
symmetryS S

Article

A Hybrid Discrete Bacterial Memetic Algorithm with Simulated
Annealing for Optimization of the Flow Shop
Scheduling Problem

Anita Agárdi 1 , Károly Nehéz 1 , Olivér Hornyák 1 and László T. Kóczy 2,3,*

����������
�������

Citation: Agárdi, A.; Nehéz, K.;

Hornyák, O.; Kóczy, L.T. A Hybrid

Discrete Bacterial Memetic Algorithm

with Simulated Annealing for

Optimization of the Flow Shop

Scheduling Problem. Symmetry 2021,

13, 1131. https://doi.org/

10.3390/sym13071131

Academic Editor: José Carlos

R. Alcantud

Received: 19 April 2021

Accepted: 11 June 2021

Published: 24 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Information Science, University of Miskolc, 3515 Miskolc, Hungary;
agardianita@iit.uni-miskolc.hu (A.A.); aitnehez@uni-miskolc.hu (K.N.);
oliver.hornyak@uni-miskolc.hu (O.H.)

2 Department of Information Technology, Széchenyi István University, 9026 Győr, Hungary
3 Department of Telecommunication and Media Informatics, Budapest University of Technology and

Economics, 1111 Budapest, Hungary
* Correspondence: koczy@tmit.bme.hu or koczy@tmit.bme.hul.com

Abstract: This paper deals with the flow shop scheduling problem. To find the optimal solution
is an NP-hard problem. The paper reviews some algorithms from the literature and applies a
benchmark dataset to evaluate their efficiency. In this research work, the discrete bacterial memetic
evolutionary algorithm (DBMEA) as a global searcher was investigated. The proposed algorithm
improves the local search by applying the simulated annealing algorithm (SA). This paper presents
the experimental results of solving the no-idle flow shop scheduling problem. To compare the
proposed algorithm with other researchers’ work, a benchmark problem set was used. The calculated
makespan times were compared against the best-known solutions in the literature. The proposed
hybrid algorithm has provided better results than methods using genetic algorithm variants, thus it
is a major improvement for the memetic algorithm family solving production scheduling problems.

Keywords: discrete bacterial memetic evolutionary algorithm; simulated annealing; flow shop
scheduling problem

1. Introduction

This paper investigates whether a new meta-heuristic proposed by the authors, an
improved and modified version of the discrete bacterial memetic evolutionary algorithm,
is capable of solving the flow shop scheduling problem (FSSP) in an efficient way, possibly
in a more efficient way than other approaches proposed by other authors. FSSP was first
published in 1954 by Johnson [1]. Although there exist exact solution algorithms, they
are not feasible for the large-sized scheduling problem, as FSSP is an NP-hard problem.
Many researchers have addressed the problem since its introduction. The overview of the
proposed solution is as follows.

Wei et al. [2] introduced a hybrid genetic simulated annealing algorithm, which
combines the individual steps and operators of the simulated annealing and the genetic
algorithm (HSGA). In their solution, the genetic algorithm (GA) finds a new optimal
solution, and the simulated annealing attempts to improve that solution. To compare their
solution, the widely used Taillard data set [3] was used, which is a reference benchmark for
FSSP. The Taillard data set contains benchmark data between 20 and 500 jobs and between
5 and 20 machines for the flow shop scheduling problem. The following state-of-the-art
algorithms were compared in [2]: memetic algorithm, iterated greedy algorithm with a
referenced insertion scheme, hybrid genetic algorithm (i.e., GA with improved local search
method that searches in a larger neighborhood), improved iterated greedy algorithm (using
Tabu mechanism to escape from local minima), and discrete self-organizing migrating

Symmetry 2021, 13, 1131. https://doi.org/10.3390/sym13071131 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-9148-1214
https://orcid.org/0000-0002-6953-3898
https://orcid.org/0000-0003-0989-6109
https://orcid.org/0000-0003-1316-4832
https://doi.org/10.3390/sym13071131
https://doi.org/10.3390/sym13071131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13071131
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13071131?type=check_update&version=2


Symmetry 2021, 13, 1131 2 of 12

algorithm. Their hybrid genetic simulated annealing algorithm proved to be the best for
the test data set.

Another hybrid genetic algorithm, which combined two local search methods with
GA, was introduced by Tseng et al. [4]. Their hybrid genetic algorithm is compared with the
primitive genetic algorithm, genetic algorithm+ insertion search, and genetic algorithm+
insertion search with cut-and-repair. Their algorithm found better results than the reference
benchmark problems.

The results for the flow shop problem were also compared with the following algo-
rithms: Johnson’s algorithm, Nawaz–Enscore–Ham (NEH) heuristic, iterated local search
algorithm, and iterated greedy algorithm. Based on the paper of Belabid et al. [5], the NEH
heuristic gives better results than the others.

