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Abstract: Accurate monitoring and prediction of tool wear conditions have an important influence on
the cutting performance, thereby improving the machining precision of the workpiece and reducing
the production cost. However, traditional methods cannot easily achieve exact supervision in real
time because of the complexity and time-varying nature of the cutting process. A method based on
Digital Twin (DT), which establish a symmetrical virtual tool system matching exactly the actual
tool system, is presented herein to realize high precision in monitoring and predicting tool wear.
Firstly, the framework of the cutting tool system DT is designed, and the components and operations
rationale of the framework are detailed. Secondly, the key enabling technologies of the framework
are elaborated. In terms of the cutting mechanism, a virtual cutting tool model is built to simulate the
cutting process. The modifications and data fusion of the model are carried out to keep the symmetry
between physical and virtual systems. Tool wear classification and prediction are presented based on
the hybrid-driven method. With the technologies, the physical–virtual symmetry of the DT model is
achieved to mapping the real-time status of tool wear accurately. Finally, a case study of the turning
process is presented to verify the feasibility of the framework.

Keywords: digital twin; tool wear; monitoring; predicting; turning process

1. Introduction

Cutting tools, as key components of the Computer Numerical Control Machine Tool
(CNCMT), significantly affect the quality of machined products and the safety of the
CNCMT. Owing to the rapid development of material science, difficult-to-machine alloys
are gradually being applied in the manufacturing industry (particularly the aerospace
industry), which imposes high demands for the machining quality of workpieces. The
temperature increase in the tool and workpiece is intensified, and the adhesion layer and
hard abrasive particles appear on the tool surface during machining, resulting in excessive
wear and fractures of the cutting tool in a short time. The inferior surface quality caused
by tool wear makes a significant influence on the performance of the workpiece through
deterioration in the structural strength, fatigue life, reliability, chemical stability, etc. [1].
To improve workpiece performance, tool substitution must be conducted after the wear
exceeds a certain threshold such that the cutting cost can be reduced. From the perspective
of industrial companies, the main target is to manufacture components with high perfor-
mance at minimum cost and in a minimum amount of time. If manufacturers can obtain
the real-time tool wear condition and change the cutting tool within the wear standard, the
production efficiency and workpiece performance can be improved significantly.

Previously, the computer vision approach has been widely used to monitor the tool
wear condition based on captured wear images of the tool edge. Considering that the
chip and workpiece hide the flank and tool edge, the cutting process must be paused to
capture images of cutting tools; this increases the downtime of the CNCMT and decreases
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the processing efficiency. Another typically used method is indirect measurement, which
realizes tool wear monitoring and prediction by extracting the signals of the cutting process,
such as the cutting force, vibration, acoustic emission signals, etc. It is known that the
tool system status and environmental conditions change dynamically during machining.
Although the indirect method offers real-time monitoring, the measurement precision is
typically less than the precision of the direct method due to the status variety. Hence, a
method that can reflect the actual condition of the cutting tool wear in real time is necessary.

Digital Twin (DT) technology provides a solution to the aforementioned problems in
tool wear monitoring. The theory of DT has been utilized gradually in product design,
manufacturing, and service since it was first proposed by Grieves in 2003 [2]. A typical
definition of DT acknowledged by most scholars is that DT is an integrated simulation of
multi-physics, multi-scale, multi-domain, and multi-context for a product or process based
on fully utilizing data from the physical space and mapping the physical characteristics
into the virtual space. Using DT technology, not only can the exact match between physical
system and virtual model be conducted, but decisions can also be transferred from a virtual
space to a physical space [3]. During cutting, the symmetrical DT model can be optimized
continuously to keep consistency with the physical system such that it achieves higher
accuracy and fidelity. Subsequently, the simulation data are processed to predict the tool
wear value, and the results are returned to the physical system to guide tool substitution.
Hence, DT can realize a more accurate monitoring and prediction of tool wear over time.

Under the current situation mentioned above, a novel tool wear monitoring method
based on DT is proposed herein and the key enabling technologies are described. In terms
of the cutting mechanism, a virtual cutting tool model is built to simulate the cutting
process, mapping the physical space accurately in real time. The modifications and data
fusion of the model are carried out to keep the symmetry between physical and virtual
systems. With the dataset, a hybrid-driven model is developed to dynamically monitor and
predict the cutting tool wear via kNN and SVM. A multi-view synchronization interface is
presented to demonstrate the cutting process screen, simulation process, and all data plots
in real time. Within the framework of the DT method, tool wear monitoring and prediction
can be achieved with high accuracy over time.

The rest parts of this paper are organized as follows. In Section 2, studies related to
tool wear and DT technology are introduced. In Section 3, a framework for the tool system
DT model is proposed, and the organization and operational rationale of the physical and
virtual systems are described comprehensively. The key enabling technologies are detailed
in Section 4. Following this, a case study for the turning process is performed using the DT
model is provided in Section 5. Finally, Section 6 presents the conclusions of this study.

2. Related Studies
2.1. Studies Regarding Tool Wear Prediction

Nowadays, scholars have conducted much research regarding tool wear condition
monitoring extensively, which are classified into direct and indirect measurements. Table
1 summarizes the studies pertaining to tool wear monitoring in recent years. In direct
measurement methods, the tool wear condition is monitored by observing wear images
directly based on computer vision technology. Ong, et al. [4] acquired tool wear images and
extracted a descriptor of the wear zone, after which Wavelet Neural Network (WNN) was
applied to predict the wear value of the cutting tool with higher accuracy compared with
ordinary Artificial Neural Network (ANN) and statistical models. García-Ordás, et al. [5]
utilized B-ORCHIZ to categorize cutting tool wear in the edge profile milling process,
facilitated by Support Vector Machine (SVM). Subsequently, hierarchical cluster analysis
was performed to label the prototype images for wear levels. Moldovan, et al. [6] designed
a tool flank wear monitoring system based on image acquisition and processing, as well
as classified wear images using a two-hidden-layer auto-encoder ANN. Sun and Yeh [7]
presented an approach for designing a visual inspection system mounted on a turning
machine tool. The amount of wear in the captured image was calculated to assess the



Symmetry 2021, 13, 1438 3 of 23

normal wear or over-wear condition. The tool edge and flank are generally covered by
the chip and workpiece; as such, tool wear images cannot be obtained during the cutting
process. Therefore, cutting must be suspended when extracting the tool-wear images,
which decreases the production efficiency.

