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Abstract: A graph G admits an H-covering if every edge of G belongs to a subgraph isomor-
phic to a given graph H. G is said to be H-magic if there exists a bijection f : V(G) ∪ E(G) →
{1, 2, . . . , |V(G)| + |E(G)|} such that w f (H′) = ∑v∈V(H′) f (v) + ∑e∈E(H′) f (e) is a constant, for
every subgraph H′ isomorphic to H. In particular, G is said to be H-supermagic if f (V(G)) =

{1, 2, . . . , |V(G)|}. When H is isomorphic to a complete graph K2, an H-(super)magic labeling
is an edge-(super)magic labeling. Suppose that G admits an F-covering and H-covering for two
given graphs F and H. We define G to be (F, H)-sim-(super)magic if there exists a bijection f ′

that is simultaneously F-(super)magic and H-(super)magic. In this paper, we consider (K2, H)-sim-
(super)magic where H is isomorphic to three classes of graphs with varied symmetry: a cycle which is
symmetric (both vertex-transitive and edge-transitive), a star which is edge-transitive but not vertex-
transitive, and a path which is neither vertex-transitive nor edge-transitive. We discover forbidden
subgraphs for the existence of (K2, H)-sim-(super)magic graphs and classify classes of (K2, H)-sim-
(super)magic graphs. We also derive sufficient conditions for edge-(super)magic graphs to be (K2, H)-
sim-(super)magic and utilize such conditions to characterize some (K2, H)-sim-(super)magic graphs.

Keywords: H-supermagic; (K2, H)-sim-supermagic; edge-magic total; super edge-magic total

1. Introduction

In this paper, all graphs to be considered are finite, simple, and undirected. We write
[a, b] to define the set of consecutive integers {a, a+ 1, a+ 2, . . . , b}, for any positive integers
a < b. We denote two isomorphic graphs G and H with G ∼= H. The degree of vertex x of G,
denoted by deg(x), is the number of vertices in G adjacent to x.

Let G be a graph with the vertex set V(G) and the edge set E(G). An edge-magic
total labeling (or EMT labeling for short) of a graph G is a bijection λ : V(G) ∪ E(G) →
{1, 2, . . . , |V(G)|+ |E(G)|} with the property that there exists a constant k such that λ(x) +
λ(y) + λ(xy) = k, for any edge xy ∈ E(G). Then, G is said to be edge-magic (EMT) and
k is called a magic sum. This notion was defined by Kotzig and Rosa [1], who called it
magic valuation, and later rediscovered by Ringel and Lladó [2]. In [2], Ringel and Lladó
conjectured that all trees are EMT. Since then, numerous papers associated with EMT
labeling have been published.

In 1998, Enomoto et al. [3] introduced a special case of EMT labeling with the extra
property that λ(V(G)) = {1, 2, . . . , |V(G)|}. It is called a super edge-magic total labeling
(SEMT labeling). A graph G that admits an SEMT labeling is said to be super edge-magic
(SEMT). An SEMT labeling has a significant role in graph labeling because it is related
to other types of labelings. Figueroa-Centeno et al. [4] found relationships between
SEMT and well-known labelings such as harmonious, sequential, and cordial labelings.
Bača et al. [5] established the relationship between SEMT and EMT labelings and (a, d)-
edge-antimagic vertex labeling. Other relationships and comprehensive surveys about
SEMT and EMT graphs can be found in [6–9].

The next Lemma states a necessary and sufficient condition of an SEMT graph. We
frequently use this condition to construct SEMT labelings of some graphs.
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Lemma 1 ([4]). A graph G is SEMT if and only if there exists a bijective function f : V(G) →
[1, |V(G)|] such that the set S = { f (u) + f (v)|uv ∈ E(G)} consists of |E(G)| consecutive
integers. In such a case, f extends to an SEMT labeling of G with magic sum k = |V(G)| +
|E(G)|+ s, where s = min(S).

In [3], Enomoto et al. presented a necessary condition for an SEMT graph as stated in
the following.

Lemma 2 ([3]). If a graph G with order p and size q is SEMT, then q ≤ 2p− 3.

We call an SEMT graph with the maximum number of edges given by Lemma 2 a
maximal SEMT graph. In [10], Macdougall and Wallis provide some properties of maximal
SEMT graphs and construct some particular maximal SEMT graphs such as triangulations
of v-cycle, generalized prisms, and graphs with large cliques. Sugeng and Xie [11] presented
a construction to extend any non-maximal SEMT graph into a maximal SEMT graph by
utilizing the adjacency matrix. Thus, it is interesting to ask the question of which other
graphs are maximal SEMT.

Subsequently, Gutiérrez and Lladó [12] generalized the notion of EMT and SEMT into
H-(super)magic labelings in 2005. Let G be a graph where each edge belongs to at least one
subgraph isomorphic to a given graph H. In this case, G admits an H-covering. An H-magic
labeling of G is a bijection g: V(G) ∪ E(G)→ {1, 2, . . . , |V(G)|+ |E(G)|} with the property
that there exists a positive integer k such that wH(H′) = ∑v∈V(H′) g(v) + ∑e∈E(H′) g(e) = k,
for every subgraph H′ of G isomorphic to H. The H-magic labeling g of G with the
extra property that g(V(G)) = {1, 2, . . . , |V(G)|} is called H-supermagic labeling of G. A
graph G is an H-magic or H-supermagic if it has an H-magic labeling or H-supermagic
labeling, respectively.

While working with H-magic graphs, we found labelings of graphs which are simul-
taneously H-magic and F-magic, for two non isomorphic graphs F and H. For instance,
Figure 1 shows an example of a ladder Ln = Pn × K2 which is C4-magic and C2m-magic, for
any m ∈ [3, d n

2 e], at the same time [13]. This leads us to generalize the concept of H-magic
with two or more non-isomorphic covers.

Figure 1. A C4-supermagic and C6-supermagic labelings of ladder.

