

Article **On Forbidden Subgraphs of** (K_2, H) -Sim-(Super)Magic Graphs

Yeva Fadhilah Ashari 🔎, A.N.M. Salman ២ and Rinovia Simanjuntak *🔎

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia; yevafadhilahashari@s.itb.ac.id (Y.F.A.); msalman@math.itb.ac.id (A.N.M.S.) * Correspondence: rino@math.itb.ac.id

Abstract: A graph *G* admits an *H*-covering if every edge of *G* belongs to a subgraph isomorphic to a given graph *H*. *G* is said to be *H*-magic if there exists a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G)| + |E(G)|\}$ such that $w_f(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e)$ is a constant, for every subgraph *H'* isomorphic to *H*. In particular, *G* is said to be *H*-supermagic if $f(V(G)) = \{1, 2, ..., |V(G)|\}$. When *H* is isomorphic to a complete graph K_2 , an *H*-(super)magic labeling is an edge-(super)magic labeling. Suppose that *G* admits an *F*-covering and *H*-covering for two given graphs *F* and *H*. We define *G* to be (*F*, *H*)-sim-(super)magic if there exists a bijection f' that is simultaneously *F*-(super)magic and *H*-(super)magic. In this paper, we consider (K_2 , *H*)-sim-(super)magic where *H* is isomorphic to three classes of graphs with varied symmetry: a cycle which is symmetric (both vertex-transitive and edge-transitive), a star which is edge-transitive but not vertex-transitive, and a path which is neither vertex-transitive nor edge-transitive. We discover forbidden subgraphs for the existence of (K_2 , H)-sim-(super)magic graphs and classify classes of (K_2 , H)-sim-(super)magic graphs. We also derive sufficient conditions for edge-(super)magic graphs to be (K_2 , H)-sim-(super)magic graphs.

Keywords: *H*-supermagic; (*K*₂, *H*)-sim-supermagic; edge-magic total; super edge-magic total

1. Introduction

In this paper, all graphs to be considered are finite, simple, and undirected. We write [a, b] to define the set of consecutive integers $\{a, a + 1, a + 2, ..., b\}$, for any positive integers a < b. We denote two isomorphic graphs *G* and *H* with $G \cong H$. The *degree of vertex x* of *G*, denoted by deg(x), is the number of vertices in *G* adjacent to *x*.

Let *G* be a graph with the vertex set V(G) and the edge set E(G). An *edge-magic total labeling* (or EMT labeling for short) of a graph *G* is a bijection $\lambda : V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G)| + |E(G)|\}$ with the property that there exists a constant *k* such that $\lambda(x) + \lambda(y) + \lambda(xy) = k$, for any edge $xy \in E(G)$. Then, *G* is said to be *edge-magic* (EMT) and *k* is called a *magic sum*. This notion was defined by Kotzig and Rosa [1], who called it *magic valuation*, and later rediscovered by Ringel and Lladó [2]. In [2], Ringel and Lladó conjectured that all trees are EMT. Since then, numerous papers associated with EMT labeling have been published.

In 1998, Enomoto et al. [3] introduced a special case of EMT labeling with the extra property that $\lambda(V(G)) = \{1, 2, ..., |V(G)|\}$. It is called a *super edge-magic total labeling* (SEMT labeling). A graph *G* that admits an SEMT labeling is said to be *super edge-magic* (SEMT). An SEMT labeling has a significant role in graph labeling because it is related to other types of labelings. Figueroa-Centeno et al. [4] found relationships between SEMT and well-known labelings such as harmonious, sequential, and cordial labelings. Bača et al. [5] established the relationship between SEMT and EMT labelings and (a, d)-edge-antimagic vertex labeling. Other relationships and comprehensive surveys about SEMT and EMT graphs can be found in [6–9].

The next Lemma states a necessary and sufficient condition of an SEMT graph. We frequently use this condition to construct SEMT labelings of some graphs.

Citation: Ashari, Y.F.; Salman, A.N.M.; Simanjuntak, R. On Forbidden Subgraphs of (*K*₂, *H*)-Sim-(Super)Magic Graphs. *Symmetry* **2021**, *13*, 1346. https:// doi.org/10.3390/sym13081346

Academic Editors: Juan Alberto Rodríguez Velázquez

Received: 17 June 2021 Accepted: 21 July 2021 Published: 26 July 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Lemma 1** ([4]). A graph G is SEMT if and only if there exists a bijective function $f : V(G) \rightarrow [1, |V(G)|]$ such that the set $S = \{f(u) + f(v) | uv \in E(G)\}$ consists of |E(G)| consecutive integers. In such a case, f extends to an SEMT labeling of G with magic sum k = |V(G)| + |E(G)| + s, where s = min(S).

In [3], Enomoto et al. presented a necessary condition for an SEMT graph as stated in the following.

Lemma 2 ([3]). If a graph G with order p and size q is SEMT, then $q \le 2p - 3$.

We call an SEMT graph with the maximum number of edges given by Lemma 2 a *maximal SEMT graph*. In [10], Macdougall and Wallis provide some properties of maximal SEMT graphs and construct some particular maximal SEMT graphs such as triangulations of *v*-cycle, generalized prisms, and graphs with large cliques. Sugeng and Xie [11] presented a construction to extend any non-maximal SEMT graph into a maximal SEMT graph by utilizing the adjacency matrix. Thus, it is interesting to ask the question of which other graphs are maximal SEMT.

Subsequently, Gutiérrez and Lladó [12] generalized the notion of EMT and SEMT into H-(super)magic labelings in 2005. Let G be a graph where each edge belongs to at least one subgraph isomorphic to a given graph H. In this case, G admits an H-covering. An H-magic labeling of G is a bijection g: $V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G)| + |E(G)|\}$ with the property that there exists a positive integer k such that $w_H(H') = \sum_{v \in V(H')} g(v) + \sum_{e \in E(H')} g(e) = k$, for every subgraph H' of G isomorphic to H. The H-magic labeling g of G with the extra property that $g(V(G)) = \{1, 2, ..., |V(G)|\}$ is called H-supermagic labeling of G. A graph G is an H-magic or H-supermagic if it has an H-magic labeling or H-supermagic labeling, respectively.

While working with *H*-magic graphs, we found labelings of graphs which are simultaneously *H*-magic and *F*-magic, for two non isomorphic graphs *F* and *H*. For instance, Figure 1 shows an example of a ladder $L_n = P_n \times K_2$ which is C_4 -magic and C_{2m} -magic, for any $m \in [3, \lceil \frac{n}{2} \rceil]$, at the same time [13]. This leads us to generalize the concept of *H*-magic with two or more non-isomorphic covers.

Figure 1. A C₄-supermagic and C₆-supermagic labelings of ladder.

Given two non-isomorphic graphs *F* and *H*, let *G* be a graph admitting an *F*-covering and *H*-covering simultaneously. An (F, H)-simultaneously-magic labeling of *G*, denoted by (F, H)-sim-magic labeling, is a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G)| + |E(G)|\}$ with the property that there exist two positive integers k_F and k_H (not necessarily the same) such that $w_f(F') = \sum_{v \in V(F')} f(v) + \sum_{e \in E(F')} f(e) = k_F$ and $w_f(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e) = k_H$, for each subgraph F' of *G* isomorphic to *F* and each subgraph H' of *G* isomorphic to *H*. In such a case that $f(V(G)) = \{1, 2, ..., |V(G)|\}$, we call *f* an (F, H)-simultaneously-supermagic labeling, denoted by (F, H)-sim-supermagic labeling. The graph *G* is said to be (F, H)-sim-magic or (F, H)-sim-supermagic if it has an (F, H)-sim-magic labeling or (F, H)-sim-supermagic labeling, respectively. By the definition of these notions, the construction of (F, H)-sim-(super)magic labelings of graphs can enlarge the collection of graphs that are known to be *F*-(super)magic and *H*-(super)magic.