Table 1. Findings of tool wear monitoring.

Author Year Purpose Measurement
Technology Calculating Method

Ong et al. 2019 Tool wear monitoring Direct measurement
Computer vision Wavelet neural network (WNN)

Garcia-Ordas
et al. 2016 Tool wear classification Direct measurement

Computer vision Support vector machine (SVM)

Moldovan et al. 2017 Tool flank wear
monitoring

Direct measurement
Computer vision Two-hidden-layer auto-encoder ANN

Sun and Yeh 2018 Tool condition
monitoring

Direct measurement
Computer vision Grayscale value histogram

Duo et al. 2019 Tool condition
monitoring Indirect measurement Machine learning algorithms

Klocke et al. 2017 Tool condition
monitoring of hobbing Indirect measurement Least square method

Tangjitsitcharoen
and Lohasiriwat 2018 Tool condition

monitoring of turning Indirect measurement Wavelet transform

Shi et al. 2020 Tool wear prediction Indirect measurement multiple stacked sparse auto-encoders,
nonlinear regression

Kothuru et al. 2018 Tool wear and failure
monitoring of milling Indirect measurement Support vector machine (SVM)

Li et al. 2019 Tool wear monitoring
and prediction Indirect measurement Deep convolutional neural network

Chen et al. 2019 Tool wear monitoring
of milling Indirect measurement CNN and BiLSTM

Kong et al. 2020 Tool wear estimation Indirect measurement Neighborhood preserving
embedding, WOA-SVM

Shen et al. 2020 Tool wear monitoring
and predicting Indirect measurement

Random Forest (RF), Gradient Boosting
Regression (GBR), Support Vector

Regression (SVR)

Cai et al. 2020 Tool condition
monitoring Indirect measurement Long short-term memory network (LSTM)

Compared with direct measurements, indirect measurements enable real-time moni-
toring by analyzing the signals from sensing devices. Some scholars extracted tool wear
features from signals and then analyzed the physical properties of the signals via time and
frequency-domain analyses to predict the tool wear condition. Duo, et al. [8] extracted all
the statistical features of internal and external signals in the time domain to identify the
most sensitive signals to tool wear. To predict the tool wear, they proposed an approach
that was based on automatic learning algorithms. Klocke, et al. [9] proposed a method that
uses an effective power signal combined with a prediction model to obtain the real-time
tool wear status, thereby enabling the further investigation of online tool wear monitoring
systems. Tangjitsitcharoen and Lohasiriwat [10] presented an in-process tool wear monitor-
ing system for CNC turning via wavelet transform. A tool wear prediction formula was
proposed based on the exponential function, which comprised the decomposed cutting
force ratio, cutting velocity, thickness of cut, and feed rate. Shi, et al. [11] launched an
Ensemble Empirical Mode Decomposition (EEMD) method based on the entropy and
correlation of the cutting force signal. An automatic detector was presented utilizing the
Cumulative SUM (CUSUM) control chart to monitor tool chipping and tool wear failure.

With the development of artificial intelligence technology, more scholars are using
machine learning methods to monitor and predict tool wear conditions. Kothuru, et al. [12]
analyzed sound signals acquired from the machining process to extract signal features that
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correlate with the actual cutting. Audible sound signals were used as a sensing approach
to detect the cutting tool wear and failure during end milling using the Support Vector
Machine (SVM) model. Li, et al. [13] presented a deep convolutional neural network by
combining the concepts of a recursive residual network and a dense network to perform
tool wear monitoring and prediction. Chen, et al. [14] integrated a Convolutional Neu-
ral Network (CNN) and a bidirectional Long Short-term Memory (BiLSTM) network to
monitor the tool wear state during milling. Kong, et al. [15] proposed a hybrid WOA-SVM
model, which integrates the Whale Optimization Algorithm (WOA) and Support Vector
Machine (SVM). Using this model, the original signals were used to monitor and predict
tool wear. Shen, et al. [16] developed a new machine learning method that considers
machining parameters as inputs and generates features for tool wear prediction. The exper-
imental results were consistent with the predicted results in terms of the averaged squared
error values. Cai, et al. [17] presented a hybrid model for tool wear prediction based on
Long Short-term Memory network (LSTM), where a stacked LSTM was used to extract the
features. A nonlinear regression model was formed to predict the tool wear value.

In summary, the existing methods, including direct and indirect measurements, have
various disadvantages and cannot satisfy the requirement for instantaneity and high
accuracy in tool wear monitoring and prediction. Owing to the advancement of new
technology, cyber-physical systems such as DT have been applied in the manufacturing
industry and resulted in lower delays and higher accuracy of tool wear monitoring.

2.2. Digital Twin-Driven Machining Process

DT was first proposed by Grieves in 2003. It creates a virtual model of a physical entity
digitally, simulates the behaviors of the physical entity with the aid of data, and conducts
the interaction and fusion between the physical system and information world through
interactive feedback, data analysis, iterative optimization, and other methods. Driven by
Industry 4.0, IoT technology, and big data analysis [18], DT technology has been highlighted
in the field of intelligent manufacturing. Scholars have conducted studies pertaining to
the application of DT in the manufacturing industry, including robotic machining, process
planning, and machine tool monitoring, as shown in Table 2.

