν3 = λν5. (28)

As a result, for any initial condition and the model’s parameters values, there is
a time t0 such that for all t > t0, Equation (25) is fulfilled. In the case in which either
ν1 = ν3 = ν5 = 0 or α1ν1 = α2ν3 = λν5, the model is in an asymptotically stable
equilibrium state.
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4. Comparison with Classical Methods

We compare the proposed method shown in Section 3 with a classical method used to
obtain equilibria states and their stability properties for dynamic systems [26,27].

4.1. Equilibrium

The equilibria states of the model (Equation (16)) are defined as the states of the model
in which the gradient is zero. Therefore, Equation (16) takes the form

−(βcs Is
c + βca Ia

c + α1)Sc + λ(Se + Is
e + Ia

e + Re) = 0,
βcs Is

c Sc − (α1 + γcr + γcd)Is
c = 0,

βca Ia
c Sc − (α1 + γcr)Ia

c = 0,

γcr(Is
c + Ia

c )− α1Rc = 0,

γcd Is
c = 0,

α1Sc − (α2 + βas Is
a + βaa Ia

a )Sa = 0,

α1 Is
c + βas Is

aSa − (α2 + γar + γad)Is
a = 0,

α1 Ia
c + βaa Ia

a Sa − (α2 + γar)Ia
a = 0,

α1Rc + γar(Is
a + Ia

a )− α2Ra = 0,

γad Is
a = 0,

α2Sa − (λ + βes Is
e (t) + βea Ia

e )Se = 0,

α2 Is
a + βes Is

e Se − (λ + γer + γed)Is
e = 0,

α2 Ia
a + βea Ia

e Se − (λ + γer)Ia
e = 0,

α2Ra + γer(Is
e + Ia

e )− λRe = 0,

γed Is
e = 0.

(29)

One can notice that from Equations (16) and (29), it follows that

Is
c = 0, Is

a = 0, Is
e = 0, Dc = ν2, Da = ν4, De = ν6,

where ν2, ν4, ν6 are arbitrary constants such that {ν2i}3
i=1 ≥ 0 and ∑3

i=1 ν2i ≤ N, because
if either Is

c , Is
a, or Is

e is not equal zero, then the gradient of Dc, Da, or De is not zero and,
therefore, the state is not in equilibrium by definition. Therefore, Is

c = 0, Is
a = 0, Is

e = 0
leads to Dc = ν2, Da = ν4, De = ν6 due to Equations (5), (10), and (15). As a result, one is
left with

−(βca Ia
c + α1)Sc + λ(Se + Ia

e + Re) = 0,
βca Ia

c Sc − (α1 + γcr)Ia
c = 0,

γcr Ia
c − α1Rc = 0,

α1Sc − (α2 + βaa Ia
a )Sa = 0,

α1 Ia
c + βaa Ia

a Sa − (α2 + γar)Ia
a = 0,

α1Rc + γar Ia
a − α2Ra = 0,

α2Sa − (λ + βea Ia
e )Se = 0,

α2 Ia
a + βea Ia

e Se − (λ + γer)Ia
e = 0,

α2Ra + γer Ia
e − λRe = 0.

(30)
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By setting Ia
c = 0, Ia

a = 0, Ia
e = 0, Rc = 0, Ra = 0, and Re = 0 in Equation (30), we obtain

α1Sc = α2Sa = λSe, which coincides with (28). Hence, we obtain the following equilibrium:

E = (ν1, 0, 0, 0, ν2, ν3, 0, 0, 0, ν4, ν5, 0, 0, 0, ν6), (31)

where ||E|| = N.

4.2. Centralization and Linearization

Consider the nonlinear differential equation

ẋ(t) = F(x(t)), (32)

where x ∈ Rn, and F(x) = 0 has a solution x∗, which is an equilibrium of Equation (32).
Using a new variable y(t) = x(t)− x∗, one can represent Equation (32) in the form

ẏ(t) = F(x∗ + y(t)). (33)

The stability of the zero solution of Equation (33) is equivalent to the stability of the
equilibrium x∗ in Equation (32).