The flow shop scheduling problem has been solved with a relatively new algorithm
called the flower pollination algorithm by Qu et al [6]. Compared with other heuristic
algorithms, such as Tabu-based reconstruction strategy (TMIIG), discrete particle swarm
optimization algorithm (DPSO), improved iterated greedy algorithm (IIGA), effective
hybrid particle swarm optimization (HPSO), hybrid differential evolution approach (HDE),
and genetic algorithm (GA), the flower pollination approach was the most efficient one.

An invasive weed optimization (IWO) algorithm was introduced in [7] for FSSP. The
authors also used the Taillard benchmark to test the efficiency of their algorithm. The
algorithm was compared with Nawaz–Enscore–Ham (NEH) algorithm. Their solution
obtained better makespan than the NEH algorithm for every instance of 12 different scale
benchmarks. It has proved to be better in terms of both final accuracy and convergence.
The reason is that the global exploration in [7] based on normal distribution is better than
the other algorithms.

Simulated annealing is another efficient optimization algorithm; there are several
articles on the topic that solve the flow shop scheduling problem with this algorithm, for
example, Ogbu and Smith [8], Lin et al. [9], and Aurich et al. [10].

The following section formulates the FSPP problem itself, and then an overview is
given on the state-of-the-art of approximate solving algorithms. Next, the proposed new
memetic algorithm is presented, which may be considered as a further development and
improvement of the discrete bacterial memetic evolutionary algorithm, an approach that
has already been successfully applied to the solution of other discrete NP-hard problems.
The authors executed some benchmark-based tests and compared the results with the
algorithms discussed in the overview of the state-of-the-art. The table of the results with
comparisons and explanations and, finally, some concluding notes are presented in the
last section.

2. Formulation of the Flow Shop Scheduling Problem

In the case of the flow shop scheduling problem [2], n jobs and m machines are given
with the following constraints: (1) The jobs have the same processing route. (2) Each job
must be run on all machines exactly once. (3) All jobs and machines must be ready to
work at time zero. (3) All jobs have m processing steps. (4) Neither machines nor jobs
have priority. (5) A single machine can do a single job at a time. (6) If a job is started on a
machine, no process can interfere. During processing, all jobs must follow the first in–first
out (FIFO) rule. The mathematical model of the flow shop scheduling problem can be
written in the following way:

J = {1, 2, . . . , n}: Set of jobs
M = {1, 2, . . . , m}: Set of machines
pi,j: processing time of job i on machine j
Si,j starting time when job i is processed on machine j
Ci,j finishing time when job i is processed on machine j
π = {π1, π2, . . . , πn} the job sequence
Cmax(π): the makespan of a job sequence



Symmetry 2021, 13, 1131 3 of 12

The objective function is the minimization of the makespan. Makespan is the overall
length of finishing the job sequence. The objective function can be written in the follow-
ing way:

(Cmax(π))→min (1)

where the following conditions must be met:

(1) A job can only be processed by one machine at a time:

If Xt
i,j > 0 then pi,k = 0 ∀k∈ [1, 2, . . . , n], k 6= i (2)

(2) A machine can only process a single job at a time:

If pi,j > 0 then pk,j = 0 ∀k∈ [1, 2, . . . , m], k 6= j (3)

(3) The next job cannot start until the current job is completed on the given machine:

Ci,j ≤ Si+1,j (4)

(4) If machine j + 1 is not ready, the job will delay at machine j until machine j + 1 will
be free:

Ci,j ≥ Ci−1,j+1 (5)

(5) For any job i, the completion time is the starting and processing time on machine j:

Ci,j = Si,j + pi,j (6)

(6) The makespan of the schedule is the time when the last job finishes on the last machine:

Cmax(π) = Cπn,m (7)

Benchmark Data Sets

To compare the efficiency of flow shop scheduling problems, researchers use bench-
mark data sets. In this paper, the Taillard data set will be used. It consists of 120 benchmark
instances. It also provides the best-known upper bounds for the makespan criterion.
There are other benchmark data sets provided by Carlier (8 instances) [11], Heller (2
instances) [12], and Revees (21 instances) [13]. These are smaller problems that are straight-
forward to solve by simple algorithms.

There are two significant indices for measuring the performance of an algorithm. The
first one is the solution quality, which can be represented by relative percentage deviation
(RPD) over the best-known upper bound. The second important indicator is running time
(tr), which is counted until the cycle taken to reach the last improvement. In this paper we
had no investigation into running time.

3. The Family of Bacterial Evolutionary Memetic Algorithms

Bacterial evolutionary algorithm (BEA) is an evolutionary computing algorithm,
which was inspired by microbial evolution [14].

BEA is inspired by the interesting process of bacterial recombination. The algorithm
uses two operators, bacterial mutation and gene transfer. The first step is to generate an
initial population. Then, those two genetic type operations are employed to create new
individuals and evaluate them by a fitness function. These operations are repeated until
the stop condition.