In robotic machining, Pérez, et al. [19] utilized the DT methodology to process au-
tomation, enhanced implementation, and real-time monitoring during robotic machining.
Bilberg and Malik [20] presented a simulation approach based on DT in a flexible as-
sembly cell coordinated with a robot to perform assembly tasks alongside humans. In
the methodology, the lean production methods of manual assembly are combined into
human–robot collaboration, thereby facilitating flexible human–robot work teams. Studies
pertaining to process planning have been conducted in recent years. Zhao, et al. [21]
utilized DT technology to guide process planning and developed a hierarchical model
and mapping strategy for machining. Biesinger, et al. [22] presented a DT model for the
body-in-white production system based on current resources, products, and process in-
formation from a cyber-physical system. The model was evaluated based on an actual
body-in-white production system. Liu, et al. [23] demonstrated a new process planning
evaluation method via DT technology, in which the real-time mapping mechanism and
the DT-based machining process evaluation framework were illustrated. Furthermore,
the aforementioned model was verified based on the key components of a marine diesel
engine. Leng, et al. [24] utilized DT technology for the rapid reconfiguration of automated
manufacturing systems to accommodate process planning. From the perspective of ma-
chine tools, Tong, et al. [25] proposed an intelligent manufacturing tool DT model with
the purpose of further manufacturing data analysis and optimization, including dynamic,
contour error estimation, and compensation. Luo, et al. [26] investigated a multi-domain
modeling method of DT for the CNCMT and discovered that it can decrease the abrupt
fault probability as well as improve the performance and stability of the CNCMT. In studies
regarding the CNCMT DT, the fault prediction strategy and the DT model were described.
Wang, et al. [27] proposed a DT-based bidirectional operation framework, aiming at realiz-
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ing energy-efficient manufacturing systems. This model describes the physical systems
in a virtual space, performs simulation analysis, and controls the physical systems for
various energy-saving purposes. For enhanced machining tool condition monitoring and
prediction, Qiao, et al. [28] investigated a hybrid model approach based on DT and deep
learning. In that study, a five-dimensional DT model combined with Deep Stacked Gated
Recurrent Unit (DSGRU) was utilized for data analysis to perform system prediction. Con-
sidering the complexity and volatility of the CNCMT, Wei, et al. [29] proposed an updated
DT method with performance attenuation. In that study, the method was investigated
based on the performance attenuation update framework. Luo, et al. [30] illustrated a
hybrid model based on the DT method to realize the predictive maintenance of a CNCMT.
Tao, et al. [31] presented a new approach for product-lifestyle-based DT technology; the
framework and application of DT-driven product design, manufacturing, and service
after sale were described comprehensively. Cheng, et al. [32] elaborated the interplay and
relationship between DT and Industrial Internet. Subsequently, a DT-enhanced Industrial
Internet (DT-II) reference framework for smart manufacturing was proposed. Liu, et al. [33]
investigated the multi-scale evolution mechanism of the DT model and constructed a DT
quality knowledge model at macro, meso, and micro levels.

Table 2. Findings of DT in manufacturing.

Author Year Focused Area Technology

Perez et al. 2020 Robotic machining Virtual reality interface

Bilberg and Malik 2019 Human–robot collaborative
assembly Object-oriented event-driven simulation

Zhao et al. 2020 Process planning Data perception, simulation optimization
Biesinger et al. 2019 Process planning Cyber-physical production system

Liu et al. 2019 Process evaluation Simulation and sensing

Leng et al. 2020 Process planning Rapid reconfiguration of automated
manufacturing systems

Tong et al. 2019 Intelligent manufacturing tool Multi-sensor fusion technology and MPConnect
Luo et al. 2018 CNCMT Simulation and sensing

Wang et al. 2019 Energy-efficient
manufacturing system Sensing discrete event simulation

Qiao et al. 2019 Predictive maintenance of
manufacturing machines Deep Stacked GRU

Wei et al. 2020 Consistency retention
for CNCMT Performance attenuation update workflow and simulation

Luo et al. 2020 Predictive maintenance
of CNCMT Hybrid model based on the DT method

Tao et al. 2017 Product lifecycle management Big data, cyber and physical convergence
Cheng et al. 2021 Smart manufacturing Digital twin enhanced Industrial Internet (DT-II)

Liu et al. 2021 Monitoring and controlling of
product qualities Digital twin quality knowledge model

DT technology is used extensively in the manufacturing industry. However, studies
regarding DT-based tool wear monitoring are scarce. Hence, DT should be utilized in the
study of tool wear.

3. DT Model
3.1. Framework

As shown in Figure 1, the cutting tool system DT framework presents is relatively
reliable for real-time tool wear condition monitoring. It comprises five primary components:
the physical tool system, virtual tool system, cutting tool service system, DT data of tool
system, and connections among the abovementioned components.
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Figure 1. Cutting tool system digital twin framework.

(1) Physical tool system

The physical tool system comprises all physical entities in the cutting process. The
significant components are the cutting tool system, sensing devices, and the surrounding
environment where the physical cutting process is carried out. Advanced sensing tech-
nologies, including hyper-sensitized sensing, high-accuracy, low-delay communication,
and heterogeneous multi-protocol data integration, have been utilized to perceive the tool
system status in real time.

(2) Virtual tool system

Based on the machining and tool wear mechanisms, rapid construction and modifica-
tion of the virtual tool system is conducted, which duplicates the physical cutting process
and achieves the symmetrical simulation in the properties and behaviors of the cutting tool
(introduced in Section 4.1 in detail). It includes a high-synchronization virtual geometrical
model, high-accuracy virtual material model, high-fidelity virtual environment model, and
high-symmetry behavior model. The simulated results are compared with the physical
experimental results to verify the consistency of the built virtual model, which is simulated
and modified iteratively to mirror the physical system.

(3) Cutting tool service system

The cutting tool service system provides assistance in monitoring and predicting the
cutting tool wear condition, where the hybrid-driven model based on the physical and
virtual system is presented (introduced in Section 4.3). Its primary function is to process
massive data from physical and virtual spaces, predict tool wear, and perform model
updating and evolution. In the cutting tool service system, many methods are utilized,
including data preprocessing and noise reduction, multi-dimensional feature selection, and
machine learning algorithms.