In [13], we established the existence of a $(K_2 + H, 2K_2 + H)$ -sim-supermagic labeling of a join product graph G + H and a (C_4, H) -sim-supermagic labeling of a Cartesian product graph $G \times K_2$ where H is isomorphic to a ladder or an even cycle. We also presented the relationship between an α labeling of a tree T not isomorphic to a star and a (C_4, C_6) -simsupermagic of the Cartesian product $T \times K_2$.

Since SEMT and EMT labelings are known to be related to other well-known graph labelings, in this paper we focus on the study of (K_2, H) -sim-(super)magic labelings; in particular for a graph H that is isomorphic to a path, a star, or a cycle. We denote a *path* on *n* vertices by P_n and a cycle on *n* vertices by C_n . A star S_n is a tree on n + 1 vertices with one vertex, called the *center*, having degree *n* and the remaining vertices having degree one.

An *automorphism* of a graph G is a permutation of V(G) preserving adjacency. A graph G is said to be *vertex-transitive* if, for any two vertices u and w, there is an automorphism of G that maps u to w and it is said to be *edge-transitive* if, for any two edges u and w, there is an automorphism of G that maps u to w. If G is both vertex-transitive and edge-transitive, G is said to be *symmetric*. Recall that a cycle is symmetric; a *star* is edge-transitive but not vertex-transitive; and a path on at least 4 vertices is neither vertex-transitive nor edgetransitive. In other words, in this paper we study (K_2, H) -sim-(super)magic labelings for three classes of graphs *H* with varied symmetry.

Some of our results enlarge the collection of known (S)EMT and H-(super)magic graphs. To show this, in Section 2 we list some necessary or sufficient conditions for a graph to be *H*-(super)magic, for *H* isomorphic to a path, a star, or a cycle.

To recognize whether a graph is not (K_2, H) -sim-(super)magic, we determine *forbidden* subgraphs for (K_2, H) -sim-(super)magic graphs. In Sections 3–5 some forbidden subgraphs for (K_2, H) -sim-(super)magic labelings, where H is isomorphic to a path, a star, or a cycle, are presented. In those sections, we say that G is *H*-free if G does not contain H as a subgraph.

Additionally, in Section 3, we characterize (K_2, P_n) -sim-(super)magic graphs of small order and establish sufficient conditions for (K_2, P_n) -sim-(super)magic graphs. In Section 4, we characterize (K_2, S_n) -(super)magic graphs. In Section 5, we characterize (K_2, C_n) -(super)magic graphs of order $n \ge 3$ by establishing a relation between (S)EMT and C_n -(super)magic labelings and construct some cycles with chords that are (K_2, C_n) -(super)magic. Our constructions subsequently extend known maximal SEMT graphs and cycle-(super)magic graphs. In Section 5, we present sufficient conditions for an SEMT graph with order *m* to be (K_2, C_n) -sim-(super)magic for n < m.

2. Previous Results on H-(Super)Magic Labelings

In this paper, we first survey some known necessary conditions of H-(super)magic graphs for H isomorphic to a path and a star. These results are immediately necessary conditions for a (K_2, H) -sim-(super)magic graph. We also list some graphs known to be cycle-(super)magic.

In [12], it is proved that if *G* is a P_h -magic graph, h > 2, then *G* is C_h -free as stated in the following theorem.

Theorem 1 ([12]). Let G be a P_h -magic graph, h > 2. Then G is C_h -free.

A cycle on *n* vertices C_n with one pendant edge is denoted by C_n^{+1} (See Figure 2 for C_5^{+1}). Maryati et al. [14] gave the following necessary conditions for path-magic graphs.

Theorem 2 ([14]). Let $n \ge 4$ be a positive integer.

- If G is P_n -magic, then G is C_{n-1}^{+1} -free. If G is P_n -magic, then G is C_{n+1}^{+1} -free. 1.
- 2.

In [14,15], Maryati et al. provided another forbidden subgraph of path-magic graphs by defining an H_n graph. The H_n graph is a graph with $V(H_n) = \{v_{1,i}, v_{2,i} | i \in [1, 2n + 1]\}$

and $E(H_n) = \{v_{1,i}v_{1,i+1}, v_{2,i}v_{2,i+1} | i \in [1, 2n]\} \cup \{v_{1,c}v_{2,c} | c = n+1\}$ (Figure 3 illustrates the graph H_3).

Figure 2. The cycle with one pendant edge C_5^{+1} .

Figure 3. The graph H_3 .

Theorem 3 ([14,15]). Let $n \ge 3$ be a positive integer. If G is P_n -magic, then G is H_{n+2} -free.

In [12], Gutiérrez and A. Lladó also established some necessary conditions of starmagic graphs by considering the degree of vertices.

Theorem 4 ([12]). Let f be a S_h -magic labeling of a graph G with magic constant m_f . If the degree of vertex $x \in V(G)$ verifies deg(x) > h, then for every vertex y adjacent to x, we have $f(y) + f(xy) = \frac{1}{h}(m_f - f(x))$.

Corollary 1 ([12]). Let G be a S_h -magic graph with h > 1. Then, for every edge e = xy of G, $min\{deg(x), deg(y)\} \le h$.

In the following theorems, we present some known classes of cycle-supermagic graphs, a more complete list can be found in [7]. We recall the definition of the graphs mentioned in the theorems. A *fan* F_n is a graph obtained from connecting a single vertex to all vertices in cycle P_n . A *wheel* W_n is a graph with n + 1 vertices obtained from connecting a single vertex to all vertices in cycle C_n . For $k \ge 2$, a *windmill* W(r, k) is a graph obtained by identifying one vertex in each of the *k* disjoint copies of the cycle C_r . For $n \ge 2$, a *ladder* L_n , is defined as $P_n \times K_2$, whose vertex set is $V(L_n) = V(P_n) \times V(K_2) = \{(x_i, y_j) | i \in [1, n] \text{ and } j \in [1, 2]\}$ and edge set is $E(L_n) = \{(x_i, y_j) | x_{i+1}, y_j) | i \in [1, n-1] \text{ and } j \in [1, 2]\} \cup \{(x_i, y_1)(x_i, y_2) | i \in [1, n]\}$. Illustrations of a wheel, a fan, and a ladder can be seen in Figure 4.

Theorem 5 ([16,17]). *For* $n \ge 4$, *the wheel* W_n *is* C_3 *-supermagic.*

Theorem 6 ([16]). For any two integers $k \ge 2$ and $r \ge 3$, the windmill W(r, k) is C_r -supermagic.

Theorem 7 ([18]). Let $n \ge 4$ be a positive integer.

- 1. The fan F_n is C_m -supermagic for any integer $4 \le m \le \lfloor \frac{n+4}{2} \rfloor$;
- 2. The ladder L_n is C_m -supermagic for any positive integer $3 \le m \le \lfloor \frac{n}{2} \rfloor + 1$.

Figure 4. (a) The wheel W_5 , (b) the fan F_4 , and (c) the ladder L_4 .

One important observation on H-magicness is the following.

Observation 1. If G is H-magic then $G \bigcup nK_1$ is also H-magic.

The converse of Observation 1 is not true. For example, $2P_3 \cup K_1$ is P_3 -supermagic (as shown in Figure 5) but $2P_3$ is not P_3 -magic (as a result of Theorem 1 in [14]).

Figure 5. P_3 -magic of $2P_3 \cup K_1$.

Due to this fact, in the rest of the paper, we restrict our observation to graphs with components not isomorphic to K_1 .

3. (K_2, P_n) -Sim-Supermagic Labelings

In this section, we provide the collection of forbidden subgraphs and characterize a (K_2, P_n) -sim-supermagic graph.