As the first implementation, the bacterial evolutionary algorithm was only used for
finding the optimal parameters of a fuzzy rule-based system. Over the years, it turned out to
be efficiently applicable to many other optimization tasks, e.g., interactive nurse scheduling
optimization problem [15], automatic data clustering [16], and three-dimensional bin
packing problem [17].



Symmetry 2021, 13, 1131 4 of 12

According to the early definitions, memetic algorithms are modified genetic algo-
rithms that use an additional local search operator; see Moscato et al. [18]. The idea of
combining the BEA with local search came first when an attempt was taken to improve
the approximation and optimization capability of the approach when estimating the pa-
rameters of fuzzy rule bases. As the latter may be interpreted as black boxes generating
input–output functions, the scope of potential benchmark problems was extended to sev-
eral additional areas, beyond the examples the original Nawa and Furuhashi paper had
discussed. Mechanical, chemical, and electrical engineering problems were tested along
with transcendental mathematical functions, while the local search applied was a second-
order gradient-based method (the Levenberg–Marquardt algorithm). The results turned
out to be better than the original ones, even better than any other approach applied in
the literature for optimizing the parameters of trapezoidal fuzzy membership functions in
fuzzy rule-based “function generators [19]. Later, first-order gradient methods were also
tested as local search algorithms, and the results were promising [20].

In the next step, the idea of bacterial memetic evolutionary algorithm was tested on
discrete, permutation-based problems, where, as a matter of course, the local search applied
was also a discrete process. The first proposed operator family was the n-opt local search,
and after some simulations, it was narrowed to the subsequent application of the be 2-opt
or 3-opt operators, as when applying n ≥ 4, the overhead time proved to be too large, thus
the efficiency of the algorithm was decreased. The 2-opt operator was first applied to the
traveling salesman problem [21], where two edges are exchanged in the graph. 3-opt [22]
is similar to the 2-opt operator; the only difference is that, here, three edges are exchanged
in one step.

The pseudo-code of the DBMEA is given in Algorithm 1 [23,24]. The algorithm has five
input parameters, these are as follows: Nind, Nclones, Ninf, Iseg, and Itrans; Nind is the number
of individuals in the population, Nclones is the number of clones in the bacterial mutation,
Ninf is the number of infections in the gene transfer, Iseg is the number of segments in the
bacterial mutation, and Itrans is the length of the gene transferred part. Step 1 generates an
initial population. Step 2 is the application of the bacterial mutation. The third step is the
local search (also called as the memetic step). Local search tries to improve on a particular
solution (by producing neighbor solutions) until it finds a better neighbor solution. The
algorithm stops when it can no longer find a better individual in the neighborhood, i.e.,
it finds a local optimum. Then, the gene transfer operation is performed. The algorithm
repeats steps 2–4 until the termination condition triggers. Then, it returns the best solution.

The following notation is used:

x1: the actual gene transferred solution,
xbest: the best solution found so far,
f : fitness function,
Nind: the number of individuals.

3.1. Discrete Bacterial Memetic Evolutionary Algorithm

Algorithm 1 Discrete Bacterial Memetic Evolutionary algorithm

1: BEGIN PROCEDURE DBMEA (Nind, Nclones, Ninf, Iseg, Itrans)
2: Step 1: Generate initial population P.
3: WHILE (termination criteria is not met) DO
4: Step 2: Bacterial mutation (Population, Nclones Iseg)
5: Step 3: local search
6: Step 4: x1 = Gene transfer (Population, Ninf, Itrans)
7: IF f(x1) < f(xbest) THEN DO
8: Step 5: xbest = x1
9: END IF

10: END WHILE
11: RETURN xbest
12: END PROCEDURE



Symmetry 2021, 13, 1131 5 of 12

3.2. Bacterial Mutation

The bacterial mutation [23] operates throughout the population by performing special
mutation operations on each individual (see Algorithm 2). As input parameters, the initial
population, the number of clones (Nclones), and the length of the segment (Iseg) are passed.
Steps 1–6 are performed on each element of the population. A certain number of clones
(Nclones) are made from each bacterium; see Figure 1. The original bacterium is broken
down into segments. As the algorithm shows, it happens with high probability for coherent
segments, and with low probability for loose segments. During both the coherent and loose
segment operations, we go through each segment. We select a non-mutated segment. First,
the elements of the segment are inverted to form the first clone. Then, we randomly change
the elements of the segment to create other clones. This way, we generate a total of Nclones
clones. At the end of the mutation, the best clone takes the place of the original bacterium.