Given two non-isomorphic graphs F and H, let G be a graph admitting an F-covering
and H-covering simultaneously. An (F, H)-simultaneously-magic labeling of G, denoted
by (F, H)-sim-magic labeling, is a bijective function f : V(G) ∪ E(G) → {1, 2, . . . , |V(G)|+
|E(G)|} with the property that there exist two positive integers kF and kH (not neces-
sarily the same) such that w f (F′) = ∑v∈V(F′) f (v) + ∑e∈E(F′) f (e) = kF and w f (H′) =

∑v∈V(H′) f (v) + ∑e∈E(H′) f (e) = kH , for each subgraph F′ of G isomorphic to F and each
subgraph H′ of G isomorphic to H. In such a case that f (V(G)) = {1, 2, . . . , |V(G)|},
we call f an (F, H)-simultaneously-supermagic labeling, denoted by (F, H)-sim-supermagic
labeling. The graph G is said to be (F, H)-sim-magic or (F, H)-sim-supermagic if it has an
(F, H)-sim-magic labeling or (F, H)-sim-supermagic labeling, respectively. By the defini-
tion of these notions, the construction of (F, H)-sim-(super)magic labelings of graphs can
enlarge the collection of graphs that are known to be F-(super)magic and H-(super)magic.
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In [13], we established the existence of a (K2 + H, 2K2 + H)-sim-supermagic labeling of
a join product graph G + H and a (C4, H)-sim-supermagic labeling of a Cartesian product
graph G× K2 where H is isomorphic to a ladder or an even cycle. We also presented the
relationship between an α labeling of a tree T not isomorphic to a star and a (C4, C6)-sim-
supermagic of the Cartesian product T × K2.

Since SEMT and EMT labelings are known to be related to other well-known graph
labelings, in this paper we focus on the study of (K2, H)-sim-(super)magic labelings; in
particular for a graph H that is isomorphic to a path, a star, or a cycle. We denote a path on
n vertices by Pn and a cycle on n vertices by Cn. A star Sn is a tree on n + 1 vertices with one
vertex, called the center, having degree n and the remaining vertices having degree one.

An automorphism of a graph G is a permutation of V(G) preserving adjacency. A graph
G is said to be vertex-transitive if, for any two vertices u and w, there is an automorphism of
G that maps u to w and it is said to be edge-transitive if, for any two edges u and w, there is
an automorphism of G that maps u to w. If G is both vertex-transitive and edge-transitive,
G is said to be symmetric. Recall that a cycle is symmetric; a star is edge-transitive but not
vertex-transitive; and a path on at least 4 vertices is neither vertex-transitive nor edge-
transitive. In other words, in this paper we study (K2, H)-sim-(super)magic labelings for
three classes of graphs H with varied symmetry.

Some of our results enlarge the collection of known (S)EMT and H-(super)magic
graphs. To show this, in Section 2 we list some necessary or sufficient conditions for a
graph to be H-(super)magic, for H isomorphic to a path, a star, or a cycle.

To recognize whether a graph is not (K2, H)-sim-(super)magic, we determine forbidden
subgraphs for (K2, H)-sim-(super)magic graphs. In Sections 3–5 some forbidden subgraphs
for (K2, H)-sim-(super)magic labelings, where H is isomorphic to a path, a star, or a
cycle, are presented. In those sections, we say that G is H-free if G does not contain H as
a subgraph.

Additionally, in Section 3, we characterize (K2, Pn)-sim-(super)magic graphs of small
order and establish sufficient conditions for (K2, Pn)-sim-(super)magic graphs. In Section 4,
we characterize (K2, Sn)-(super)magic graphs. In Section 5, we characterize (K2, Cn)-
(super)magic graphs of order n ≥ 3 by establishing a relation between (S)EMT and Cn-
(super)magic labelings and construct some cycles with chords that are (K2, Cn)-(super)magic.
Our constructions subsequently extend known maximal SEMT graphs and cycle-(super)magic
graphs. In Section 5, we present sufficient conditions for an SEMT graph with order m to
be (K2, Cn)-sim-(super)magic for n < m.

2. Previous Results on H-(Super)Magic Labelings

In this paper, we first survey some known necessary conditions of H-(super)magic
graphs for H isomorphic to a path and a star. These results are immediately necessary
conditions for a (K2, H)-sim-(super)magic graph. We also list some graphs known to be
cycle-(super)magic.

In [12], it is proved that if G is a Ph-magic graph, h > 2, then G is Ch-free as stated in
the following theorem.

Theorem 1 ([12]). Let G be a Ph-magic graph, h > 2. Then G is Ch-free.

A cycle on n vertices Cn with one pendant edge is denoted by C+1
n (See Figure 2 for

C+1
5 ). Maryati et al. [14] gave the following necessary conditions for path-magic graphs.

Theorem 2 ([14]). Let n ≥ 4 be a positive integer.

1. If G is Pn-magic, then G is C+1
n−1-free.

2. If G is Pn-magic, then G is C+1
n+1-free.

In [14,15], Maryati et al. provided another forbidden subgraph of path-magic graphs
by defining an Hn graph. The Hn graph is a graph with V(Hn) = {v1,i, v2,i|i ∈ [1, 2n + 1]}
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and E(Hn) = {v1,iv1,i+1, v2,iv2,i+1 |i ∈ [1, 2n]} ∪ {v1,cv2,c|c = n + 1} (Figure 3 illustrates
the graph H3).

Figure 2. The cycle with one pendant edge C+1
5 .

Figure 3. The graph H3.

Theorem 3 ([14,15]). Let n ≥ 3 be a positive integer. If G is Pn-magic, then G is Hn+2-free.

In [12], Gutiérrez and A. Lladó also established some necessary conditions of star-
magic graphs by considering the degree of vertices.

Theorem 4 ([12]). Let f be a Sh-magic labeling of a graph G with magic constant m f . If the
degree of vertex x ∈ V(G) verifies deg(x) > h, then for every vertex y adjacent to x, we have
f (y) + f (xy) = 1

h (m f − f (x)).

Corollary 1 ([12]). Let G be a Sh-magic graph with h > 1. Then, for every edge e = xy of G,
min{deg(x), deg(y)} ≤ h.

In the following theorems, we present some known classes of cycle-supermagic graphs,
a more complete list can be found in [7]. We recall the definition of the graphs mentioned in
the theorems. A fan Fn is a graph obtained from connecting a single vertex to all vertices in
cycle Pn. A wheel Wn is a graph with n + 1 vertices obtained from connecting a single vertex
to all vertices in cycle Cn. For k ≥ 2, a windmill W(r, k) is a graph obtained by identifying
one vertex in each of the k disjoint copies of the cycle Cr. For n ≥ 2, a ladder Ln, is defined
as Pn × K2, whose vertex set is V(Ln) = V(Pn)×V(K2) = {(xi, yj)|i ∈ [1, n] and j ∈ [1, 2]}
and edge set is E(Ln) = {(xi, yj)(xi+1, yj)|i ∈ [1, n− 1] and j ∈ [1, 2]} ∪ {(xi, y1)(xi, y2)|i ∈
[1, n]}. Illustrations of a wheel, a fan, and a ladder can be seen in Figure 4.