Let $m \ge 3$ and $n \ge 2$ be two integers. We denote the edge sets of a path P_n and a cycle C_m as $E(P_n) = \{w_i w_{i+1} | i \in [1, n-1] \text{ and } E(C_m) = \{v_i v_{i+1} | i \in [1, m-1] \cup \{v_1 v_m\}, \text{ respectively. An } (m, n)\text{-tadpole is a graph obtained by joining the end vertex } w_1 \text{ of } P_{n-1} \text{ to the vertex } v_1 \text{ of } C_m$. Figure 6 shows the (4, 5)-tadpole graph.

We denote the star with *n* pendant edges as S_n . Consider the star S_3 with three pendant edges denoted by e_1, e_2, e_3 . We define $S(S_3; e_1, e_2, e_3; n, 3, 3)$ as a subdivision of the star S_3 by replacing the edge e_1 with a path on *n* vertices and the remaining edges by paths on three vertices. Figure 7 illustrates the subdivided star $S(S_3; e_1, e_2, e_3; 5, 3, 3)$.

Figure 6. The (4, 5)-tadpole graph.

Figure 7. The $S(S_3; e_1, e_2, e_3; 5, 3, 3)$ graph.

In [19], Maryati et al. introduced a subgraph-amalgamation. For $n \ge 2$, let $\{G_i\}_{i=1}^n$ be a collection of graphs G_i s where each G_i contains $H_i^* \cong H$ as a fixed subgraph and let $\mathcal{H} = \{H_i^*\}_{i=1}^n$ be the collection of H_i^* s. The *H*-amalgamation of $\{G_i\}_{i=1}^n$, denoted by $Amal(G_1, G_2, \ldots, G_n; \mathcal{H}; n)$, is a graph constructed from identifying the H_i^* of each G_i . If G_i is isomorphic to a given graph G, we write the *H*-amalgamation as $Amal(G; \mathcal{H}; n)$.

Let G_1 be an (m, n)-tadpole containing a subgraph $H_1^* = v_2 v_3$ isomorphic to P_2 ; let G_2 be a path P_k , whose edge set is $E(P_k) = \{x_i x_{i+1} | i \in [1, k-1]\}$, containing a subgraph $H_2^* = x_3 x_4$ isomorphic to P_2 ; and $\mathcal{H} = \{H_i^*\}_{i=1}^2$. Figure 8 illustrates the Amal((5,3)-tadpole, $P_8; \mathcal{H}; 2)$.

Figure 8. The *Amal*((5,3)-tadpole, P_8 ; H; 2) graph.

The next theorem stated forbidden subgraphs of (K_2, P_n) -sim-(super)magic graphs.

Theorem 8. If G is (K_2, P_n) -sim-(super)magic, then G is H-free where

- 1. $H \cong C_m$, for any $n \ge 4$ and $m \in [n-1, n+1]$;
- 2. $H \cong H_{n+2}$, for any $n \ge 3$;
- 3. $H \cong P_{n+1}$, for any $n \ge 3$;
- 4. $H \cong S(S_3; e_1, e_2, e_3; n 2, 3, 3)$, for any $n \ge 5$;
- 5. $H \cong (k, n k)$ -tadpole, for any n > 4 and $k \in [3, n 2]$;
- 6. $H \cong Amal((m,3)$ -tadpole, P_{n-m} ; \mathcal{H} ; 2), for any $n \ge 7$, and $m \in [3, n-4]$.

Proof. The case where $H \cong C_m$, for any $n \ge 4$ and $m \in [n - 1, n + 1]$, is an immediate consequence of Theorems 1 and 2; and the case where $H \cong H_{n+2}$, for any $n \ge 3$, is an immediate consequence of Theorem 3. The rest of the cases are proven as follows.

Case 3. $H \cong P_{n+1}$, for any $n \ge 3$.

Suppose that *G* is a (K_2, P_n) -sim-(super)magic graph and *G* is not P_{n+1} -free. Let *f* be a (K_2, P_n) -sim-(super)magic labeling of *G*. Consider two subgraphs isomorphic to P_n with edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$ and $v_2v_3, v_3v_4, \ldots, v_nv_{n+1}$. Since *G* is (K_2, P_n) -magic,

$$\sum_{i=1}^{n} f(v_i) + \sum_{i=1}^{n-1} f(v_i v_{i+1}) = \sum_{i=2}^{n+1} f(v_i) + \sum_{i=2}^{n} f(v_i v_{i+1}).$$
(1)

By eliminating $\sum_{i=2}^{n} f(v_i) + \sum_{i=2}^{n-1} f(v_i v_{i+1})$ in both sides of Equation (1), we have

$$f(v_1) + f(v_1v_2) = f(v_nv_{n+1}) + f(v_{n+1}).$$

However, $\sum_{i=1}^{2} f(v_i) + f(v_1v_2) = \sum_{i=n}^{n+1} f(v_i) + f(v_nv_{n+1})$. This clearly forces $f(v_2) = f(v_n)$, a contradiction.

Case 4. $H \cong S(S_3; e_1, e_2, e_3; n - 2, 3, 3)$, for any $n \ge 5$.

Assume to the contrary that *G* is (K_2, P_n) -sim-(super)magic and *G* contains $S(S_3; e_1, e_2, e_3; n - 2, 3, 3)$ as a subgraph. Let *f* be a (K_2, P_n) -sim-(super)magic labeling of *G*. Consider a subgraph *H* isomorphic to $S(S_3; e_1, e_2, e_3; n - 2, 3, 3)$. Label the vertex set $V(H) = \{v_i | i \in [1, n - 2]\} \cup \{w_i, x_i | i \in [1, 2]\}$ and the edge set $E(H) = \{v_i v_{i+1} | i \in [1, n - 3]\} \cup \{v_1 w_1, v_1 x_1, w_1 w_2, x_1 x_2\}$. There exist two paths isomorphic to P_n with edges $v_{n-2}v_{n-3}, v_{n-3}v_{n-4}, \ldots, v_2v_1, v_1w_1, w_1w_2$ and $v_{n-2}v_{n-3}, v_{n-3}v_{n-4}, \ldots, v_2v_1, v_1x_1, x_1x_2$. As *f* is a (K_2, P_n) -sim-(super)magic labeling, we have $\sum_{i=1}^{n-2} f(v_i) + \sum_{i=1}^{2} f(w_i) + f(v_1w_1) + \sum_{i=1}^{n-3} f(v_i v_{i+1}) + f(w_1w_2) = \sum_{i=1}^{n-2} f(v_i) + \sum_{i=1}^{2} f(x_i) + \sum_{i=1}^{n-3} f(v_i v_{i+1}) + f(v_1x_1) + f(x_1x_2)$. Thus, we obtain $f(v_1w_1) = f(v_1x_1)$, a contradiction.

Case 5. $H \cong (k, n - k)$ -tadpole, for any n > 4 and $k \in [3, n - 2]$.

Suppose that *G* is (K_2, P_n) -sim-(super)magic and contains (k, n - k)-tadpole as a subgraph. Let *f* be a (K_2, P_n) -sim-(super)magic labeling of *G*. Next, let *k* be an arbitrary positive integer with $k \in [3, n - 2]$. Consider a subgraph *H* isomorphic to (k, n - k)-tadpole. Denote the vertex set $V(H) = \{v_i, w_j | i \in [1, k], j \in [1, n - k]\}$ and the edge set $E(H) = \{v_iv_{i+1} | i \in [1, k - 1]\} \cup \{v_1v_k, v_1w_1\} \cup \{w_jw_{j+1} | j \in [1, n - k - 1]\}$. Consider two paths isomorphic to P_n with edges $w_{n-k}w_{n-k-1}, w_{n-k-1}w_{n-k-2}, \dots, w_2w_1, w_1v_1, v_1v_2, v_2v_3, \dots, v_{k-1}v_k$ and $w_{n-k}w_{n-k-1}, w_{n-k-2}, \dots, w_2w_1, w_1v_1, v_1v_k, v_kv_{k-1}, \dots, v_3v_2$. Since *G* is (K_2, P_n) -sim-(super)magic, $\sum_{i=1}^{n-k} f(w_i) + \sum_{i=1}^{k} f(v_i) + \sum_{i=1}^{n-k-1} f(w_iw_{i+1}) + f(v_1w_1) + \sum_{i=1}^{k-1} f(v_iv_{i+1}) = \sum_{i=1}^{n-k} f(w_i) + \sum_{i=1}^{k} f(v_i) + \sum_{i=1}^{n-k-1} f(w_iw_{i+1}) + f(v_1v_k) + \sum_{i=1}^{k-1} f(v_iv_{i+1})$. As a result, we have $f(v_1v_k) = f(v_1v_2)$, a contradiction.