Using Taylor’s expansion, Equation (33) takes the form

F(x∗ + y) = F(x∗) + J(x∗)y + o(y),

where J(x∗) is the Jacobian matrix of Equation (33) and lim|y|→0
|o(y)|
|y| = 0, |y| is the

Euclidean norm in Rn, and the equality F(x∗) = 0. Thus, we obtain a linear approximation
of Equation (33):

ż(t) = J(x∗)z(t). (34)

It is easy to check that, for the considered system, the Jacobian matrix J(x∗) coincides
with the matrix Φ given in Equation (21). A state is an asymptotic stable state if and
only if the matrix is negative as defined for any values of the parameters (Equation (17)).
Unfortunately, the matrix Φ is neither diagonal nor triangular and, therefore, one is able
to determine if it is negative definite or not by analytically obtaining the determinant and
investigating its properties. However, this will result in a 15-ordered polynomial, which
is much more time and resource consuming as compared to the method presented in
Section 3.

5. Conclusions and Future Research Directions

We propose a novel method to analytically obtain all asymptotic stable equilibria
states. We present this method for an extended SIR model, for the three age groups SIIRD
model. This method is based on the Markov chain model, the parameters of which are
deterministic (Equation (23)). Using this representation, one is able to obtain all asymptotic
stable equilibrium states of the model for any given start condition and properties using
the stationary state (Equation (31)). The method works because there is a symmetry in the
time of the population size (e.g., being constant N), which allows the system to converge
rather than diverge to infinity or to crash into the trivial case of an extended population.

When comparing the proposed method with classical methods of obtaining equilibria
and its stability properties, it is clear that for large-scale SIR models, the proposed method
is superior for several reasons. First, the classic method requires a certain level of algebraic
expertise to solve the equations that describe the dynamics, while the proposed method
treats them as a single process and therefore renders the aforementioned process unnec-
essary. Second, the classic method is not able to identify all asymptotic stable equilibria
by itself, as one is required to manually find all equilibria states and investigate each
one independently. This process is time and resource consuming. On the other hand,
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the proposed model analytically obtains all asymptotic stable equilibria, as it finds the
stationary state of the stochastic process that represents the dynamics.

Naturally, converting the deterministic biological rate coefficients, such as the recovery
rates γ or infection rates ξ, into transformation probabilities may create cases that do not
correspond to the biological dynamics on the individual level, and these should, therefore,
be treated with care. For example, a susceptible individual (p ∈ Sa) can be infected
and transformed into the asymptomatic infected subpopulation (Ia

a ) at a given time t.
Immediately afterward, in time t+ 1, there is a chance γar that the same individual recovers
and is transformed to the recovered subpopulation (Ra).

The stochastic representation of pandemic dynamics allows for more flexibility and
credibility than when treating model parameters as deterministic values. This is because
data often involve uncertainty [16]. This approach allows for pandemic dynamics to
be simulated based on an extended SIR model using distributed systems models. This
allows additional social [3], non-pharmaceutical and pharmaceutical intervention (NPI/PI)
policies [28], and economical policies [7] to be added to the epidemic dynamics.

We plan to extend the proposed method to handle spatio-temporal SIR-type models,
in which the spatial dynamics are taking place in either a continues space or discrete
space. For the continues case, the pandemic spread dynamics can be described using a
system of partial differential equations [29]. For the discrete case, the pandemic spread
dynamics can be described using a graph, resulting in a combination of ODE and graph
models [8]. In either case, the addition of spatial dynamics (and the walk of population)
would require principle changes in the proposed method. In addition, a numerical and
analytical investigation of the duration that the dynamics converge to for the asymptotic
stable equilibrium from any given initial condition and model’s parameters would need to
be studied. Furthermore, a comparison of the numerical solution of the proposed model
(Equations (1)–(15)) and the proposed analytical results will be explored.
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