Symmetry 2021, 13, 1438 7 of 23

(4) DT data

The cutting tool system of DT data combines material data, geometrical data, cutting
force, temperature distribution, vibration, etc. The data are categorized into four types:
property data, command data, dynamic condition data, and wear data. The property
data, which can be acquired from manuals or measured directly, describe the natural
static attributes of the cutting tools and workpiece. The command data primarily include
the operation information of the machine tool and the environment data. The dynamic
condition data comprise real-time status signals that can be monitored online. The wear
data contains detailed information of the tool wear. Section 4 introduces the definition and
fusion of the DT data of the tool system comprehensively.

(5) Connections

Various connections exist among the abovementioned components. The physical
tool system provides real-time processing data for the virtual tool system and maps the
machining mechanisms to the virtual system. The real-time condition monitored in the
physical system is conveyed to the cutting tool service system, which consequently guides
the maintenance of the cutting tool. Simultaneously, the virtual system is monitored by the
service system and evolves continuously with the service system. The DT gathers all data
from the physical, virtual, and service systems and feeds corresponding decisions back
to them.

Generally, all components of the framework are associated closely with each other.
As the foundation of the digital model, the physical tool system generates a significant
amount of process data that are transported to the virtual tool system. With the data from
the physical system and domain knowledge, rapid construction of the virtual model is
proceeded to mirror the actual cutting process. Subsequently, the data generated by the
virtual tool system are transported to the cutting tool service system in a timely manner,
together with the data from the physical system. In the cutting tool service system, a
hybrid-driven model is built: firstly, all raw data from the physical and virtual systems
are processed to eliminate noise and interference signals; secondly, the virtual system
is modified by comparing the error between the physical and virtual systems, thereby
realizing the evolution of the DT model; finally, the tool wear status is predicted based
on the extracted data with the help of machine learning algorithms. Data visualization
is performed, where data are shown in the physical entity and virtual simulation views,
yielding a multi-view synchronization interface. The service system feeds back real-time
manufacturing commands to the physical and virtual tool systems, after which the virtual
tool system can predict the cutting tool wear degree and guide the actual manufacturing
process in the physical system. All generated data are stored in the DT dataset.

3.2. Organization and Operational Process

The organization of the DT framework of the tool system presented herein is shown in
Figure 2. In the DT model, the cutting process is classified into three layers (i.e., construc-
tion of a working environment, modeling of tool system, and implementation of cutting
behavior) that proceed in a physical space and virtual space, separately. The working
environment and tool system parameters in the physical space are recorded, and the real
condition of the tool system is monitored by sensors during cutting. All parameters are
copied to the virtual system, and then the virtual simulation is conducted, modified, and
verified in the virtual space. A progressive relationship exists among the three layers. The
cutting tool system exists in the working environment, both of which are the foundation of
the cutting process. The detailed workflow is as follows:

(1) In the working environment layer, the relevant physical environmental parameters,
such as the external temperature and humidity, were first confirmed to build the
environment in the virtual space. Considering the tool vibration and possible lubri-
cant in the physical tool system, the virtual vibration and lubricant must be modeled
to obtain the virtual working environment. At the same time, the virtual environ-
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ment model is modified to maintain its high fidelity through interactions with the
physical environment.

(2) In the tool system layer, the material and geometry parameters of the cutting tool
and workpiece are confirmed. The material data determine the constitutive model
and damage mechanisms of the tool and workpiece. The virtual tool geometry
model is mapped using detailed tool geometry data (including the tool rank angle,
clearance angle, and tool edge size, etc.). Using the relevant parameters, the virtual
tool system closely resembles the physical system. The geometrical model is updated
during the cutting process, and the model modifies the material parameters as the
temperature changes.

(3) In the cutting process layer, all sensors extract data, including the cutting force,
temperature, and vibration from the physical cutting process. Meanwhile, real-time
simulation in the virtual space continues incessantly. The virtual cutting process is
modified iteratively by comparing the data error between the physical and virtual
tool systems. Following this, the tool wear status is monitored and predicted using
machine learning method based on DT data, thereby realizing the maintenance of the
worn cutting tool in real time.

Figure 2. Organization of the cutting tool system DT model.

4. Key Enabling Technologies
4.1. Rapid Construction of the Tool System Virtual Model

A symmetrical virtual model was built, as shown in Figure 3. The complex cut-
ting process is mapped accurately with the aid of data and domain knowledge from the
physical space.

The virtual model of the cutting tool system integrates the geometry model, material
model, environment model, and behavior model of the tool and workpiece. These models
are described as follows:

Virtual_Model = {Geometry_Model, Material_Model, Environment_Model, Behavior_Model} (1)

1. Geometry model

The geometry model describes the geometrical information of the cutting tool system,
including the initial geometry and in-process geometry. The initial geometry, which
represents the shape of the workpiece and tool, depicts the cutting tool rank angle, clearance
angle, tool edge geometry size, workpiece diameter, and length, as indicated in Equation (3).
The in-process geometry reflects the changing geometry. During cutting, the feed rate,
cutting depth, and cutting time determine the material removal value, and the tool wear
is determined by the tool wear rate. Hence, the in-process geometry can be calculated
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based on the initial geometry minus the removed material and tool wear, as shown in
Equation (4), where ∆t is the cutting time and dw/dt represents the wear rate:

Geometry_Model = {Init_Geom, InProc_Geom} (2)

Init_Geom =

{
Diameter·Length,

Rank_ang, Cle_ang, Tool_edge · · ·
f or Workpiece

f or Tool
(3)

InProc_Geom =

{
Initial_workpiece− f eed·∆t·depth

Initial_tool − dw
dt ·∆t

(4)

Figure 3. Virtual model of the cutting tool system.