Algorithm 2 Bacterial Mutation

1: BEGIN PROCEDURE Bacterial mutation (Population, Nclones, Iseg)
2: FOR i to size(Population) DO
3: Step 1. Create a random number between 0 and 1
4: Step 2. Get the ith element of the population: p = Population(i)
5: Step 3. create Nclones clones of p and a random number r [0..1]
6: IF (r ≤ COHERENT_LOOSE_RATE)
7: Step 4. cut p into coherent segments with Iseg length
8: ELSE
9: Step 5. cut p into loose segments with Iseg length

10: END IF
11: Step 6. replace Population(i) with the best set of the clones and p
12: END FOR
13: RETURN Population
14: END PROCEDURE

Figure 1. Bacterial mutation.

In the case of a coherent segment, the segments are arranged one after the other
(Figure 2). In the case of a loose segment, the elements of the segments are not adjacent
(Figure 3).

Figure 2. The coherent segment mutation.



Symmetry 2021, 13, 1131 6 of 12

Figure 3. The loose segment mutation.

3.3. Gene Transfer

The gene transfer [23] operates on the whole population. At first, the elements of
the population are ranked based on the fitness values. Then, the population is divided
into two parts, a superior and an inferior part, according to the fitness values. As the next
step, the gene transfer operator is executed Ninf times with a randomly selected element
from the superior and one from the inferior part. During the gene transfer operation, a
randomly selected segment with length Itrans is transferred from the superior bacterium
to the inferior bacterium, so that there are no duplicates in the thus established new
bacterium. This process is illustrated in Figure 4. Algorithm 3 presents the process.

Algorithm 3 Gene transfer

1: BEGIN PROCEDURE Gene transfer (Population, Ninf, Itrans)
2: Step 1. sort the Population according to the fitness values

3:
Step 2. divide the population into superior and inferior parts based on the
fitness values

4: FOR i to Ninf DO
5: Step 3. selecting a random bacterium from the superior part (psource)
6: Step 4. selecting a random bacterium from the inferior part (pdestination)
7: Step 5. selecting a random segment from psource with Itrans length
8: Step 6. copying the segment into pdestination bacterium in a random position
9: Step 7. eliminating the duplicates in pdestination

10: END FOR
11: RETURN Population
12: END PROCEDURE

Figure 4. The gene transfer operator.

4. The Simulated Annealing Algorithm

Simulated annealing (SA) [25] operates on a single solution rather than on a whole
population. SA first produces a random new neighboring solution. If this neighbor
is better than the current solution, it accepts it deterministically as new current solu-
tion. If it is not better, the algorithm still may decide probabilistically whether to keep
the current one, or replace it with the new neighboring one. The input parameter of
the algorithm is the “temperature” (T), which determines the probability of accepting
worse solutions in the algorithm. The temperature continuously decreases; it is deter-



Symmetry 2021, 13, 1131 7 of 12

mined by the temperature control parameter (α). Algorithm 4 illustrates the SA algorithm.

Algorithm 4 Simulated Annealing

1: SIMULATED ANNEALING
2: BEGIN PROCEDURE Bacterial mutation (T,α,L)
3: WHILE termination condition is not met DO
4: WHILE L processing length is not reached DO
5: Step 1. Create the neighbor (SN) of the current solution (SC)
6: Step 2. Calculate ∆E as follows: ∆E = E(SN) − E(SC)
7: IF ∆E > 0 THEN
8: Step 3. SC = SN
9: ELSE IF P(E(SN), E(SC), T) > rand[0, 1]) THEN DO

10: Step 4. SC = SN
11: END WHILE
12: Step 5. Reduce temperature (T)
13: END WHILE
14: END PROCEDURE

5. A Novel Algorithm: A Hybrid Discrete Bacterial Memetic Evolutionary Algorithm
with Simulated Annealing

We could see in the DBMEA pseudo-code that the algorithm uses discrete local search.
The originally proposed algorithm applies the 2-opt and 3-opt methods, which operate
on individual elements of the population. To improve the efficiency of the local search
in the solution of the particular problem on hand, we propose now to use simulated
annealing for local search instead. This latter accepts a worse new solution with some
probability, and this way allows getting out of small local optimum areas. In addition,
we have introduced a mortality rate (Nmort). It practically means that certain elements of
the population are to be dropped and replaced by randomly generated new individuals.
The pseudo-code of our algorithm is shown in Algorithm 5, where Nind is the number of
individuals; Nclones is the number of clones; Ninf means the number of times the gene transfer
operator is executed; Iseg is the length of the segment; Itrans is the length of the segment,
which is transferred from the source to the destination bacterium; T is the temperature,
which is decreasing along the iterations by α; and L is the iteration control parameter.