Theorem 5 ([16,17]). For n ≥ 4, the wheel Wn is C3-supermagic.

Theorem 6 ([16]). For any two integers k ≥ 2 and r ≥ 3, the windmill W(r, k) is Cr-supermagic.

Theorem 7 ([18]). Let n ≥ 4 be a positive integer.

1. The fan Fn is Cm-supermagic for any integer 4 ≤ m ≤ b n+4
2 c;

2. The ladder Ln is Cm-supermagic for any positive integer 3 ≤ m ≤ b n
2 c+ 1.
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Figure 4. (a) The wheel W5, (b) the fan F4, and (c) the ladder L4.

One important observation on H-magicness is the following.

Observation 1. If G is H-magic then G
⋃

nK1 is also H-magic.

The converse of Observation 1 is not true. For example, 2P3 ∪ K1 is P3-supermagic (as
shown in Figure 5) but 2P3 is not P3-magic (as a result of Theorem 1 in [14]).

Figure 5. P3-magic of 2P3 ∪ K1.

Due to this fact, in the rest of the paper, we restrict our observation to graphs with
components not isomorphic to K1.

3. (K2, Pn)-Sim-Supermagic Labelings

In this section, we provide the collection of forbidden subgraphs and characterize a
(K2, Pn)-sim-supermagic graph.

Let m ≥ 3 and n ≥ 2 be two integers. We denote the edge sets of a path Pn and a
cycle Cm as E(Pn) = {wiwi+1|i ∈ [1, n− 1] and E(Cm) = {vivi+1 |i ∈ [1, m− 1] ∪ {v1vm},
respectively. An (m, n)-tadpole is a graph obtained by joining the end vertex w1 of Pn−1 to
the vertex v1 of Cm. Figure 6 shows the (4, 5)-tadpole graph.

We denote the star with n pendant edges as Sn. Consider the star S3 with three
pendant edges denoted by e1, e2, e3. We define S(S3; e1, e2, e3; n, 3, 3) as a subdivision of the
star S3 by replacing the edge e1 with a path on n vertices and the remaining edges by paths
on three vertices. Figure 7 illustrates the subdivided star S(S3; e1, e2, e3; 5, 3, 3).
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Figure 6. The (4, 5)-tadpole graph.

Figure 7. The S(S3; e1, e2, e3; 5, 3, 3) graph.

In [19], Maryati et al. introduced a subgraph-amalgamation. For n ≥ 2, let {Gi}n
i=1

be a collection of graphs Gis where each Gi contains H∗i ∼= H as a fixed subgraph and
let H = {H∗i }n

i=1 be the collection of H∗i s. The H-amalgamation of {Gi}n
i=1, denoted by

Amal(G1, G2, . . . , Gn;H; n), is a graph constructed from identifying the H∗i of each Gi. If Gi
is isomorphic to a given graph G, we write the H-amalgamation as Amal(G;H; n).

Let G1 be an (m, n)-tadpole containing a subgraph H∗1 = v2v3 isomorphic to P2; let
G2 be a path Pk, whose edge set is E(Pk) = {xixi+1|i ∈ [1, k− 1]}, containing a subgraph
H∗2 = x3x4 isomorphic to P2; and H = {H∗i }2

i=1. Figure 8 illustrates the Amal((5, 3)-
tadpole,P8;H; 2).

Figure 8. The Amal((5, 3)-tadpole,P8;H; 2) graph.

The next theorem stated forbidden subgraphs of (K2, Pn)-sim-(super)magic graphs.

Theorem 8. If G is (K2, Pn)-sim-(super)magic, then G is H-free where

1. H ∼= Cm, for any n ≥ 4 and m ∈ [n− 1, n + 1];
2. H ∼= Hn+2, for any n ≥ 3;
3. H ∼= Pn+1, for any n ≥ 3;
4. H ∼= S(S3; e1, e2, e3; n− 2, 3, 3), for any n ≥ 5;
5. H ∼= (k, n− k)-tadpole, for any n > 4 and k ∈ [3, n− 2];
6. H ∼= Amal((m, 3)-tadpole, Pn−m;H; 2), for any n ≥ 7, and m ∈ [3, n− 4].
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Proof. The case where H ∼= Cm, for any n ≥ 4 and m ∈ [n− 1, n + 1], is an immediate
consequence of Theorems 1 and 2; and the case where H ∼= Hn+2, for any n ≥ 3, is an
immediate consequence of Theorem 3. The rest of the cases are proven as follows.

Case 3. H ∼= Pn+1, for any n ≥ 3.
Suppose that G is a (K2, Pn)-sim-(super)magic graph and G is not Pn+1-free. Let f be

a (K2, Pn)-sim-(super)magic labeling of G. Consider two subgraphs isomorphic to Pn with
edges v1v2, v2v3, . . . , vn−1vn and v2v3, v3v4, . . . , vnvn+1. Since G is (K2, Pn)-magic,

n

∑
i=1

f (vi) +
n−1

∑
i=1

f (vivi+1) =
n+1

∑
i=2

f (vi) +
n

∑
i=2

f (vivi+1). (1)

By eliminating ∑n
i=2 f (vi) + ∑n−1

i=2 f (vivi+1) in both sides of Equation (1), we have

f (v1) + f (v1v2) = f (vnvn+1) + f (vn+1).

However, ∑2
i=1 f (vi) + f (v1v2) = ∑n+1

i=n f (vi) + f (vnvn+1). This clearly forces f (v2) =
f (vn), a contradiction.