2. Material model

The material model is the integration of the material characteristics of the actual
cutting tool and workpiece, as indicated in Equation (5). In the equation, Ds, Ym, Pr, Ep,
Tc, Sh, Cc, and Dc are the density, Young’s modulus, Poisson’s ratio, expansion, thermal
conductivity, specific heat, constitutive constants, and damage constants, respectively,
which are the static properties of the tool and workpiece.

Material_Model = {Ds, Ym, Pr, Ep, Tc, Sh, Cc, Dc} (5)

3. Environment model

The environment model is a parametric replica of the machining environment that
encompasses the surrounding environment and cutting parameters. The air humidity,
room temperature, power voltage, and process parameters involved are as follows:

Environment_Model = {Process_parameters, Air_humidity, Room_temperature, power_voltage, · · ·} (6)

4. Behavior model

The behavior model of the cutting tool system describes the behaviors and mecha-
nisms of the cutting process, i.e., the deformation and damage processes of the workpiece
accompanied by work hardening and thermal softening, keeping the symmetry with the
actual cutting process. Therefore, the constitutive model, i.e., the damage model, and
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tool system status (cutting force, temperature, and vibration) models are involved in the
behavior model, as indicated in Equation (7):

Behavior_Model = {Cm, Dm, F, T, V} (7)

The constitutive model is used to illustrate the deformation process, and the damage
criteria depict the damage evolution, as shown in Equations (8) and (9), respectively. In
Equation (8), constitutive is the constitutive function, ma is the material data, te is the
relative temperature parameter, and gm represents the geometry data of the cutting tool. In
Equation (9), damage represents the damage criteria function, whereas ma, te, and gm are
the same as those for Equation (8):

Cm = constitutive(ma, te, gm) (8)

Dm = damage(ma, te, gm) (9)

The cutting force, temperature, and vibration reflect the running condition of the
tool system, and they can be calculated using the constitutive and damage models. The
prediction formula is expressed in Equation (10), in which the condition is on behalf of
the function, and mc is the machining parameter. The constraints guarantee that the
cutting force is within the maximum cutting force of the machine tool, and the machining
parameters are within the range of the designed parameters:

{Forc, Temp, Vibr} = condition(mc, Cm, Dm)
s.t.

F ≤ FMachine_max
mc ∈ [mcmin, mcmax]

(10)

Different wear mechanisms occur during cutting, including abrasive wear, adhesive
wear, diffusive wear, fatigue wear, and chemical wear. The appearances and sizes of the
wear zones differ from each other. For fatigue wear and chemical wear, the feature size
of the wear zone is difficult to obtain. In this paper, three wear mechanisms, including
abrasive wear [34], adhesive wear [35], and diffusive wear [36], are covered in the virtual
model. The total tool wear can be calculated as Equations (11)–(14). In the equations, G, A,
B, and R are the material data; σ is the normal stress; v and vs. are the cutting velocity and
relative sliding velocity, respectively; and E represents the activation energy. All data were
obtained and calculated using the virtual model.

TW = Abra_Wear + Adhe_Wear + Di f f _Wear (11)

Abra_Wear =
∫

Gvdt (12)

Adhe_Wear =
∫

Aσvs exp
(
−B
T

)
dt (13)

Di f f _Wear =
∫

D exp
(
−E
RT

)
dt (14)

During the construction of the virtual model, all the data are classified into four
categories: property data, command data, dynamic condition data, and wear data, as
shown in Table 3. The property data describe the natural attributes of the cutting tool and
workpiece. The command data primarily include information regarding the machine tool
operation and the environment. The dynamic condition data contain real-time status signals
obtained dynamically online via sensors. The wear data contain detailed information
regarding the tool wear.
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Table 3. Definition of the cutting tool system digital twin data.

Category Data Notes

Property data
Geometry data

Rank angle, clearance angle, inclination
angle, tool edge geometry of cutting tool,

workpiece diameter, and length. Affecting factors of cutting
process performance

Material data

Density, specific heat, thermal conductivity,
Poisson’s ratio, Young’s modulus, expansion,

constitutive constants, and
damage constants.

Machine data Natural frequency, damping characteristics,
and stiffness.

Command data
Processing data Cutting velocity, feed rate, and cutting depth.

Environment data Air humidity, room temperature, and
power voltage.

Real-time condition data Cutting force, temperature distribution,
and vibration.

Reflections of cutting
process performance

Wear data Tool wear kinds, morphology, and values.

4.2. Modification and Data Fusion of the Tool System Virtual Model

The virtual model was modified as illustrated in Figure 4.

Figure 4. Workflow of verifying the accuracy.
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Firstly, data pertaining to the virtual model that belong to the factors affecting the
cutting process performance are verified. Some of the DT data are offline data that could not
be modified during cutting and need not be modified in real time. The other set of dynamic
data reflect the tool wear condition, such as the tool geometry data and environment data.
The real-time relative errors of the dynamic data are calculated using Equation (15), where
dpi and dvi are the ith index of the physical and virtual models, respectively. After tool wear
occurred, the original tool surface deformed, and the nodes on the original face also have a
displacement. If the relative errors of geometry size reach the predefined threshold, the
node of the tool surface will be updated to modify the virtual geometry model until the
errors are sufficiently small. The updating scheme for the node is shown in Figure 5. If the
environmental relative error reaches the set threshold, then the responding parameters in
the virtual environment model will be adjusted to reduce the error.

errd =

∣∣dpi − dvi
∣∣

dpi
(15)

Figure 5. Node updating scheme of tool surface.