Algorithm 5 The Discrete Bacterial Memetic Evolutionary Algorithm with Simulated Annealing

1:
BEGIN PROCEDURE DBMEA_SA (Nind, Nclones, Ninf, Iseg, Itrans, T,
α, L, Nmort)

2: Step 1: Generate initial population P.
3: WHILE (termination criteria is not met) DO
4: Step 2: Bacterial mutation (P, Nclones, Iseg)
5: FOR i IN Population DO
6: Step 3: Simulated annealing (P(i), T, α, L)
7: END FOR
8: Step 4: Gene transfer (P, Ninf, Itrans)
9: Step 5: Sort the population, based on the fitness values

10:
Step 6: Generate new elements in the population in place of the worst
Nmort elements

11: Step 7: Store the best solution
12: END WHILE
13: RETURN best solution
14: END PROCEDURE

6. Experimental Results

The proposed hybrid algorithm was implemented for a personal computer with 8th
generation Intel i7 CPU and 16 GB memory. The Typescript programming language was
used, as it allowed the ability to quickly implement the algorithm variants in a portable
way. The authors ran the tests on a Windows 10 operating system. Full source codes are



Symmetry 2021, 13, 1131 8 of 12

available at [26]. To compare the results of the new method with other ones known from
the literature, the Taillard benchmark dataset [3] was used. There are 10 individuals for
each benchmark data type in the set. Table 1 contains the makespan values calculated by
the following algorithms.

Table 1. Experimental results compared with other up-to-date approaches.

Instance n ×m Lower
Bound

Best
Known DBMEA + SA IWO [7] HGSA [2] HGA [4] HMM-PFA

[6]

Ta001 20 × 5 1232 1278 1283 1389 1324 1449 1486
Ta002 20 × 5 1290 1359 1360 - 1442 1460 1528
Ta003 20 × 5 1073 1081 1081 - 1098 1386 1460
Ta004 20 × 5 1268 1293 1293 - 1469 1521 1588
Ta005 20 × 5 1198 1235 1235 - 1291 1403 1449
Ta011 20 × 10 1448 1582 1587 2207 1713 1955 2044
Ta012 20 × 10 1479 1659 1681 - 1718 2123 2166
Ta013 20 × 10 1407 1496 1510 - 1555 1912 1940
Ta014 20 × 10 1308 1377 1384 - 1516 1782 1811
Ta015 20 × 10 1325 1419 1420 - 1573 1933 1933
Ta021 20 × 20 1911 2297 2308 3226 2331 2912 2973
Ta022 20 × 20 1711 2099 2120 - 2280 2780 2852
Ta023 20 × 20 1844 2326 2349 - 2480 2922 3013
Ta024 20 × 20 1810 2223 2223 - 2362 2967 3001
Ta025 20 × 20 1899 2291 2316 - 2507 2953 3003
Ta031 50 × 5 2712 2724 2724 3020 2731 3127 3160
Ta032 50 × 5 2808 2834 2848 - 2934 3438 3432
Ta033 50 × 5 2596 2621 2634 - 2638 3182 3210
Ta034 50 × 5 2740 2751 2776 - 2785 3289 3338
Ta035 50 × 5 2837 2863 2864 - 2864 3315 3356
Ta041 50 × 10 2907 2991 3059 3465 3198 4251 4274
Ta042 50 × 10 2821 2867 2933 - 3020 4139 4177
Ta043 50 × 10 2801 2839 2931 - 3055 4083 4099
Ta044 50 × 10 2968 3063 3077 - 3124 4480 4399
Ta045 50 × 10 2908 2976 3041 - 3129 4316 4322
Ta051 50 × 20 3480 3850 3957 5475 4105 6138 6129
Ta052 50 × 20 3424 3704 3823 - 3992 5721 5725
Ta053 50 × 20 3351 3640 3760 - 3900 5847 5862
Ta054 50 × 20 3336 3720 3823 - 3921 5781 5788
Ta055 50 × 20 3313 3610 3737 - 4020 5891 5886
Ta061 100 × 5 5437 5493 5495 5839 5536 6492 6361
Ta062 100 × 5 5208 5268 5290 - 5302 6353 6212
Ta063 100 × 5 5130 5175 5213 - 5221 6148 6104
Ta064 100 × 5 4963 5014 5023 - 5044 6080 5999
Ta065 100 × 5 5195 5250 5265 - 5358 6254 6179
Ta071 100 × 10 5759 5770 5825 6815 5964 8115 8055
Ta072 100 × 10 5345 5349 5414 - 5596 7986 7853
Ta073 100 × 10 5623 5676 5727 - 5796 8057 8016
Ta074 100 × 10 5732 5781 5892 - 5928 8327 8328
Ta075 100 × 10 5431 5467 5567 - 5748 7991 7936
Ta081 100 × 20 5851 6202 6407 9405 6395 10,745 10,675
Ta082 100 × 20 6099 6183 6334 - 6433 10,655 10,562
Ta083 100 × 20 6099 6271 6480 - 6689 10,672 10,587
Ta084 100 × 20 6072 6269 6409 - 6419 10,630 10,588
Ta085 100 × 20 6009 6314 6518 - 6536 10,548 10,506
Ta091 200 × 10 10,816 10,862 11,002 11,783 11,120 15,739 15,225
Ta092 200 × 10 10,422 10,480 10,627 - 10,658 15,534 14,990
Ta093 200 × 10 10,886 10,922 11,088 - 11,224 15,755 15,257
Ta094 200 × 10 10,794 10,889 11,004 - 11,075 15,842 15,103
Ta095 200 × 10 10,437 10,524 10,666 - 10,793 15,692 15,088
Ta101 200 × 20 10,979 11,195 11,483 15,217 11,642 20,148 19,531



Symmetry 2021, 13, 1131 9 of 12

Table 1. Cont.