Case 4. H ∼= S(S3; e1, e2, e3; n− 2, 3, 3), for any n ≥ 5.
Assume to the contrary that G is (K2, Pn)-sim-(super)magic and G contains

S(S3; e1, e2, e3; n − 2, 3, 3) as a subgraph. Let f be a (K2, Pn)-sim-(super)magic labeling
of G. Consider a subgraph H isomorphic to S(S3; e1, e2, e3; n − 2, 3, 3). Label the vertex
set V(H) = {vi|i ∈ [1, n− 2]} ∪ {wi, xi|i ∈ [1, 2]} and the edge set E(H) = {vivi+1|i ∈
[1, n− 3]} ∪ {v1w1, v1x1, w1w2, x1x2}. There exist two paths isomorphic to Pn with edges
vn−2vn−3, vn−3vn−4, . . . , v2v1, v1w1, w1w2 and vn−2vn−3, vn−3vn−4, . . . , v2v1, v1x1, x1x2. As
f is a (K2, Pn)-sim-(super)magic labeling, we have ∑n−2

i=1 f (vi) + ∑2
i=1 f (wi) + f (v1w1) +

∑n−3
i=1 f (vivi+1) + f (w1w2) = ∑n−2

i=1 f (vi) + ∑2
i=1 f (xi) + ∑n−3

i=1 f (vivi+1) + f (v1x1)+
f (x1x2). Thus, we obtain f (v1w1) = f (v1x1), a contradiction.

Case 5. H ∼= (k, n− k)-tadpole, for any n > 4 and k ∈ [3, n− 2].
Suppose that G is (K2, Pn)-sim-(super)magic and contains (k, n− k)-tadpole as a sub-

graph. Let f be a (K2, Pn)-sim-(super)magic labeling of G. Next, let k be an arbitrary
positive integer with k ∈ [3, n − 2]. Consider a subgraph H isomorphic to (k, n − k)-
tadpole. Denote the vertex set V(H) = {vi, wj|i ∈ [1, k], j ∈ [1, n − k]} and the edge
set E(H) = {vivi+1|i ∈ [1, k− 1]} ∪ {v1vk, v1w1} ∪ {wjwj+1|j ∈ [1, n− k− 1]}. Consider
two paths isomorphic to Pn with edges wn−kwn−k−1, wn−k−1wn−k−2, . . . , w2w1, w1v1, v1v2,
v2v3, . . . , vk−1vk and wn−kwn−k−1, wn−k−1wn−k−2, . . . , w2w1, w1v1, v1vk, vkvk−1, . . . , v3v2.
Since G is (K2, Pn)-sim-(super)magic, ∑n−k

i=1 f (wi)+∑k
i=1 f (vi)+∑n−k−1

i=1 f (wiwi+1)+ f (v1w1)

+∑k−1
i=1 f (vivi+1) = ∑n−k

i=1 f (wi) + ∑k
i=1 f (vi) + ∑n−k−1

i=1 f (wiwi+1) + f (v1w1) + f (v1vk) +

∑k−1
i=2 f (vivi+1). As a result, we have f (v1vk) = f (v1v2), a contradiction.

Case 6. H ∼= Amal((m, 3)-(tadpole), Pn−m;H; 2), for any n ≥ 7 and m ∈ [3, n− 4].
Assume to the contrary that G is (K2, Pn)-sim-(super)magic and contains a subgraph

isomorphic to Amal((m, 3)-(tadpole), Pn−m;H; 2). Let f be a (K2, Pn)-sim-(super)magic
labeling of G. Then, let m be an arbitrary positive integer with m ∈ [3, n− 4]. Consider
a subgraph H of G isomorphic to Amal((m, 3)-(tadpole), Pn−m;H; 2). Denote the vertex
set V(H) = {vi|i ∈ [1, m]} ∪ {wi|i ∈ [1, n− m− 2]} ∪ {xi, yi|i ∈ [1, 2]} and the edge set
E(H) = {vivi+1|i ∈ [1, m− 1]}∪{wiwi+1|i ∈ [1, n−m− 3]}∪{v1vm, v1w1, v2x1, vmy1, x1x2,
y1y2}. Consider two paths isomorphic to Pn with edges wn−m−2wn−m−3, wn−m−3wn−m−4,
. . . , w1v1, v1v2, v2v3, . . . , vm−1vm, vmy1, y1y2 and wn−m−2wn−m−3, wn−m−3wn−m−4, . . . ,
w1v1, v1vm, vmvm−1, . . . , v3v2, v2x1, x1x2. As G is (K2, Pn)-sim-(super)magic, we have
∑n−m−2

i=1 f (wi) + f (w1v1) +∑m
i=1 f (vi) +∑2

i=1 f (yi) +∑n−m−3
i=1 f (wiwi+1) +∑m−1

i=1 f (vivi+1)

+ f (vmy1) + f (y1y2) = ∑2
i=1 f (xi) + ∑m

i=1 f (vi) + ∑n−m−2
i=1 f (wi) + ∑n−m−3

i=1 f (wiwi+1)+

∑m−1
i=2 f (vivi+1) + f (v1vm) + f (v2x1) + f (x1x2) + f (w1v1). Thus, we have f (x1) = f (y1),

a contradiction.

We remark that if G is (K2, Pn)-sim-(super)magic, then Pn is the longest path of G.
Notice that, for n ∈ [3, 4], S(S3; e1, e2, e3; n− 2, 3, 3) contains P5 as a subgraph. By Theorem 8,
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such graphs are not (K2, Pn)-sim-supermagic. The converse of Theorem 8 is not true as
shown in the following example.

Example 1. The graph mP3 is not (K2, P3)-sim-(super)magic for any integer m ≥ 3.

Proof. Suppose that there exists a (K2, P3)-sim-(super)magic labeling on mP3. Let Xi be the
set of the internal vertex label in a Pi

3 for i ∈ [1, m]. Clearly |Xi| = 1. For each edge xy ∈ Pi
3,

the xy-weight, f (xy) + f (x) + f (y) = k. Thus, the P3-weight of Pi
3 is 2k−∑ Xi for every

i ∈ [1, m]. Consequently, ∑ Xi should be a constant for every i ∈ [1, m], a contradiction.

Problem 1. What are the other forbidden subgraphs of (K2, Pn)-sim-(super)magic graph?

As a consequence of Theorem 8 where H ∼= Pn+1, for any integer n ≥ 3, we have the
following two results.

Corollary 2. Let n ≥ 3 be a positive integer and G be a graph that admits Pn-covering. If G is
(K2, Pn)-sim-(super)magic, then n ≥ diam(G) + 1.

Corollary 3. Let n ≥ 3 be a positive integer and G be a graph that admits Pn-covering. If G is
(K2, Pn)-sim-(super)magic, then G is Ch-free for any h > n.

By the previous two corollaries, Theorem 8, and Example 1, we have the following
corollaries.

Corollary 4. Let n ∈ {3, 4} and G be a graph that admits Pn-covering. If G is (K2, Pn)-sim-
(super)magic, then G is a forest. In particular, if G is (K2, Pn)-sim-(super)magic, then G is a tree.