Case 6. $H \cong Amal((m, 3)$ -(tadpole), P_{n-m} ; \mathcal{H} ; 2), for any $n \ge 7$ and $m \in [3, n-4]$.

Assume to the contrary that *G* is (K_2, P_n) -sim-(super)magic and contains a subgraph isomorphic to Amal((m, 3)-(tadpole), P_{n-m} ; \mathcal{H} ; 2). Let *f* be a (K_2, P_n) -sim-(super)magic labeling of *G*. Then, let *m* be an arbitrary positive integer with $m \in [3, n-4]$. Consider a subgraph *H* of *G* isomorphic to Amal((m, 3)-(tadpole), P_{n-m} ; \mathcal{H} ; 2). Denote the vertex set $V(H) = \{v_i | i \in [1, m]\} \cup \{w_i | i \in [1, n-m-2]\} \cup \{x_i, y_i | i \in [1, 2]\}$ and the edge set $E(H) = \{v_i v_{i+1} | i \in [1, m-1]\} \cup \{w_i w_{i+1} | i \in [1, n-m-3]\} \cup \{v_1 v_m, v_1 w_1, v_2 x_1, v_m y_1, x_1 x_2, y_1 y_2\}$. Consider two paths isomorphic to P_n with edges $w_{n-m-2}w_{n-m-3}$, $w_{n-m-3}w_{n-m-4}$, ..., $w_1 v_1, v_1 v_2, v_2 v_3, \ldots, v_{m-1} v_m, v_m y_1, y_1 y_2$ and $w_{n-m-2}w_{n-m-3}, w_{n-m-3}w_{n-m-4}, \ldots, w_1 v_1, v_1 v_2, v_2 v_3, \ldots, v_{m-1} v_m, v_m y_1, y_1 y_2$ and $w_{n-m-2}w_{n-m-3}, w_{n-m-3}w_{n-m-4}, \ldots, w_1 v_1, v_1 v_m, v_m v_{m-1}, \ldots, v_3 v_2, v_2 x_1, x_1 x_2$. As *G* is (K_2, P_n) -sim-(super)magic, we have $\sum_{i=1}^{n-m-2} f(w_i) + f(w_1 v_1) + \sum_{i=1}^m f(v_i) + \sum_{i=1}^{2} f(y_i) + \sum_{i=1}^{n-m-3} f(w_i w_{i+1}) + \sum_{i=1}^{m-1} f(v_i v_{i+1}) + f(v_m y_1) + f(v_1 v_m) + f(v_2 x_1) + f(x_1 x_2) + f(w_1 v_1)$. Thus, we have $f(x_1) = f(y_1)$, a contradiction. \Box

We remark that if *G* is (K_2, P_n) -sim-(super)magic, then P_n is the longest path of *G*. Notice that, for $n \in [3, 4]$, $S(S_3; e_1, e_2, e_3; n - 2, 3, 3)$ contains P_5 as a subgraph. By Theorem 8, such graphs are not (K_2, P_n) -sim-supermagic. The converse of Theorem 8 is not true as shown in the following example.

Example 1. The graph mP_3 is not (K_2, P_3) -sim-(super)magic for any integer $m \ge 3$.

Proof. Suppose that there exists a (K_2, P_3) -sim-(super)magic labeling on mP_3 . Let X_i be the set of the internal vertex label in a P_3^i for $i \in [1, m]$. Clearly $|X_i| = 1$. For each edge $xy \in P_3^i$, the *xy*-weight, f(xy) + f(x) + f(y) = k. Thus, the P_3 -weight of P_3^i is $2k - \sum X_i$ for every $i \in [1, m]$. Consequently, $\sum X_i$ should be a constant for every $i \in [1, m]$, a contradiction. \Box

Problem 1. What are the other forbidden subgraphs of (K_2, P_n) -sim-(super)magic graph?

As a consequence of Theorem 8 where $H \cong P_{n+1}$, for any integer $n \ge 3$, we have the following two results.

Corollary 2. Let $n \ge 3$ be a positive integer and G be a graph that admits P_n -covering. If G is (K_2, P_n) -sim-(super)magic, then $n \ge diam(G) + 1$.

Corollary 3. Let $n \ge 3$ be a positive integer and G be a graph that admits P_n -covering. If G is (K_2, P_n) -sim-(super)magic, then G is C_h -free for any h > n.

By the previous two corollaries, Theorem 8, and Example 1, we have the following corollaries.

Corollary 4. Let $n \in \{3,4\}$ and G be a graph that admits P_n -covering. If G is (K_2, P_n) -sim-(super)magic, then G is a forest. In particular, if G is (K_2, P_n) -sim-(super)magic, then G is a tree.

Let $n \ge 2$ be a positive integer. In [12], it is proved that the star S_n is S_m -supermagic for each m < n. Moreover, the S_m -supermagic labeling of S_n in [12] is also an SEMT labeling of S_n . Combining with Example 1 and Corollary 4, we obtain the following.

Corollary 5. A graph G is (K_2, P_3) -sim-(super)magic if and only if G is isomorphic to the star S_n for any positive integer $n \ge 3$.

A *caterpillar* $S_{n_1,n_2,...,n_k}$ is a graph derived from a path P_k , $k \ge 2$, where the vertex $w_i \in V(P_k)$ is adjacent to $m_i \ge 0$ leaves, $i \in [1,k]$. A special case of caterpillars when k = 2, $m_1 \ge 1$, and $m_2 \ge 1$ is called a *double star* S_{m_1,m_2} . An illustration of the double star $S_{5,3}$ and a (K_2, P_4) -sim-supermagic labeling on $S_{5,3}$ can be seen in Figure 9. Since Kotzig and Rosa [1] have proved that all caterpillars are SEMT, utilizing Corollary 4, we have the following.

Figure 9. A (K_2 , P_4)-sim-supermagic labeling of the double star $S_{5,3}$.

Corollary 6. A connected graph G is (K_2, P_4) -sim-(super)magic if and only if G is isomorphic to a double star $S_{m,n}$ for any two positive integers m and n.

Problem 2. Characterize (K_2, P_n) -sim-(super)magic graphs for any $n \ge 5$.

We conclude this section by presenting sufficient conditions for an (S)EMT graph to be (K_2, P_n) -sim-(super)magic.

Lemma 3. Let k and n be two positive integers. Let G be a graph of order at least n + 1 that admits P_n -covering. Let $\{P_n^i\}_{i=1}^k$ be the family of all subgraphs of G isomorphic to P_n and let $\sum X_i$ be the sum of all internal vertices labels in P_n^i for every $i \in [1, k]$. If f is an (S)EMT labeling in G such that $\sum X_i$ is constant, for each $i \in [1, k]$, then G is (K_2, P_n) -sim-(super)magic.