The relative errors of the real-time results (i.e., real-time condition data and wear
data) between the physical experiment and virtual simulation are expressed as shown in
Equation (16). In the equation, rip and riv are the ith data of the physical and virtual systems,
respectively. If the errors exceed the threshold, then the physical and virtual systems are
inconsistent. After the cause is identified, the model structure is adjusted, or the step, mesh,
and interaction parameters of the simulation process are modified to repeat the simulation.

errr =

∣∣rpi − rvi
∣∣

rpi
(16)

After modifying the cutting tool system of the virtual model, the fusion of the massive
multi-source heterogeneous data is conducted, as shown in Figure 6. During cutting, the
property data and command data from the physical space are matched with those of the
virtual space at time t. In the physical system, voltage and current signals from sensors
reflect the cutting force and temperature in-formation of tool system. Before experiments,
the relation between voltage and force can be defined by the calibration test. In this case,
the real cutting tool condition, such as the cut-ting force and temperature, can be calculated.
In virtual space, the stress, strain, and temperature can be simulated, and the simulated
condition (cutting force and temperature) of virtual cutting tool can be obtained directly.
Then, the relative error of force, temperature, and vibration can be calculated respectively.
The errors from time 1 to j and the j*3 error matrix are obtained, expressed as:
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ERR =


ERR_F1
· · ·

ERR_T1
· · ·

ERR_V1
· · ·

ERR_Fk
· · ·

ERR_Tk
· · ·

ERR_Vk
· · ·

ERR_Fj ERR_Tj ERR_Vj

 (17)

ERR_Fk, ERR_Tk, and ERR_Vk represent the relative error of the cutting force, temperature,
and vibration between physical and virtual spaces in time k. To clean the outlier, the
whisker chart is utilized. In the whisker chart, the standard of outlier can be calculated
by Q3− 1.5(Q3−Q1), where the Q3 and Q1 are the upper quartile and lower quartile
of a column in the matrix. If the element in a column exceeds the standard, the relative
ERR element will be cleaned. The average error of the rest ERR elements can be calculated
as follows:

mean =

[
1
a

a

∑
i=1

ERR_Fi,
1
b

b

∑
i=1

ERR_Ti,
1
c

c

∑
i=1

ERR_Vi

]
(18)

where a, b, and c are the number of the effective errors of force, temperature, and vibration,
after cleaning the outlier. If the mean value exceeds the threshold, the effective percent of
the elements in the matrix ERR over the threshold can be calculated by:

de f f e =
mean(m, n)− threshold

threshold
(19)

In terms of the percent, the model parameters of force, temperature, and vibration are
updated by the respective deffe:

Para_updated ≥ Para_original
(

1 + de f f e(m, n)
)

Para_updated ≤ Para_original
(

1− de f f e(m, n)
) (20)

If the parameter is negatively associated with the model, the first equation is utilized.
If it is positively associated with the model, select the second equation. Using the two equa-
tions, the range of updated parameter can be determined. In the equations, Para_updated
and Para_original are the parameter after and before updating, reapectively.

4.3. Hybrid-Driven Model Based on Cutting Process and Simulation

In this section, a hybrid model is presented based on raw signals from the physical
space. Data processing algorithms are applied to the hybrid-driven model, in which the
algorithms are trained based on the obtained historical data. Finally, tool wear can be
predicted based on the processed data and compared with the results of the physical system
and theoretical predictions. Figure 7 shows the hybrid model workflow.

It is inevitable that the condition signals extracted from sensing devices contain noise
from a complex external environment. Reducing noise signals has a significant impact on
obtaining the actual condition of the tool system, in which the wavelet de-noise method
is utilized. Following noise reduction, data preprocessing is proceeded to convert the
extracted data to a dimensionless quantity to achieve a higher monitoring accuracy.

The raw signals contain a significant amount of information, which is difficult to
manage directly. Hence, feature recognition should be conducted to identify the features of
the status signals in the time, frequency, and time-frequency domains. The signal features
can be calculated directly using the equations listed in Table 4. The redundancy among ex-
cessive features can incur a significant amount of time for diagnosis and prediction, thereby
decreasing the efficiency of the model. If the features are insufficient, then some important
information would be lost. The features that sufficiently affect the health condition of the
tool system are selected among all identified features via Marginal Fisher Analysis (MFA).
All signal features calculated are segregated into a training set and a testing set. Using the
training set, the marginal fisher function is established, and the mapping direction of the
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low-dimensional space is acquired. The crucial features of the testing set can be computed
using the mapping direction.

Figure 6. Data fusion of the cutting tool system digital twin.
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Figure 7. Workflow of the hybrid-driven model.

Table 4. Some signal features equations.

Signal Features Expression

Mean T1 = 1
M

M
∑

n=1
x(n)

Standard deviation T2 =

√
1

M−1

M
∑

n=1
(x(n)− T1)

2

Root means square T3 =

√
1
M

M
∑

n=1
(x(n))2

Skewness index
T4 =

M
∑

n=1
(x(n)−T1)

3

(M−1)T3
2

Wavelet packet power value Ej
m = ∑

k

(
Cj

m

)2
/

(
∑
m

∣∣∣∣∑
k

(
Cj

m

)2
∣∣∣∣2
)1/2

Different wear types occur during the cutting process, and their appearances and
crucial sizes differ from each other. KNN-based classification algorithms are developed
using the selected features to classify tool wear. Meanwhile, the tool wear value is predicted
via SVM, where the RBF kernel is selected and the hyper-parameters are optimized by PSO
to train the SVM model. The predicted results are compared with the results of the physical
system and theoretical prediction in Section 4.1 to verify the classification and prediction of
tool wear. After performing the high-accuracy calculation, the results are fed back to the
physical and virtual spaces, thereby avoiding or decelerating tool wear.
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5. Case Study

The widespread adoption of diamond-insert turning tools in axis components is crucial
for monitoring their wear condition. The high-precision tool wear prediction of diamond
inserts can enable the timely replacement of worn tools, thereby reducing the production
cost and achieving the designed performances of products. Currently, a tool substitution
policy is performed based on technical manuals and worker experiences; in this regard, the
proposed symmetrical DT model is a more scientific and beneficial approach.