Let n ≥ 2 be a positive integer. In [12], it is proved that the star Sn is Sm-supermagic for
each m < n. Moreover, the Sm-supermagic labeling of Sn in [12] is also an SEMT labeling
of Sn. Combining with Example 1 and Corollary 4, we obtain the following.

Corollary 5. A graph G is (K2, P3)-sim-(super)magic if and only if G is isomorphic to the star Sn
for any positive integer n ≥ 3.

A caterpillar Sn1,n2,...,nk is a graph derived from a path Pk, k ≥ 2, where the vertex
wi ∈ V(Pk) is adjacent to mi ≥ 0 leaves, i ∈ [1, k]. A special case of caterpillars when
k = 2, m1 ≥ 1, and m2 ≥ 1 is called a double star Sm1,m2 . An illustration of the double star
S5,3 and a (K2, P4)-sim-supermagic labeling on S5,3 can be seen in Figure 9. Since Kotzig
and Rosa [1] have proved that all caterpillars are SEMT, utilizing Corollary 4, we have
the following.

Figure 9. A (K2, P4)-sim-supermagic labeling of the double star S5,3.

Corollary 6. A connected graph G is (K2, P4)-sim-(super)magic if and only if G is isomorphic to
a double star Sm,n for any two positive integers m and n.
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Problem 2. Characterize (K2, Pn)-sim-(super)magic graphs for any n ≥ 5.

We conclude this section by presenting sufficient conditions for an (S)EMT graph to
be (K2, Pn)-sim-(super)magic.

Lemma 3. Let k and n be two positive integers. Let G be a graph of order at least n + 1 that admits
Pn-covering. Let {Pi

n}k
i=1 be the family of all subgraphs of G isomorphic to Pn and let ∑ Xi be the

sum of all internal vertices labels in Pi
n for every i ∈ [1, k]. If f is an (S)EMT labeling in G such

that ∑ Xi is constant, for each i ∈ [1, k], then G is (K2, Pn)-sim-(super)magic.

Proof. Let m f be the magic sum of the labeling. Let i 6= j be two positive integers in [1, k].

Consider two arbitrary paths Pi
n and Pj

n in {Pi
n}k

i=1. Thus, ∑ Xi = ∑ Xj. Hence, we have
the following:

w(Pi
n) = ∑

v∈V(Pi
n)

f (v) + ∑
e∈E(Pi

n)

f (e)

= (n− 1)m f −∑ Xi

= (n− 1)m f −∑ Xj

= ∑
v∈V(Pj

n)

f (v) + ∑
e∈E(Pj

n)

f (e)

= w(Pj
n)

As a result, the sum of all edges and vertices labels associated to a subgraph of G
isomorphic to Pn is a constant. Therefore, G is a Pn-(super)magic. Since f is simultaneously
SEMT and Pn-(super)magic, G is (K2, Pn)-sim-(super)magic.

As an immediate consequence of Lemma 3, we have the following special cases of
caterpillars that are (K2, Pn)-sim-magic. The broom Bm,n is defined as a graph isomorphic to
the caterpillar Sn1,n2,...,nm−n where n1 = n2 = · · · = nm−n−1 = 0 and nm−n = n. The double
broom DBm,k1,k2 is a graph isomorphic to the caterpillar Sn1,n2,...,nm−k1−k2

where n1 = k1,
n2 = n3 = . . . = nm−k1−k2−1 = 0, and nm−k1−k2 = k2. Figure 10 illustrates the broom B11,6
and the double broom DB14,3,6.

Figure 10. (a) A (K2, P6)-sim-supermagic labeling of the broom B11,6 and (b) A (K2, P7)-sim-
supermagic labeling of the double broom DB14,3,6.
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Corollary 7. Let n1, n2, and m be three positive integers at least two and n ≥ 3. The broom
Bm+n−1,m and the double broom DBn+n1+n2−2,n1,n2 are (K2, Pn)-sim-magic.

Proof. It is known that all caterpillars are edge magic [1]. Moreover, all subgraphs isomor-
phic to Pk have the same internal vertices. This completes the proof.

Figure 10 illustrates (K2, Pn)-sim-supermagic labelings of the broom B11,6 and the
double broom DB14,3,6 for n = 6 and n = 7, respectively.

4. A (K2, Sn)-Sim-Supermagic Labelings

In this section, we characterize (K2, Sn)-sim-(super)magic graphs. Clearly, necessary
conditions of Sn-magic graphs in Theorem 4 and Corollary 1 are also necessary conditions
of (K2, Sn)-sim-(super)magic graphs. In the following Lemma, we strengthen the degree
condition of Corollary 1 for (K2, Sn)-sim-(super)magic graphs.

Lemma 4. Let n ≥ 2 be a positive integer and G be a (K2, Sn)-sim-(super)magic. Then, there is
only one vertex x of G with deg(x) ≥ n.

Proof. Suppose that there are two vertices v and w in V(G) such that deg(v) ≥ n and
deg(w) ≥ n. Let f be a (K2, Sn)-sim-(super)magic labeling of G. Hence, there exist two
positive integers k1 and k2 such that each edge xy ∈ E(G) satisfies f (x)+ f (y)+ f (xy) = k1
and each subgraph H of G isomorphic to Sn satisfies ∑u∈V(H) f (u) + ∑e∈E(H) f (e) = k2.
Consider two arbitrary stars with center v and w that are isomorphic to Sn as S1 and
S2. Thus,

∑
v∈V(S1)

f (v) + ∑
e∈S1

f (e) = ∑
w∈V(S2)

f (w) + ∑
e∈E(S2)

f (e)

nk1 − (n− 1) f (v) = nk1 − (n− 1) f (w).

As a result, we have f (v) = f (w), a contradiction.

Recall that Gutiérrez and Lladó [12] proved the following theorem. The labeling in
the proof of the theorem will be utilized to characterize (K2, Sn)-sim-supermagic graphs.

Theorem 9 ( [12]). The star Sm is Sn-supermagic for any n ∈ [1, m].