Proof. Let m_f be the magic sum of the labeling. Let $i \neq j$ be two positive integers in [1, k]. Consider two arbitrary paths P_n^i and P_n^j in $\{P_n^i\}_{i=1}^k$. Thus, $\sum X_i = \sum X_j$. Hence, we have the following:

$$\begin{split} w(P_n^i) &= \sum_{v \in V(P_n^i)} f(v) + \sum_{e \in E(P_n^i)} f(e) \\ &= (n-1) m_f - \sum X_i \\ &= (n-1) m_f - \sum X_j \\ &= \sum_{v \in V(P_n^j)} f(v) + \sum_{e \in E(P_n^j)} f(e) \\ &= w(P_n^j) \end{split}$$

As a result, the sum of all edges and vertices labels associated to a subgraph of *G* isomorphic to P_n is a constant. Therefore, *G* is a P_n -(super)magic. Since *f* is simultaneously SEMT and P_n -(super)magic, *G* is (K_2, P_n) -sim-(super)magic. \Box

As an immediate consequence of Lemma 3, we have the following special cases of caterpillars that are (K_2, P_n) -sim-magic. The *broom* $B_{m,n}$ is defined as a graph isomorphic to the caterpillar $S_{n_1,n_2,...,n_{m-n}}$ where $n_1 = n_2 = \cdots = n_{m-n-1} = 0$ and $n_{m-n} = n$. The *double broom* DB_{m,k_1,k_2} is a graph isomorphic to the caterpillar $S_{n_1,n_2,...,n_{m-k_1-k_2}}$ where $n_1 = k_1$, $n_2 = n_3 = \ldots = n_{m-k_1-k_2-1} = 0$, and $n_{m-k_1-k_2} = k_2$. Figure 10 illustrates the broom $B_{11,6}$ and the double broom $DB_{14,3,6}$.

Figure 10. (a) A (K_2, P_6) -sim-supermagic labeling of the broom $B_{11,6}$ and (b) A (K_2, P_7) -sim-supermagic labeling of the double broom $DB_{14,3,6}$.

Corollary 7. Let n_1, n_2 , and m be three positive integers at least two and $n \ge 3$. The broom $B_{m+n-1,m}$ and the double broom $DB_{n+n_1+n_2-2,n_1,n_2}$ are (K_2, P_n) -sim-magic.

Proof. It is known that all caterpillars are edge magic [1]. Moreover, all subgraphs isomorphic to P_k have the same internal vertices. This completes the proof. \Box

Figure 10 illustrates (K_2 , P_n)-sim-supermagic labelings of the broom $B_{11,6}$ and the double broom $DB_{14,3,6}$ for n = 6 and n = 7, respectively.

4. A (K_2, S_n) -Sim-Supermagic Labelings

In this section, we characterize (K_2, S_n) -sim-(super)magic graphs. Clearly, necessary conditions of S_n -magic graphs in Theorem 4 and Corollary 1 are also necessary conditions of (K_2, S_n) -sim-(super)magic graphs. In the following Lemma, we strengthen the degree condition of Corollary 1 for (K_2, S_n) -sim-(super)magic graphs.

Lemma 4. Let $n \ge 2$ be a positive integer and G be a (K_2, S_n) -sim-(super)magic. Then, there is only one vertex x of G with $deg(x) \ge n$.

Proof. Suppose that there are two vertices v and w in V(G) such that $deg(v) \ge n$ and $deg(w) \ge n$. Let f be a (K_2, S_n) -sim-(super)magic labeling of G. Hence, there exist two positive integers k_1 and k_2 such that each edge $xy \in E(G)$ satisfies $f(x) + f(y) + f(xy) = k_1$ and each subgraph H of G isomorphic to S_n satisfies $\sum_{u \in V(H)} f(u) + \sum_{e \in E(H)} f(e) = k_2$. Consider two arbitrary stars with center v and w that are isomorphic to S_n as S^1 and S^2 . Thus,

$$\sum_{v \in V(S^1)} f(v) + \sum_{e \in S^1} f(e) = \sum_{w \in V(S^2)} f(w) + \sum_{e \in E(S^2)} f(e)$$

$$nk_1 - (n-1)f(v) = nk_1 - (n-1)f(w).$$

As a result, we have f(v) = f(w), a contradiction. \Box

Recall that Gutiérrez and Lladó [12] proved the following theorem. The labeling in the proof of the theorem will be utilized to characterize (K_2 , S_n)-sim-supermagic graphs.

Theorem 9 ([12]). *The star* S_m *is* S_n *-supermagic for any* $n \in [1, m]$.

Proof. Denote the vertex set of S_m by $V(S_m) = \{v_1, v_2, \ldots, v_m, v_{m+1}\}$, where v_{m+1} is the maximum degree vertex, and the edge set of S_m by $E(S_m) = \{v_{m+1}v_i | i \in [1,m]\}$. Define a bijection $f: V(S_m) \cup E(S_m) \rightarrow [1, 2m+1]$ with $f(v_i) = i$ and $f(v_{m+1}v_i) = 2(m+1) - i$, for any $i \in [1, m]$, and $f(v_{m+1}) = m + 1$. Thus, $f(V(S_m)) = [1, m+1]$. We can verify that $w(H) = \sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e) = (m+1) + n(i + (2(m+1) - i)) = (m+1)(2n+1)$ (constant) for every subgraph H of S_m isomorphic to S_n . Therefore, S_m is S_n -supermagic for each $n \in [1, m]$. \Box

Now we are ready to characterize (K_2, S_n) -sim-supermagic graphs.

Theorem 10. Let $n \ge 1$ be a positive integer. A graph G is (K_2, S_n) -sim-supermagic if and only if G is isomorphic to the star S_m for m > n.

Proof. (\Leftarrow) First, we prove that, for m > n, the star S_m is (K_2, S_n) -sim-supermagic. Recall the S_n -supermagic labeling of S_m in the proof of Theorem 9, where $w(v_{n+1}v_i) = f(v_{n+1}) + f(v_i) + f(v_{n+1}v_i) = n + 1 + i + 2(m+1) - i = n + 1 + 2(m+1)$ (constant), for each edge $v_{n+1}v_i$ in $E(S_m)$. Hence, S_m is (K_2, S_n) -sim-supermagic for m > n.

 (\Rightarrow) Conversely, we prove that if *G* is (K_2, S_n) -sim-supermagic, then *G* is isomorphic to the star S_m for m > n. Clearly, a connected graph *G* with order two and three is isomorphic to S_1 and S_2 , respectively. Then, consider *G* with order at least four. Suppose

to the contrary that *G* is not isomorphic to any star S_m , m > n. Let *e* be an arbitrary edge in *G*. Suppose that *e* belongs to S^* , a subgraph isomorphic to S_n , where *e* is incident with *c*, the center of S^* . Since *G* is not isomorphic to a star, there exists another edge *e'* which is not incident with *c*. Since *G* admits S_n -covering, then *e'* belongs to a subgraph that is isomorphic to S_n where the center is not *c*, a contradiction by Lemma 4. \Box

We remark that by considering n = 2, we can derive another proof of Corollary 5 from Theorem 10.

5. A (K_2, C_n) -Sim-Supermagic Labelings

In this section, we list some forbidden subgraphs and some (K_2, C_n) -sim-(super)magic graphs. We start by presenting results for (K_2, C_n) -sim-(super)magic graphs of order *n* by considering the relation between two well-known magic labelings: (S)EMT and C_n -(super)magic.

Lemma 5. Let G be a graph of order n admitting a C_n covering. If G is (S)EMT then G is C_n -(super)magic.

Proof. Let *f* be an (*S*)EMT labeling of *G*. Thus, there exists a positive integer k_1 such that $f(x) + f(y) + f(xy) = k_1$ for each edge xy in E(G). Denote $\{x_i | i \in [1, n]\}$ as the set of vertices in *G*. Define a bijection $g : V(G) \cup E(G) \rightarrow [1, |V(G)| + |E(G)|]$ with g(x) = f(x) for all $x \in V(G) \cup E(G)$. Consider an arbitrary subgraph *C* isomorphic to C_n . Since the label of each vertex *x* is counted twice in $w(C) = \sum_{v \in V(C)} f(v) + \sum_{e \in E(C)} f(e)$, then $w(C) = nk_1 - \sum_{i=1}^n f(x_i)$, a constant. Therefore, *G* is C_n -(super)magic.