Instance n ×m Lower
Bound

Best
Known DBMEA + SA IWO [7] HGSA [2] HGA [4] HMM-PFA

[6]
Ta102 200 × 20 10,947 11,203 11,535 - 11,683 20,539 19,942
Ta103 200 × 20 11,150 11,281 11,603 - 11,930 20,511 19,759
Ta104 200 × 20 11,127 11,275 11,634 - 11,791 20,461 19,759
Ta105 200 × 20 11,132 11,259 11,549 - 11,728 20,339 19,697
Ta111 500 × 20 25,922 26,059 26,652 30,730 26,859 49,095 46,121
Ta112 500 × 20 26,353 26,520 27,115 - 27,220 49,461 46,627
Ta113 500 × 20 26,320 26,371 n/a - 27,511 48,777 46,013
Ta114 500 × 20 26,424 26,456 26,974 - 26,912 49,283 46,396
Ta115 500 × 20 26,181 26,334 n/a - 26,930 48,950 46,251

• DBMEA + SA: Discrete Bacterial Memetic Algorithm + Simulated Annealing;
• IWO: Invasive Weed Optimization [7];
• HGSA Hybrid Genetic Simulated Annealing [2];
• HGA: Hybrid Genetic Algorithm [4];
• HMM-PFA: Hormone Modulation Mechanism Flower Pollination Algorithm [6].

In the test we carried out, twelve different problem sizes were selected; these can be
found in the column “n × m: job and machine numbers”, namely, 20 × 5, 20 × 10, 20 × 20,
50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 5, 200 × 10, and 200 × 20. The
instance names run from Ta001 to Ta120. Table 1 shows five instances for each problem set,
while the full table with comparisons of the results applying the five approaches mentioned
above is published also in [26].

For the evaluation of the obtained optima, it is worthwhile to compare both our
own results and the ones obtained by other authors. There is an estimation method for
an absolute theoretic lower bound, which is proposed in [3] and can be calculated as
follows: let bi the minimum amount of time before machine starts working and ai is the
minimum time until it remains inactive after the end of the operation and let Ti be its total
processing time:

bi = min
j

(
i−1

∑
k=1

pkj

)
(8)

ai = min
j

(
m

∑
k=i+1

pkj

)
(9)

Ti =
n

∑
j=1

pij (10)

Let Cmax denote the optimal makespan time; it must be greater or equal to the maxi-
mum between the minimum of time required by the machines and the minimum of time
required each job. This value is called “lower bound”, and Table 1 displays this theoretical
minimum in the third column:

Lower bound = max

{
max

i
(bi + ai + Ti), max

j

(
m

∑
i=1

pij

)}
≤ Cmax (11)

Our hybrid DBMEA + SA algorithm ran within a reasonably short time, even though
no direct measurements were done. In the case of some large instances, however, the
running time exceeded the limitation of the available computer resources. Those cases are
indicated in Table 1 by n/a entries. Our algorithm always found a better or equal result
compared with all other approaches in the literature. It found the best-known solution in
9 cases out of 120. In a further 56 cases, the deviation from the optimal solution was less
than 1%; in the remaining 52 cases, the difference was between 1% and 3%. In three cases,



Symmetry 2021, 13, 1131 10 of 12

the running time exceeded the set limit. Where the algorithm did not find the best-known
solution, it got very close to it. Compared with all other algorithms published by other
authors, as mentioned above, the proposed new algorithm provided much better results in
all cases.

7. Conclusions

There is an interesting symmetry–asymmetry issue when solving complex problems,
setting up models for complex systems, and developing algorithms for search and opti-
mization in them. In this paper, the highly complex and mathematically intractable flow
shop scheduling problem is in one pan of the scale, while in the other, the new modified
discrete bacterial memetic evolutionary algorithm (DBMA) is found. By proper weighing
of the costs, namely, the error in the accuracy of the optimization in one pan and the need
for resources, especially, the running time of the optimization meta-heuristics in the other
one must be brought to equilibrium, this way generating a symmetry in the solution. The
exact position of the symmetrical (balanced) solution can, however, be calibrated by the
designer of the solution, thus it may fit the application context of the concrete problem,
considering the available resources and the expected quality of the quasi-optimum found.
Thus, the asymmetric role played by problem to solve and model/algorithm for solution
must be balanced and, that way, the whole problem–solution complex must be brought in
a symmetrical configuration.