Proof. Denote the vertex set of Sm by V(Sm) = {v1, v2, . . . , vm, vm+1}, where vm+1 is the
maximum degree vertex, and the edge set of Sm by E(Sm) = {vm+1vi|i ∈ [1, m]}. Define
a bijection f : V(Sm) ∪ E(Sm)→ [1, 2m + 1] with f (vi) = i and f (vm+1vi) = 2(m + 1)− i,
for any i ∈ [1, m], and f (vm+1) = m + 1. Thus, f (V(Sm)) = [1, m + 1]. We can verify that
w(H) = ∑v∈V(H) f (v)+∑e∈E(H) f (e) = (m+ 1)+ n(i+(2(m+ 1)− i)) = (m+ 1)(2n+ 1)
(constant) for every subgraph H of Sm isomorphic to Sn. Therefore, Sm is Sn-supermagic
for each n ∈ [1, m].

Now we are ready to characterize (K2, Sn)-sim-supermagic graphs.

Theorem 10. Let n ≥ 1 be a positive integer. A graph G is (K2, Sn)-sim-supermagic if and only if
G is isomorphic to the star Sm for m > n.

Proof. (⇐) First, we prove that, for m > n, the star Sm is (K2, Sn)-sim-supermagic. Recall
the Sn-supermagic labeling of Sm in the proof of Theorem 9, where w(vn+1vi) = f (vn+1) +
f (vi) + f (vn+1vi) = n + 1 + i + 2(m + 1)− i = n + 1 + 2(m + 1) (constant), for each edge
vn+1vi in E(Sm). Hence, Sm is (K2, Sn)-sim-supermagic for m > n.

(⇒) Conversely, we prove that if G is (K2, Sn)-sim-supermagic, then G is isomorphic
to the star Sm for m > n. Clearly, a connected graph G with order two and three is
isomorphic to S1 and S2, respectively. Then, consider G with order at least four. Suppose
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to the contrary that G is not isomorphic to any star Sm, m > n. Let e be an arbitrary edge
in G. Suppose that e belongs to S∗, a subgraph isomorphic to Sn, where e is incident with
c, the center of S∗. Since G is not isomorphic to a star, there exists another edge e′ which
is not incident with c. Since G admits Sn-covering, then e′ belongs to a subgraph that is
isomorphic to Sn where the center is not c, a contradiction by Lemma 4.

We remark that by considering n = 2, we can derive another proof of Corollary 5 from
Theorem 10.

5. A (K2, Cn)-Sim-Supermagic Labelings

In this section, we list some forbidden subgraphs and some (K2, Cn)-sim-(super)-
magic graphs. We start by presenting results for (K2, Cn)-sim-(super)magic graphs of
order n by considering the relation between two well-known magic labelings: (S)EMT and
Cn-(super)magic.

Lemma 5. Let G be a graph of order n admitting a Cn covering. If G is (S)EMT then G is
Cn-(super)magic.

Proof. Let f be an (S)EMT labeling of G. Thus, there exists a positive integer k1 such
that f (x) + f (y) + f (xy) = k1 for each edge xy in E(G). Denote {xi|i ∈ [1, n]} as the
set of vertices in G. Define a bijection g : V(G) ∪ E(G) → [1, |V(G)| + |E(G)|] with
g(x) = f (x) for all x ∈V(G)∪E(G). Consider an arbitrary subgraph C isomorphic to Cn.
Since the label of each vertex x is counted twice in w(C) = ∑v∈V(C) f (v) + ∑e∈E(C) f (e),
then w(C) = nk1 −∑n

i=1 f (xi), a constant. Therefore, G is Cn-(super)magic.

The converse of Lemma 5 is not true since K4 is C4-(super)magic, although it is known
that K4 is neither EMT [1,3] nor SEMT [3] (See Figure 11). However, it is clear that we
have the following necessary and sufficient condition for a graph of order n to admit a
(K2, Cn)-sim-(super)magic labeling.

Figure 11. (a) A C4-supermagic labeling of K4 and (b) A C4-magic labeling of K4.

Corollary 8. Let G be a graph order n admitting a Cn covering. G is (S)EMT if and only if G is
(K2, Cn)-sim-(super)magic.

It is known that the complete graph Kn is EMT if and only if n = 3, 5, 6 [1]. Since each
pair of vertices in Kn are adjacent, the number of subgraphs of Kn isomorphic to Cn is the
number of n-cycles in the symmetric group Sn, which is n!

n = (n− 1)! Thus, the number of
subgraphs of K5 and K6 isomorphic to C5 and C6 is 24 and 120, respectively.

Corollary 9. Let n > 3 be a positive integer. A complete graph Kn is (K2, Cn)-sim-magic if and
only if n = 5 or n = 6.

Proof. (⇐) Recall the known EMT labeling f in Kn for n = 5 or 6 [1]. By Lemma 5, f is a
Cn-magic labeling. This gives Kn as (K2, Cn)-sim-magic for n = 5 or 6.

(⇒) Conversely, it is immediately known from the fact that Kn is not EMT according
to Kotzig and Rosa [1].



Symmetry 2021, 13, 1346 12 of 17

Figure 12 shows (K2, C5)-sim-supermagic and (K2, C6)-sim-supermagic graphs.

Figure 12. A (K2, Cn)-sim-supermagic labeling for n ∈ [5, 6].

Kotzig and Rosa [1] proved that the complete bipartite graph Km,n is EMT for all m
and n. Philips et al. [20] constructed an EMT labeling of the wheel Wn for n ≡ 0, 1, or
2(mod 4). By Lemma 5, we have the following Corollary.

Corollary 10. Let n ≥ 3 be a positive integer.

1. Kn,n is (K2, C2n)-sim-magic;
2. Wn is (K2, Cn+1)-sim-magic for n ≡ 0, 1, or 2(mod 4).

In the next two theorems, we consider a (K2, Cm)-sim-supermagic labeling of a cycle
with chords. A chord is an edge joining two non-adjacent vertices in a cycle. An n-power of
graph Gn is a graph with the vertex set V(Gn) = V(G) and any two vertices are adjacent
when their distance in G is at most n. Recall from Lemma 2 that C2

n is not SEMT, so it is if
we remove at most two edges from C2

n. Thus, it is interesting to construct a maximal SEMT
graph, where the number of edges is equal to the upper bound of inequality in Lemma 2,
from C2

n.
Let n ≥ 3 be a positive integer and {xi|i ∈ [1, n]} be the vertex set of the cycle Cn. Let

E = {xb n
2 cxb n

2 c+2, xn−1 x1, xn x2} be the set of three edges in C2
n. We define the cycle with

chords CC1
n where the vertex set is V(Cn) and the edge set is E(C2

n) \ E. It is clear that CC1
n

admits a Cn-covering for every odd integer n ≥ 7 and we have the following theorem.