The converse of Lemma 5 is not true since K_4 is C_4 -(super)magic, although it is known that K_4 is neither EMT [1,3] nor SEMT [3] (See Figure 11). However, it is clear that we have the following necessary and sufficient condition for a graph of order n to admit a (K_2, C_n) -sim-(super)magic labeling.

Figure 11. (a) A C_4 -supermagic labeling of K_4 and (b) A C_4 -magic labeling of K_4 .

Corollary 8. Let G be a graph order n admitting a C_n covering. G is (S)EMT if and only if G is (K_2, C_n) -sim-(super)magic.

It is known that the complete graph K_n is EMT if and only if n = 3, 5, 6 [1]. Since each pair of vertices in K_n are adjacent, the number of subgraphs of K_n isomorphic to C_n is the number of *n*-cycles in the symmetric group S_n , which is $\frac{n!}{n} = (n - 1)!$ Thus, the number of subgraphs of K_5 and K_6 isomorphic to C_5 and C_6 is 24 and 120, respectively.

Corollary 9. Let n > 3 be a positive integer. A complete graph K_n is (K_2, C_n) -sim-magic if and only if n = 5 or n = 6.

Proof. (\Leftarrow) Recall the known EMT labeling *f* in *K*_n for n = 5 or 6 [1]. By Lemma 5, *f* is a *C*_n-magic labeling. This gives *K*_n as (*K*₂, *C*_n)-sim-magic for n = 5 or 6.

(⇒) Conversely, it is immediately known from the fact that K_n is not EMT according to Kotzig and Rosa [1]. \Box

Figure 12 shows (K_2, C_5) -sim-supermagic and (K_2, C_6) -sim-supermagic graphs.

Figure 12. A (K_2 , C_n)-sim-supermagic labeling for $n \in [5, 6]$.

Kotzig and Rosa [1] proved that the complete bipartite graph $K_{m,n}$ is EMT for all m and n. Philips et al. [20] constructed an EMT labeling of the wheel W_n for $n \equiv 0, 1$, or 2(mod 4). By Lemma 5, we have the following Corollary.

Corollary 10. *Let* $n \ge 3$ *be a positive integer.*

- 1. $K_{n,n}$ is (K_2, C_{2n}) -sim-magic;
- 2. W_n is (K_2, C_{n+1}) -sim-magic for $n \equiv 0, 1, or 2 \pmod{4}$.

In the next two theorems, we consider a (K_2, C_m) -sim-supermagic labeling of a cycle with chords. A *chord* is an edge joining two non-adjacent vertices in a cycle. An *n*-power of graph G^n is a graph with the vertex set $V(G^n) = V(G)$ and any two vertices are adjacent when their distance in *G* is at most *n*. Recall from Lemma 2 that C_n^2 is not SEMT, so it is if we remove at most two edges from C_n^2 . Thus, it is interesting to construct a maximal SEMT graph, where the number of edges is equal to the upper bound of inequality in Lemma 2, from C_n^2 .

Let $n \ge 3$ be a positive integer and $\{x_i | i \in [1, n]\}$ be the vertex set of the cycle C_n . Let $E = \{x_{\lfloor \frac{n}{2} \rfloor} x_{\lfloor \frac{n}{2} \rfloor + 2}, x_{n-1} x_1, x_n x_2\}$ be the set of three edges in C_n^2 . We define the cycle with chords CC_n^1 where the vertex set is $V(C_n)$ and the edge set is $E(C_n^2) \setminus E$. It is clear that CC_n^1 admits a C_n -covering for every odd integer $n \ge 7$ and we have the following theorem.

Theorem 11. Let $n \ge 7$ be an odd integer. A cycle with chords CC_n^1 is (K_2, C_n) -sim-supermagic.

Proof. Let $\{x_i | i \in [1, n]\}$ be the vertex set of CC_n^1 . Define a bijection $f : V(CC_n^1) \rightarrow [1, |V(CC_n^1)|]$ as $f(x_i) = i$, for $i \in [1, n]$. Thus, for each edge $x_i x_j \in E(CC_n^1)$, we have

- 1. $f(x_i) + f(x_{i+1}) = 2i + 1$, for each $i \in [1, n 1]$;
- 2. $f(x_n) + f(x_1) = n + 1;$
- 3. $f(x_i) + f(x_j) = i + i + 2 = 2i + 2$, for $j = (i + 2) \mod n$ and $i \in [1, n 2]$.

Consequently, $3 \le f(x_i) + f(x_j) \le 2n - 1$ and the set $S = \{f(x_i) + f(x_j) | x_i x_j \in E(G)\}$ consists of |E(G)| consecutive integers. By Lemma 1, CC_n^1 is SEMT and f is the SEMT labeling with magic sum k = |V(G)| + |E(G)| + min(S) = n + 2n - 3 + 3 = 3n. By Lemma 5, f is also a C_n -supermagic labeling of CC_n^1 . This concludes that CC_n^1 is (K_2, C_n) sim-supermagic. \Box

Figure 13a illustrates a (K_2, C_7) -sim-supermagic labeling of CC_7^1 .

Let $n \ge 8$ be an even integer. Let $E^* = \{ x_{\frac{n}{2}-1}x_{\frac{n}{2}+1}, x_{\frac{n}{2}}x_{\frac{n}{2}+2}, x_{\frac{n}{2}+2}x_{\frac{n}{2}+4}, x_{n-1}x_1, x_n x_2 \}$. We define the cycle with chords CC_n^2 as a graph where the vertex set is $V(C_n)$ and the edge set is $E(C_n^2) \setminus E^* \bigcup \{ x_{\frac{n}{2}-1}x_{\frac{n}{2}+2}, x_{\frac{n}{2}+1}x_{\frac{n}{2}+4} \}$. Such a cycle with chords admits C_n -covering for each $n \ge 8$ an even integer.

Figure 13. (a) A (K_2, C_7) -sim-supermagic labeling CC_7^1 and (b) A (K_2, C_8) -sim-supermagic labeling of CC_8^2 .

Theorem 12. Let $n \ge 8$ be an even integer. A cycle with chords CC_n^2 is (K_2, C_n) -sim-supermagic.

Proof. Let $\{x_i | i \in [1, n]\}$ be the vertex set of CC_n^2 . Define a bijection $f : V(CC_n^2) \rightarrow [1, |V(CC_n^2)|]$ as follows.

- 1. $f(x_i) = i$, for every $i \in [1, \frac{n}{2}]$ and $i \in [\frac{n}{2} + 3, n]$;
- 2. $f(x_{\frac{n}{2}+1}) = \frac{n}{2} + 2;$
- 3. $f(x_{\frac{n}{2}+2}) = \frac{n}{2} + 1.$

For each $x_i x_i \in E(CC_n^2)$, we have

- 1. $f(x_i) + f(x_{i+1}) = 2i + 1$, for each $i \in [1, \frac{n}{2} 1]$ and $i \in [\frac{n}{2} + 2, n 1]$;
- 2. $f(x_{\frac{n}{2}}) + f(x_{\frac{n}{2}+1}) = n+2;$
- 3. $f(x_{\frac{n}{2}+1}) + f(x_{\frac{n}{2}+2}) = n+3;$
- 4. $f(x_n) + f(x_1) = n + 1;$
- 5. $f(x_i) + f(x_{i+2}) = 2i + 2$, for each $x_i x_{i+2} \in E(CC_n^2)$, $i \in [1, \frac{n}{2}]$ and $i \in [\frac{n}{2} + 3, n 2]$;
- 6. $f(x_{\frac{n}{2}+1}) + f(x_{\frac{n}{2}+3}) = n+5;$
- 7. $f(x_{\frac{n}{2}-1}) + f(x_{\frac{n}{2}+2}) = n;$
- 8. $f(x_{\frac{n}{2}+1}) + f(x_{(\frac{n}{2}+4)}) = n + 6.$

It can be counted that $3 \le f(x_i) + f(x_j) \le 2n - 1$ and the set $S = \{f(x_i) + f(x_j) | x_i x_j \in E(G)\}$ consists of |E(G)| consecutive integers. By Lemma 1, CC_n^2 is SEMT and f is the SEMT labeling with magic sum $k = |V(CC_n^2)| + |E(CC_n^2)| + min(S) = n + 2n - 3 + 3 = 3n$. By Lemma 5, f is also a C_n -supermagic labeling of CC_n^2 . This concludes that CC_n^2 is (K_2, C_n) -sim-supermagic. \Box

Figures 13b shows a (K_2, C_8) -sim-supermagic labeling of cycle with chords CC_8^2 .