5.1. Data Acquisition

The data acquisition platform includes a CNC lathe, diamond carbide insert tool,
Inconel 718 bar, and sensing devices, as shown in Figure 8. The three-direction force during
the cutting process is measured using a Kistler 9257 B dynamometer. Considering the effect
of temperature on tool wear, the temperatures of the tool and workpiece is measured in real
time. In this platform, a FLIR A325 infrared thermal camera is chosen for convenience. After
dismantling the knife tower, a dynamometer is installed on the workbench. Subsequently,
a tool holder is installed on the dynamometer by a customized fixture.

Figure 8. Data acquisition platform of the turning process.

The machining parameters of the physical cutting process are presented in Table 5.
The sampling frequency of the dynamometer is 30 kHz, and the infrared thermal camera
records thermal images with a 406 × 240 LWIR resolution. The emissivity of the infrared
thermal camera is set to 0.95 after performing standardization utilizing a thermal couple.
The camera lens is directed toward the cutting area to obtain temperature images in real
time. In this paper, only flank wear is observed, and the maximum width of the wear zone
is measured as the tool wear value.

Table 5. Material properties of the cutting tool and workpiece.

Machining Parameters Values

Cutting velocity (m/min) 120
Feed rate (mm/r) 0.1

Cutting depth (mm) 0.5
Cooling condition Dry machining

5.2. Realization of the Cutting Tool System DT Method
5.2.1. Realization of the Symmetrical Virtual Model

It is impossible to establish a DT model that can completely reflect all the details of
the cutting process. Therefore, the turning process is simplified.

It can be observed that the cutting process is a thermal-mechanical coupling process.
During the turning process, elastic and plastic deformations occurred, and a significant
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amount of heat is generated simultaneously. In the symmetrical model of the tool system, a
simulation model coupled with dynamics and thermodynamics is developed. A simulation
is conducted to resolve the force and temperature during the cutting process. Considering
that the strain along the cutting speed and feed directions is much larger than that in the
other directions, the strain in the radial direction of the workpiece is negligible. Therefore,
the turning process of diamond inserts can be simplified to orthogonal turning problems in
this study, as shown in Figure 9. The high-fidelity geometry model and material model are
first established, in which the material properties are consistent with the physical entities,
as shown in Table 6. Following this, a high-fidelity environment is established.

Figure 9. Schematic diagram of the two-dimensional cutting process.

Table 6. Material properties of the cutting tool and workpiece.

Properties Inconel 718 Carbide

Density (kg/m3) 8190 12,000
Young’s modulus (MPa) 185,000 800,000

Poisson’s Ratio 0.33 0.22
Expansion (10−6/◦C) 11.8 4.7

Conductivity (W/(m·◦C)) 11.4 4.6
Specific Heat (mJ/ton·◦C) 481.4 40

To simulate the turning process accurately, the Johnson–Cook constitutive model is
used to define the plastic evolution; the model describes the stress, strain, and temperature
during the turning process, as expressed in Equation (21):

σ =
(

A + Bεpl
n
)(

1 + C ln

.
εpl
.
ε0

)[
1−

(
T − Tr

Tm − Tr

)m]
(21)



Symmetry 2021, 13, 1438 18 of 23

where A is the initial yield strength, B is the hardening coefficient, εpl is the equivalent

plastic strain,
.
εpl is the equivalent plastic strain rate, n is the hardening index, C is the strain

rate strengthening parameter,
.
ε0 is the reference strain rate, Tr is the room temperature

(generally is set as 20 ◦C), Tm is the melting temperature of the material, and m represents
the thermal softening exponent. The Johnson–Cook material parameters of Inconel 718, as
listed in Table 7, can be consulted from manuals [37].

Table 7. Johnson–Cook material parameters of Inconel 718.

Material A (MPa) B (MPa) C n m T (K) Tm (K)

Inconel
718 1241 622 0.0134 0.65 1.03 300 1570

The Johnson–Cook damage criterion, as expressed in Equation (22), is utilized to
describe failure initiation:

εpl
D =

[
d1 + d2 exp

(
−d3

σp

σMises

)]
·

1 + d4 ln

 .
ε

pl

.
ε0

·(1 + d5
T − Tr

Tm − Tr

)
(22)

where σp, σMises, and εD
pl are the hydrostatic pressure, von Mises equivalent stress, and

equivalent plastic strain at the onset of damage, respectively; d1–d5 are the Johnson–Cook
damage constants, as listed in Table 8.

Table 8. Johnson–Cook damage parameters of Inconel 718.

Material d1 d2 d3 d4 d5

Inconel 718 0.11 0.75 −1.45 0.04 0.89

The modeling space of the cutting tool system is set to two-dimensional planar, the
part type is defined as deformable, the mesh element shape is set as quad-dominated,
and the element is defined as an explicit coupled temperature-displacement type. In the
interaction property manager, tangential behavior is selected. The friction formulation
between the workpiece and tool is set as the penalty contact algorithm, which can achieve
convergence quickly and easily. The temperature, force, and relative slip speed are recorded
by field and historical output in the turning simulation, which can be utilized to calculate
the tool wear rate.

Real-time updating of the DT is essential for achieving accurate mapping with a
physical space. The dynamic conditions of the system can be categorized into two types,
as follows:

i. Working condition: Machining parameters, such as the cutting speed, feed rate, and
cutting depth, are affected by vibration during cutting, which can be generated from
the controller of the machine tool and directly affect the simulation results.

ii. Geometry size: The geometric dimension change caused by tool wear during turning.

Before the next simulation is performed, the updated machining parameters and tool
wear state from the last simulation are input to the model to update the virtual system of
the cutting tool system.

5.2.2. Hybrid-Driven Model Realization

In the actual cutting process and experiment, the extracted data are the cutting force
and temperature signals from the sensors and simulation software. The sensor drift
caused by temperature variation contributed to the trend items in the original data. In
addition, the original signals sampled typically overlap with noise signals, including
periodic interference signals and random interference signals, which generate the sawtooth
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shape of the signal wave. To weaken the effect of the interfered signals and allow for
a much smoother data variation graph, original data smoothing is performed using the
Savitzky–Golay filtering algorithm, which is based on Least Square Principle.