Theorem 11. Let n ≥ 7 be an odd integer. A cycle with chords CC1
n is (K2, Cn)-sim-supermagic.

Proof. Let {xi|i ∈ [1, n]} be the vertex set of CC1
n. Define a bijection f : V(CC1

n) →
[1, |V(CC1

n)|] as f (xi) = i, for i ∈ [1, n]. Thus, for each edge xixj ∈ E(CC1
n), we have

1. f (xi) + f (xi+1) = 2i + 1, for each i ∈ [1, n− 1];
2. f (xn) + f (x1) = n + 1;
3. f (xi) + f (xj) = i + i + 2 = 2i + 2, for j = (i + 2) mod n and i ∈ [1, n− 2].

Consequently, 3 ≤ f (xi)+ f (xj) ≤ 2n− 1 and the set S = { f (xi)+ f (xj)|xixj ∈ E(G)}
consists of |E(G)| consecutive integers. By Lemma 1, CC1

n is SEMT and f is the SEMT
labeling with magic sum k = |V(G)| + |E(G)| + min(S) = n + 2n − 3 + 3 = 3n. By
Lemma 5, f is also a Cn-supermagic labeling of CC1

n. This concludes that CC1
n is (K2, Cn)-

sim-supermagic.

Figure 13a illustrates a (K2, C7)-sim-supermagic labeling of CC1
7 .

Let n ≥ 8 be an even integer. Let E∗ = { x n
2−1x n

2 +1, x n
2

x n
2 +2, x n

2 +2 x n
2 +4, xn−1 x1,

xn x2}. We define the cycle with chords CC2
n as a graph where the vertex set is V(Cn)

and the edge set is E(C2
n) \ E∗

⋃{x n
2−1x n

2 +2, x n
2 +1x n

2 +4}. Such a cycle with chords admits
Cn-covering for each n ≥ 8 an even integer.
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Figure 13. (a) A (K2, C7)-sim-supermagic labeling CC1
7 and (b) A (K2, C8)-sim-supermagic labeling

of CC2
8 .

Theorem 12. Let n ≥ 8 be an even integer. A cycle with chords CC2
n is (K2, Cn)-sim-supermagic.

Proof. Let {xi|i ∈ [1, n]} be the vertex set of CC2
n. Define a bijection f : V(CC2

n) →
[1, |V(CC2

n)|] as follows.

1. f (xi) = i, for every i ∈ [1, n
2 ] and i ∈ [ n

2 + 3, n];
2. f (x n

2 +1) =
n
2 + 2;

3. f (x n
2 +2) =

n
2 + 1.

For each xixj ∈ E(CC2
n), we have

1. f (xi) + f (xi+1) = 2i + 1, for each i ∈ [1, n
2 − 1] and i ∈ [ n

2 + 2, n− 1];
2. f (x n

2
) + f (x n

2 +1) = n + 2;
3. f (x n

2 +1) + f (x n
2 +2) = n + 3;

4. f (xn) + f (x1) = n + 1;
5. f (xi) + f (xi+2) = 2i + 2, for each xixi+2 ∈ E(CC2

n), i ∈ [1, n
2 ] and i ∈ [ n

2 + 3, n− 2];
6. f (x n

2 +1) + f (x n
2 +3) = n + 5;

7. f (x n
2−1) + f (x n

2 +2) = n;
8. f (x n

2 +1) + f (x( n
2 +4)) = n + 6.

It can be counted that 3 ≤ f (xi)+ f (xj) ≤ 2n− 1 and the set S = { f (xi)+ f (xj)|xixj ∈
E(G)} consists of |E(G)| consecutive integers. By Lemma 1, CC2

n is SEMT and f is the
SEMT labeling with magic sum k = |V(CC2

n)|+ |E(CC2
n)|+ min(S) = n + 2n− 3+ 3 = 3n.

By Lemma 5, f is also a Cn-supermagic labeling of CC2
n. This concludes that CC2

n is
(K2, Cn)-sim-supermagic.

Figures 13b shows a (K2, C8)-sim-supermagic labeling of cycle with chords CC2
8 .

In addition to maximal SEMT graphs construction, we remark that Theorems 11 and 12
also enlarge the classes of graphs known to be Cn-supermagic and SEMT.

Notice that up to Theorem 12 we only consider (K2, Cn)-sim-supermagic graphs of
order n. Therefore, it is interesting to ask whether an (S)EMT graph G of order n can admit
a Cm-(super)magic labeling, for m < n. We start by presenting some forbidden subgraphs
of (K2, Cn)-sim-(super)magic graphs, for n ≥ 3.

Theorem 13. If G is (K2, Cn)-sim-(super)magic, then G is H-free, where

1. H ∼= Amal(Cn; Pn−1; 2), for any n ≥ 3;
2. H ∼= Amal(Cn; Pn−2; 2), for any n ≥ 3.

Proof. Suppose that G is (K2, Cn)-sim-(super)magic and G is not H-free. Then, G contains
a subgraph that is isomorphic to H. Let f be a (K2, Cn)-sim-(super)magic labeling of G,
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such that there exist two positive integers k1 and k2, satisfying f (x) + f (y) + f (xy) = k1
and ∑v∈V(C) f (v) + ∑e∈E(C) f (e) = k2, for each edge xy ∈ E(G) and for each subgraph C
isomorphic to Cn, respectively. We consider the following two cases.

Case 1. H ∼= Amal(Cn; Pn−1; 2).
Consider a subgraph H ∼= Amal(Cn; Pn−1; 2) of a graph G. Denote the vertices in

Amal(Cn; Pn−1; 2) by {vn} ∪ {ui|i ∈ [1, n− 1]} ∪ {wn} such that the edge set is {uiui+1|i ∈
[1, n− 2]} ∪ {vnui, wnui|i ∈ {1, n− 1}}. There are two cycles C1 and C2 isomorphic to Cn
with V(C1) = vn, u1, u2, . . . , un−2, un−1 and V(C2) = wn, u1, u2, . . . , un−2, un−1. Then,

n−1

∑
i=1

f (ui) + f (vn) +
n−2

∑
i=1

f (uiui+1) + f (vnu1) + f (vnun−1) =

n−1

∑
i=1

f (ui) + f (wn) +
n−2

∑
i=1

f (uiui+1) + f (wnu1) + f (wnun−1)

or
f (vn) + f (vnu1) + f (vnun−1) = f (wn) + f (wnu1) + f (wnun−1).