In addition to maximal SEMT graphs construction, we remark that Theorems 11 and 12 also enlarge the classes of graphs known to be C_n -supermagic and SEMT.

Notice that up to Theorem 12 we only consider (K_2, C_n) -sim-supermagic graphs of order n. Therefore, it is interesting to ask whether an (S)EMT graph G of order n can admit a C_m -(super)magic labeling, for m < n. We start by presenting some forbidden subgraphs of (K_2, C_n) -sim-(super)magic graphs, for $n \ge 3$.

Theorem 13. If G is (K_2, C_n) -sim-(super)magic, then G is H-free, where

- 1. $H \cong Amal(C_n; P_{n-1}; 2)$, for any $n \ge 3$;
- 2. $H \cong Amal(C_n; P_{n-2}; 2)$, for any $n \ge 3$.

Proof. Suppose that *G* is (K_2, C_n) -sim-(super)magic and *G* is not *H*-free. Then, *G* contains a subgraph that is isomorphic to *H*. Let *f* be a (K_2, C_n) -sim-(super)magic labeling of *G*,

such that there exist two positive integers k_1 and k_2 , satisfying $f(x) + f(y) + f(xy) = k_1$ and $\sum_{v \in V(C)} f(v) + \sum_{e \in E(C)} f(e) = k_2$, for each edge $xy \in E(G)$ and for each subgraph *C* isomorphic to C_n , respectively. We consider the following two cases.

Case 1. $H \cong Amal(C_n; P_{n-1}; 2)$.

Consider a subgraph $H \cong Amal(C_n; P_{n-1}; 2)$ of a graph *G*. Denote the vertices in $Amal(C_n; P_{n-1}; 2)$ by $\{v_n\} \cup \{u_i | i \in [1, n-1]\} \cup \{w_n\}$ such that the edge set is $\{u_i u_{i+1} | i \in [1, n-2]\} \cup \{v_n u_i, w_n u_i | i \in \{1, n-1\}\}$. There are two cycles C^1 and C^2 isomorphic to C_n with $V(C^1) = v_n, u_1, u_2, \ldots, u_{n-2}, u_{n-1}$ and $V(C^2) = w_n, u_1, u_2, \ldots, u_{n-2}, u_{n-1}$. Then,

$$\sum_{i=1}^{n-1} f(u_i) + f(v_n) + \sum_{i=1}^{n-2} f(u_i u_{i+1}) + f(v_n u_1) + f(v_n u_{n-1}) = \sum_{i=1}^{n-1} f(u_i) + f(w_n) + \sum_{i=1}^{n-2} f(u_i u_{i+1}) + f(w_n u_1) + f(w_n u_{n-1})$$

or

$$f(v_n) + f(v_n u_1) + f(v_n u_{n-1}) = f(w_n) + f(w_n u_1) + f(w_n u_{n-1}).$$

Since $f(x) + f(y) + f(xy) = k_1$ for each edge $xy \in E(G)$, $f(v_n) + f(v_nu_1) = f(w_n) + f(w_nu_1)$. Hence, $f(v_nu_{n-1}) = f(w_nu_{n-1})$, a contradiction.

Case 2. $H \cong Amal(C_n; P_{n-2}; 2)$.

Consider a subgraph $H \cong Amal(C_n; P_{n-2}; 2)$ of a graph *G*. Denote the vertices in $Amal(C_n; P_{n-2}; 2)$ by $\{v_{n-1}, v_n\} \cup \{u_i | i \in [1, n-2]\} \cup \{w_{n-1}, w_n\}$ such that the edge set is $\{u_i u_{i+1} | i \in [1, n-3]\} \cup \{u_1 v_{n-1}, v_{n-1} v_n, v_n u_{n-2}, u_1 w_{n-1}, w_{n-1} w_n, w_n u_{n-2}\}$. There are two cycles C^1 and C^2 isomorphic to C_n with $V(C^1) = v_n, v_{n-1}, u_1, u_2, \ldots, u_{n-2}$ and $V(C^2) = w_n, w_{n-1}, u_1, u_2, \ldots, u_{n-2}$. Then

$$\sum_{i=1}^{n-2} f(u_i) + \sum_{i=n-1}^{n} f(v_i) + \sum_{i=1}^{n-3} f(u_i u_{i+1}) + f(v_{n-1} u_1) + f(v_n u_{n-2}) + f(v_n v_{n-1}) = \sum_{i=1}^{n-2} f(u_i) + \sum_{i=n-1}^{n} f(w_i) + \sum_{i=1}^{n-3} f(u_i u_{i+1}) + f(w_{n-1} u_1) + f(w_n u_{n-2}) + f(w_n w_{n-1})$$

or

$$\sum_{i=n-1}^{n} f(v_i) + f(v_n v_{n-1}) + f(v_{n-1} u_1) + f(v_n u_{n-2}) = \sum_{i=n-1}^{n} f(w_i) + f(w_n w_{n-1}) + f(w_{n-1} u_1) + f(w_n u_{n-2}).$$

Thus $f(v_{n-1}) + f(v_{n-1}u_1) = f(w_{n-1}) + f(w_{n-1}u_1)$ and $f(v_n) + f(v_nu_{n-2}) = f(w_n) + f(w_nu_{n-2})$. Hence, $f(v_{n-1}v_n) = f(w_{n-1}w_n)$, a contradiction. \Box

The converse of Theorem 13 is not true. Consider *m* copies of isomorphic cycles of order *n*, mC_n . It is clear that mC_n admits C_n -covering and is *H*-free, for *H* isomorphic to the forbidden subgraphs in Theorem 13. However mC_n is SEMT if and only if *m* and *n* are odd [21], and so mC_n , for even $m \ge 2$, is not (K_2, C_n) -sim-supermagic. Therefore, the two subgraphs in Theorem 13 are not the only forbidden subgraphs of (K_2, C_n) -sim-supermagic graphs.

Problem 3. What are the other forbidden subgraphs of (K_2, C_n) -sim-(super)magic graphs?

In the following lemma, we state sufficient conditions for an (S)EMT graph to be a (K_2, C_n) -sim-(super)magic graph.

Lemma 6. Let $k \ge 2$ and $n \ge 3$ be two positive integers. Let G be a graph order at least n + 1 that admits C_n -covering. Let $\{C_n^i\}_{i=1}^k$ be the family of all subgraph of G isomorphic to C_n and $\sum Y_i$ be

the sum of all vertices labels in C_n^i , for each $i \in [1, k]$. If f is an (S)EMT labeling in G such that $\sum Y_i$ is constant, for every $i \in [1, k]$, then G is (K_2, C_n) -sim-(super)magic.

Proof. Let m_f as the magic sum of the labeling. Let $i \neq j$ be two positive integers in [1, k]. Consider two arbitrary cycles C_n^i and C_n^j in $\{C_n^i\}_{i=1}^k$. Thus, $\sum Y_i = \sum Y_j$. Hence, we have that

$$\begin{split} w(C_n^i) &= \sum_{v \in V(C_n^i)} f(v) + \sum_{e \in E(C_n^i)} f(e) \\ &= nm_f - \sum Y_i = nm_f - \sum Y_j \\ &= \sum_{v \in V(C_n^j)} f(v) + \sum_{e \in E(C_n^j)} f(e) \\ &= w(C_n^j). \end{split}$$

Hence, the sum of all edges and vertices labels associated to a subgraph of *G* isomorphic to C_n is a constant. Therefore, *G* is a C_n -(super)magic for each $n \ge 3$. Since *f* is simultaneously an (S)EMT and C_n -(super)magic, *G* is (K_2, C_n) -sim-(super)magic. \Box

Consequently, by Lemma 6, we have the following corollary.