In our approach, there is, however, another aspect of the symmetry–asymmetry
concept present. Memetic algorithms consist of two essential components, the “outer” shell
that is an evolutionary or population based global searcher, and the “inner” core that is a
local searcher, whether traditional gradient based, or exhaustive search type, respectively;
or, as in the novel algorithm proposed in this paper, another meta-heuristic method. The
two components must also form a symmetric combination in the above sense: the two
must be in proper balance of resource intensity and need. Many results have shown that
too much local search will slow down the whole optimization procedure, while too little
(compared to the outer global search) may lead to ever randomly wandering attempts to
approach the optimum, where even the most efficient local search can only produce a local
optimum. We trust that, in this novel algorithm, a very efficient and well balanced, let us
say, symmetric enough, solution for the combination of the two components of the memetic
algorithm was found.

In our paper, the DBMA was very successfully applied for the approximate solution
of other, similarly NP-hard discrete problems. Namely, the original DBMA with n-opt
type local search method was developed for TSP problems. We found, however, that this
local search provided relatively poor results for solving the flow shop scheduling problem.
In the proposed new and improved algorithm, we have replaced the local search by the
simulated annealing algorithm, a method that has been applied with some success itself
for solving similar tasks. We found that this hybrid DBMEA and SA algorithm became
unambiguously more efficient, compared with all other population-based metaheuristic
approaches proposed by other researchers. The authors calculated the make span times
for a known benchmark data set and compared the results with the algorithms in other
papers as well as with the best known solutions (it should be clearly stated that the optimal
solution cannot be calculated owing to the size of the problem, so the best known published
makespan times were used as the basis of the comparison). The proposed new algorithm
indeed over-performed all the state-of-the-art algorithms. The calculated makespan times
were very close to the best known solutions, while the computing time still remained
reasonable, even on a standard personal computer. So, the proposed algorithm has the
capability to so far most efficiently solve large-scale FSPP problems.



Symmetry 2021, 13, 1131 11 of 12

Author Contributions: Conceptualization, L.T.K. and K.N.; methodology, K.N. and A.A.; software,
K.N. and A.A.; validation, O.H.; formal analysis, O.H. and A.A.; investigation, A.A. and K.N.;
resources, A.A.; data curation, A.A. and K.N.; writing—original draft preparation, A.A. and O.H.;
writing—review and editing, A.A., O.H., L.T.K. and K.N.; visualization, A.A.; supervision, L.T.K. and
K.N.; project administration, O.H.; funding acquisition, L.T.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is supported by the National Office of Research, Development, and Innovation
grant NKFIH K124055.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in GitHub at
https://doi.org/10.5281/zenodo.4635757 (accessed on 17 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.

[CrossRef]
2. Wei, H.; Li, S.; Jiang, H.; Hu, J.; Hu, J. Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with

makespan criterion. Appl. Sci. 2018, 8, 2621. [CrossRef]
3. Taillard, E. Benchmarks for basic scheduling problems. EJOR 1993, 64, 278–285. [CrossRef]
4. Tseng, L.Y.; Lin, Y.T. A hybrid genetic algorithm for no-wait flowshop scheduling problem. Int. J. Prod. Econ. 2010, 128, 144–152.

[CrossRef]
5. Belabid, J.; Aqil, S.; Allali, K. Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time. J.

Appl. Math. 2020, 2020, 7132469. [CrossRef]
6. Qu, C.; Fu, Y.; Yi, Z.; Tan, J. Solutions to no-wait flow shop scheduling problem using the flower pollination algorithm based on

the hormone modulation mechanism. Complexity 2018, 2018, 1973604. [CrossRef]
7. Zhou, Y.; Chen, H.; Zhou, G. Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem.

Neurocomputing 2014, 137, 285–292. [CrossRef]
8. Ogbu, F.A.; Smith, D.K. The application of the simulated annealing algorithm to the solution of the n/m/Cmax flowshop problem.

Comput. Oper. Res. 1990, 17, 243–253. [CrossRef]
9. Lin, S.W.; Cheng, C.Y.; Pourhejazy, P.; Ying, K.C. Multi-temperature simulated annealing for optimizing mixed-blocking

permutation flowshop scheduling problems. Expert Syst. Appl. 2020, 165, 113837. [CrossRef]
10. Aurich, P.; Nahhas, A.; Reggelin, T.; Tolujew, J. Simulation-based optimization for solving a hybrid flow shop scheduling problem.

In Proceedings of the 2016 Winter Simulation Conference (WSC), Arlington, VA, USA, 11–14 December 2016; pp. 2809–2819.
11. Carlier, J. Ordonnancements a contraintes disjonctives. RAIRORecherche Oper. 1978, 12, 333–351. [CrossRef]
12. Heller, J. Some numerical experiments for an M×J flow shop and itsdecision-theoretical aspects. Oper. Res. 1960, 8, 178–184.