Following data preprocessing, the features of the time domain are acquired, such
as the root mean square value (RMS), mean value, and skewness coefficient, as shown
in Table 9. The mean value is the average of the signal. The standard deviation reflects
the degree of dispersion of the dataset; a higher standard deviation implies more discrete
raw data. The RMS represents the average energy of the signal. The skewness coefficient
reflects the symmetry of the signal: a system with high skewness deviates significantly
from the normal status.

Table 9. Signal features in the time domain.

Signal Features Expression

Mean T1 = 1
M

M
∑

n=1
x(n)

Standard deviation T2 =

√
1

M−1

M
∑

n=1
(x(n)− T1)

2

Root means square T3 =

√
1
M

M
∑

n=1
(x(n))2

Skewness index
T4 =

M
∑

n=1
(x(n)−T1)

3

(M−1)T3
2

In the frequency domain, a feature extraction method based on fourth-order moment
estimation is utilized [38]. The standardized Power Spectral Density (PSD) pxx is sepa-
rated into four segments, for ease of the balance between high distinguishability and low
complexity of the calculation. The feature parameters are extracted from every divided
segment, including four parameters, each based on fourth-order moment estimates of the
power spectrum and fourth-order moment estimates of the frequency weighted by power.
The load variation of the machine tool can result in fluctuations in the magnitude of the
vibration spectra. Calculating the features of the power spectra without normalization
affects the calculated features. Hence, the original PSD p0

xx must be normalized prior to
calculating the eight frequency-domain features. The following normalization equation
is conducted:

pxx =
p0

xx
σ2

p
(23)

In this formula, σ2
p is the standard deviation of the original PSD. The extracted features

of the frequency domain are listed in Table 10.
The features in the time and frequency domains reflect the running status of the

machine tool, whereas the signals from the machine tend to be nonstationary. Hence,
wavelet packet decomposition is adopted to further construct the features. The normalized
power value of the mth segment in the lth layer is extracted as follows:

Ej
m = ∑

k

(
Cj

m

)2
/

∑
m

∣∣∣∣∣∑k

(
Cj

m

)2
∣∣∣∣∣
2
1/2

(24)

where Cmj is the wavelet packet coefficient of the mth segment in the lth layer.
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Table 10. Signal features in the frequency domain.

Features Expression

One-order moment estimate of power F1 = 1
N′ ∑

N′
pxx(n)

Two-order moment estimate of power F2 = 1
N′−1 ∑

N′
(pxx(n)− F1)

2

Three-order moment estimate of power F3 = 1
N′F3/2

2
∑
N′
(pxx(n)− F1)

3

Four-order moment estimate of power F4 = 1
N′F2

2
∑
N′
(pxx(n)− F1)

4

One-order moment estimate of frequency
weighted by power F5 = 1

Kl
∑
N′

f (n)pxx(n)

Two-order moment estimate of frequency
weighted by power F6 =

√
∑N′ [( f (n)−F5)

2 pxx(n)]
Kl

Three-order moment estimate of frequency
weighted by power F7 = 1

Kl F3
6

∑
N′

[( f (n)− F5)
3 pxx(n)]

Four-order moment estimate of frequency
weighted by power F8 = 1

Kl F4
6

∑
N′

[( f (n)− F5)
4 pxx(n)]

The features extracted from the original signal may contain some irrelevant and
redundant features. If feature selection is not conducted, then the calculation complexity
will increase and the computational accuracy will decrease, thereby reducing the running
efficiency. MFA is utilized to select appropriate features with higher susceptibility to reflect
the running status of the cutting tool system.

The cutting process is a complex, multi-variables, and nonlinear problem; hence, it is
challenging to use a traditional mathematical model to predict the tool wear value and tool
life. As a novel virtual method, machine learning offers a significant advantage in terms of
prediction. The KNN and SVM are utilized to classify and predict cutting tool wear. When
the model is trained, the PSO algorithm is applied to reduce the error between the actual
wear and predicted value until the error is within the predesigned threshold. If the tool
wear reaches the worn value, then the tool is replaced. Otherwise, the tool geometry is
updated for the next prediction using the DT.

5.2.3. Multi-View Synchronization Interface in Real Time

A terminal display and control system is provided to tool users to observe the tool
condition in real time such that timely decisions can be realized. The system integrates
the cutting process information interface, dynamic video screen monitoring interface,
virtual model interface, and tool condition plot. As shown in Figure 10, the multi-view
synchronization tool wear real-time monitoring interface is presented in a user-friendly
display. The real-time tool wear state data and cutting process data are shown at the
interface. After cutting tool failures, maintenance warnings will be provided, thereby
allowing operators or manufacturers to conduct the maintenance accordingly, e.g., tool
replacement and grinding.
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Figure 10. Multi-view synchronization interface.

6. Conclusions and Future Works

Herein, a framework for tool wear monitoring and prediction driven by DT is pro-
posed. The DT model is utilized to reflect the real-time working conditions. In terms of the
cutting mechanism, a virtual cutting tool model is built to simulate the cutting process. The
modifications and data fusion of the model are carried out to keep the symmetry between
physical and virtual systems. Tool wear classification and prediction are presented based
on the hybrid-driven method. Finally, a case study of the turning process is conducted to
prove the feasibility of the proposed method; the real-time wear condition of the cutting
tool can be displayed by the multi-view interface.

Owing to the complexity of the cutting process, the DT model of tool wear need to be
improved further, and a more elaborate DT model will be investigated. The runout of tool
nose and environmental temperature variation needs to be considered. In addition, the DT
model needs to cover the entire life cycle of the tool, including the product design phase,
manufacturing phase, and service phase. Because of the design parameters of the product,
the process of the manufacturing and the working conditions of the service phase will have
a direct impact on the tool life. It can not only help companies predict tool life, but also
help companies improve tool life by optimizing product life cycles. More DT models need
to be established, which helps companies accumulate a large amount of data to improve
the accuracy of tool life prediction algorithms.
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