Corollary 11. Let $m \ge 3$ be an odd integer. The disjoint copies of cycle on 3 vertices, mC_3 , is (K_2, C_3) -sim-supermagic.

Proof. Recall an SEMT labeling of mC_3 , for odd m, from [21]. We denote $V(mC_3) = \{u_{i,j} | i \in [1,m] \text{ and } j \in [1,3]\}$ and $E(mC_3) = \{u_{i,j}u_{i,j+1} | i \in [1,m] \text{ and } j \in [1,2]\} \cup \{u_{i,1}u_{i,3} | i \in [1,m]\}$ and define

$$f(u_{i,j}) = \begin{cases} i, & \text{if } i \in [1, m] \text{ and } j = 1; \\ 2m + \frac{2i+1+m}{2}, & \text{if } i \in [1, \frac{m-1}{2}] \text{ and } j = 2; \\ 2m + \frac{2i+1-m}{2}, & \text{if } i \in [\frac{m+1}{2}, m] \text{ and } j = 2; \\ 2m + 1 - 2i, & \text{if } i \in [1, \frac{m-1}{2}] \text{ and } j = 3; \\ 3m + 1 - 2i, & \text{if } i \in [\frac{m+1}{2}, m] \text{ and } j = 3. \end{cases}$$

Let C_3^i be a subgraph of mC_3 isomorphic to C_3 and $\sum Y_i$ be the sum of all vertices labels in C_3^i . Hence, for $1 \le i \le \frac{m-1}{2}$, we have

$$\sum Y_i = i + 2m + \frac{2i + 1 + m}{2} + 2m + 1 - 2i$$

= $i + 2m + i + \frac{1 + m}{2} + 2m + 1 - 2i$
= $\frac{3}{2}(3m + 1)$

and, for $\frac{m+1}{2} \le i \le m$, we have

$$\sum Y_i = i + 2m + \frac{2i + 1 - m}{2} + 3m + 1 - 2i$$

= $i + 2m + i + \frac{1 - m}{2} + 3m + 1 - 2i$
= $\frac{3}{2}(3m + 1).$

Therefore, $\sum Y_i$ is constant for $1 \leq i \leq m$. By Lemma 6, mC_3 is (K_2, C_3) -simsupermagic. \Box

6. Open Problems

We conclude by listing open problems from the previous sections that could be interesting for further investigation.

- 1. What are the other forbidden subgraphs of (K_2, P_n) -sim-(super)magic graph?
- 2. What are the other forbidden subgraphs of (K_2, C_n) -sim-(super)magic graphs?
- 3. Characterize (K_2, P_n) -sim-(super)magic graphs for any $n \ge 5$.

Author Contributions: Conceptualization, Y.F.A., A.N.M.S. and R.S.; methodology, Y.F.A. and R.S.; formal analysis, Y.F.A., R.S. and A.N.M.S.; writing—original draft preparation, Y.F.A. and R.S.; writing—review and editing, Y.F.A., A.N.M.S. and R.S.; supervision, A.N.M.S. and R.S.; funding acquisition, Y.F.A., A.N.M.S. and R.S. All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: Y.F.A. and A.N.M.S. were funded by PMDSU Scholarship, Directorate General of Higher Education, Ministry of Education and Culture of Indonesia; R.S. was partially funded by Penelitian Dasar 2018–2021 (Indonesian National Research and Innovation Agency), Grant Number 2/E1/KP.PTNBH/2021.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SEMT Super edge magic total EMT Edge magic total

References

- 1. Kotzig, A.; Rosa, A. Magic valuations of finite graphs. Can.. Math. Bull. 1970, 13, 451–461. [CrossRef]
- 2. Ringel, G.; Lladó, A. Another tree conjecture. Bull. Inst. Combin. Appl. 1996, 18, 83-85.
- 3. Enomoto, H.; Lladó, A.; Nakamigawa, T.; Ringel, G. Super edge-magic graphs. SUT J. Math. 1998, 34, 105–109.
- Figueroa-Centeno, R.M.; Ichishima, R.; Muntaner-Batle, F.A. The place of super edge magic labelings among other classes of labelings. *Discret. Math.* 2001, 231, 153–168. [CrossRef]
- 5. Bača, M.; Lin, Y.; Miller, M.; Simanjuntak, R. New constructions of magic and antimagic graph labelings. *Util. Math.* **2001**, *60*, 229–239.
- 6. Bača, M.; Miller, M.; Ryan, J.; Semaničová-Feňovčíková, A. *Magic and Antimagic Graphs: Attributes, Observations, and Challenges in Graph Labelings*; Springer International Publishing: Cham, Switzerland, 2019.
- 7. Gallian, J.A. A dynamic survey of graph labeling. *Electron. J. Combin.* 2020, 23, DS6.
- 8. López, S.C.; Muntaner-Batle, F.A. *Graceful, Harmonious, and Magic Type Labelings: Relations and Techniques;* Springer: Cham, Switzerland, 2017.
- 9. Marr, A.M.; Wallis, W.D. Magic Graphs; Birkäuser Basel: Berlin, Germany, 2013.
- 10. Macdougall, J.A.; Wallis, W.D. Strong edge-magic graphs of maximum size. Discret. Math. 2008, 308, 2756–2763. [CrossRef]
- Sugeng, K.A.; Xie, W. Construction of super edge magic total graphs. In Proceedings of the Sixteenth Australasian Workshop on Combinatorial Algorithms 2005, Ballarat, Australia, 18–21 September 2005; pp. 303–310
- 12. Gutiérrez, A.; Lladó, A. Magic coverings. J. Combin. Math. Combin. Comput. 2005, 55, 43-56.
- 13. Ashari, Y.F.; Salman, A.N.M.; Simanjuntak, R.; Semaničová-Feňovčíková, A.; Bača, M. On (*F*, *H*)-simultaneously-magic labeling of graphs. 2021. Submitted.
- 14. Maryati, T.K.; Baskoro, E.T.; Salman, A.N.M.; Irawati. On the path-(super)magicness of a cycle with some pendants. *Util. Math.* **2015**, *96*, 319–330.
- Maryati, T.K.; Baskoro, E.T.; Salman, A.N.M. P_h-(super)magic labelings of some trees. J. Combin. Math. Combin. Comput. 2008, 65, 197–204.
- 16. Lladó, A.; Moragas, J. Cycle-magic graphs. Discret. Math. 2007, 307, 2925–2933. [CrossRef]
- 17. Roswitha, M.; Baskoro, E.T.; Maryati, T.K.; Kurdhi, N.A.; Susanti, I. Further results on cycle-supermagic labeling. *AKCE Int. J. Graphs Comb.* **2013**, *10*, 211–220.
- 18. Ngurah, A.A.G.; Salman, A.N.M.; Sudarsana, I.W. On supermagic coverings of fans and ladders. SUT J. Math. 2010, 46, 67–78.
- 19. Maryati, T.K.; Salman, A.N.M.; Baskoro, E.T. Supermagic coverings of the disjoint union of graphs and amalgamations. *Discret. Math.* **2013**, 313, 397–405. [CrossRef]

- 20. Philips, N.C.K.; Rees, R.S.; Wallis, W.D. Edge-magic total labelings of wheels. *Bull. Inst. Combin. Appl.* **2001**, *31*, 21–30.
- 21. Figueroa-Centeno, R.M.; Ichishima, R.; Muntaner-Batle, F.A. On super edge-magic graphs. Ars Combin. 2002, 64, 81–95.