[CrossRef]
13. Reeves, C. A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 1995, 22, 5–13. [CrossRef]
14. Nawa, N.E.; Furuhashi, T. Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 1999,

7, 608–616. [CrossRef]
15. Inoue, T.; Furuhashi, T.; Maeda, H.; Takaba, M. A study on interactive nurse scheduling support system using bacterial

evolutionary algorithm engine. Trans. Inst. Elect. Eng. Jpn. 2002, 122, 1803–1811.
16. Das, S.; Chowdhury, A.; Abraham, A. A bacterial evolutionary algorithm for automatic data clustering. In Proceedings of the

IEEE Congress on Evolutionary Computation 2009 (CEC ’09), Trondheim, Norway, 18–21 May 2009; pp. 2403–2410.
17. Hoos, H.H.; Stutzle, T. Stochastic Local Search: Foundations and Applications; Morgan Kaufmann: San Francisco, CA, USA, 2005.
18. Moscato, P.; Mathieson, L. Memetic Algorithms for Business Analytics and Data Science: A Brief Survey. Bus. Consum. Anal. New

Ideas 2019, 545–608. [CrossRef]
19. Gong, G.; Deng, Q.; Chiong, R.; Gong, X.; Huang, H. An effective memetic algorithm for multi-objective job-shop scheduling.

Knowl. Based Syst. 2019, 182, 104840. [CrossRef]
20. Botzheim, J.; Cabrita, C.; Kóczy, L.T.; Ruano, A.E. Fuzzy rule extraction by bacterial memetic algorithms. Int. J. Intell. Syst. 2009,

24, 312–339. [CrossRef]
21. Muyldermans, L.; Beullens, P.; Cattrysse, D.; Van Oudheusden, D. Exploring variants of 2-opt and 3-opt for the general routing

problem. Oper. Res. 2005, 53, 982–995. [CrossRef]
22. Balazs, K.; Koczy, L.T. Hierarchical-interpolative fuzzy system construction by genetic and bacterial memetic programming

approaches. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2012, 20, 105–131. [CrossRef]

https://doi.org/10.5281/zenodo.4635757
https://doi.org/10.5281/zenodo.4635757
http://doi.org/10.1002/nav.3800010110
http://doi.org/10.3390/app8122621
http://doi.org/10.1016/0377-2217(93)90182-M
http://doi.org/10.1016/j.ijpe.2010.06.006
http://doi.org/10.1155/2020/7132469
http://doi.org/10.1155/2018/1973604
http://doi.org/10.1016/j.neucom.2013.05.063
http://doi.org/10.1016/0305-0548(90)90001-N
http://doi.org/10.1016/j.eswa.2020.113837
http://doi.org/10.1051/ro/1978120403331
http://doi.org/10.1287/opre.8.2.178
http://doi.org/10.1016/0305-0548(93)E0014-K
http://doi.org/10.1109/91.797983
http://doi.org/10.1007/978-3-030-06222-4_13
http://doi.org/10.1016/j.knosys.2019.07.011
http://doi.org/10.1002/int.20338
http://doi.org/10.1287/opre.1040.0205
http://doi.org/10.1142/S021848851240017X


Symmetry 2021, 13, 1131 12 of 12

23. Kóczy, L.T.; Földesi, P.; Tüű-Szabó, B. An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman
problem. Int. J. Intell. Syst. 2017, 32, 862–876. [CrossRef]

24. Tüű-Szabó, B.; Földesi, P.; Kóczy, L.T. An Efficient Evolutionary Metaheuristic for the Traveling Repairman (Minimum Latency)
Problem. Int. J. Comput. Intell. Syst. 2020, 13, 781–793. [CrossRef]

25. Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W.D. Energy-efficient scheduling for a flexible flow shop using an improved
genetic-simulated annealing algorithm. Robot. Comput. Integr. Manuf. 2013, 29, 418–429. [CrossRef]

26. Agárdi, A.; Nehéz, K. Flow Shop Scheduling Problem Optimization with Discrete Bacterial Memetic Evolutionary Algorithm and
Simulated Annealing. 2021. Available online: https://github.com/anitaagardi/production-optimization-DBMEA (accessed on
25 March 2021).

http://doi.org/10.1002/int.21893
http://doi.org/10.2991/ijcis.d.200529.001
http://doi.org/10.1016/j.rcim.2013.04.001
https://github.com/anitaagardi/production-optimization-DBMEA

	Introduction 
	Formulation of the Flow Shop Scheduling Problem 
	The Family of Bacterial Evolutionary Memetic Algorithms 
	Discrete Bacterial Memetic Evolutionary Algorithm 
	Bacterial Mutation 
	Gene Transfer 

	The Simulated Annealing Algorithm 
	A Novel Algorithm: A Hybrid Discrete Bacterial Memetic Evolutionary Algorithm with Simulated Annealing 
	Experimental Results 
	Conclusions 
	References