Since f (x) + f (y) + f (xy) = k1 for each edge xy ∈ E(G), f (vn) + f (vnu1) = f (wn) +
f (wnu1). Hence, f (vnun−1) = f (wnun−1), a contradiction.

Case 2. H ∼= Amal(Cn; Pn−2; 2).
Consider a subgraph H ∼= Amal(Cn; Pn−2; 2) of a graph G. Denote the vertices in

Amal(Cn; Pn−2; 2) by {vn−1, vn} ∪ {ui|i ∈ [1, n− 2]} ∪ {wn−1, wn} such that the edge set is
{uiui+1|i ∈ [1, n− 3]}∪ {u1vn−1, vn−1vn, vnun−2, u1wn−1, wn−1wn, wnun−2}. There are two
cycles C1 and C2 isomorphic to Cn with V(C1) = vn, vn−1, u1, u2, . . . , un−2 and V(C2) =
wn, wn−1, u1, u2, . . . , un−2. Then

n−2

∑
i=1

f (ui) +
n

∑
i=n−1

f (vi) +
n−3

∑
i=1

f (uiui+1) + f (vn−1u1) + f (vnun−2) + f (vnvn−1) =

n−2

∑
i=1

f (ui) +
n

∑
i=n−1

f (wi) +
n−3

∑
i=1

f (uiui+1) + f (wn−1u1) + f (wnun−2) + f (wnwn−1)

or

n

∑
i=n−1

f (vi) + f (vnvn−1) + f (vn−1u1) + f (vnun−2) =

n

∑
i=n−1

f (wi) + f (wnwn−1) + f (wn−1u1) + f (wnun−2).

Thus f (vn−1) + f (vn−1u1) = f (wn−1) + f (wn−1u1) and f (vn) + f (vnun−2) = f (wn)
+ f (wnun−2). Hence, f (vn−1vn) = f (wn−1wn), a contradiction.

The converse of Theorem 13 is not true. Consider m copies of isomorphic cycles of
order n, mCn. It is clear that mCn admits Cn-covering and is H-free, for H isomorphic
to the forbidden subgraphs in Theorem 13. However mCn is SEMT if and only if m and
n are odd [21], and so mCn, for even m ≥ 2, is not (K2, Cn)-sim-supermagic. Therefore,
the two subgraphs in Theorem 13 are not the only forbidden subgraphs of (K2, Cn)-sim-
supermagic graphs.

Problem 3. What are the other forbidden subgraphs of (K2, Cn)-sim-(super)magic graphs?

In the following lemma, we state sufficient conditions for an (S)EMT graph to be a
(K2, Cn)-sim-(super)magic graph.

Lemma 6. Let k ≥ 2 and n ≥ 3 be two positive integers. Let G be a graph order at least n + 1 that
admits Cn-covering. Let {Ci

n}k
i=1 be the family of all subgraph of G isomorphic to Cn and ∑ Yi be



Symmetry 2021, 13, 1346 15 of 17

the sum of all vertices labels in Ci
n, for each i ∈ [1, k]. If f is an (S)EMT labeling in G such that

∑ Yi is constant, for every i ∈ [1, k], then G is (K2, Cn)-sim-(super)magic.

Proof. Let m f as the magic sum of the labeling. Let i 6= j be two positive integers in

[1, k]. Consider two arbitrary cycles Ci
n and Cj

n in {Ci
n}k

i=1. Thus, ∑ Yi = ∑ Yj. Hence, we
have that

w(Ci
n) = ∑

v∈V(Ci
n)

f (v) + ∑
e∈E(Ci

n)

f (e)

= nm f −∑ Yi = nm f −∑ Yj

= ∑
v∈V(Cj

n)

f (v) + ∑
e∈E(Cj

n)

f (e)

= w(Cj
n).

Hence, the sum of all edges and vertices labels associated to a subgraph of G iso-
morphic to Cn is a constant. Therefore, G is a Cn-(super)magic for each n ≥ 3. Since f is
simultaneously an (S)EMT and Cn-(super)magic, G is (K2, Cn)-sim-(super)magic.

Consequently, by Lemma 6, we have the following corollary.

Corollary 11. Let m ≥ 3 be an odd integer. The disjoint copies of cycle on 3 vertices, mC3, is
(K2, C3)-sim-supermagic.

Proof. Recall an SEMT labeling of mC3, for odd m, from [21]. We denote V(mC3) =
{ui,j|i ∈ [1, m] and j ∈ [1, 3]} and E(mC3) = {ui,jui,j+1|i ∈ [1, m] and j ∈ [1, 2]} ∪
{ui,1ui,3|i ∈ [1, m]} and define

f (ui,j) =


i, if i ∈ [1, m] and j = 1;
2m + 2i+1+m

2 , if i ∈ [1, m−1
2 ] and j = 2;

2m + 2i+1−m
2 , if i ∈ [m+1

2 , m] and j = 2;
2m + 1− 2i, if i ∈ [1, m−1

2 ] and j = 3;
3m + 1− 2i, if i ∈ [m+1

2 , m] and j = 3.

Let Ci
3 be a subgraph of mC3 isomorphic to C3 and ∑ Yi be the sum of all vertices labels

in Ci
3. Hence, for 1 ≤ i ≤ m−1

2 , we have

∑ Yi = i + 2m +
2i + 1 + m

2
+ 2m + 1− 2i

= i + 2m + i +
1 + m

2
+ 2m + 1− 2i

=
3
2
(3m + 1)

and, for m+1
2 ≤ i ≤ m, we have

∑ Yi = i + 2m +
2i + 1−m

2
+ 3m + 1− 2i

= i + 2m + i +
1−m

2
+ 3m + 1− 2i

=
3
2
(3m + 1).

Therefore, ∑ Yi is constant for 1 ≤ i ≤ m. By Lemma 6, mC3 is (K2, C3)-sim-
supermagic.
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6. Open Problems

We conclude by listing open problems from the previous sections that could be
interesting for further investigation.

1. What are the other forbidden subgraphs of (K2, Pn)-sim-(super)magic graph?
2. What are the other forbidden subgraphs of (K2, Cn)-sim-(super)magic graphs?
3. Characterize (K2, Pn)-sim-(super)magic graphs for any n ≥ 5.
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