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Abstract: Class imbalance, as a phenomenon of asymmetry, has an adverse effect on the performance
of most machine learning and overlap is another important factor that affects the classification
performance of machine learning algorithms. This paper deals with the two factors simultaneously,
addressing the class overlap under imbalanced distribution. In this paper, a theoretical analysis
is firstly conducted on the existing class overlap metrics. Then, an improved method and the
corresponding metrics to evaluate the class overlap under imbalance distributions are proposed
based on the theoretical analysis. A well-known collection of the imbalanced datasets is used to
compare the performance of different metrics and the performance is evaluated based on the Pearson
correlation coefficient and the ξ correlation coefficient. The experimental results demonstrate that
the proposed class overlap metrics outperform other compared metrics for the imbalanced datasets
and the Pearson correlation coefficient with the AUC metric of eight algorithms can be improved by
34.7488% in average.

Keywords: class overlap; class imbalance; theoretical analysis; machine learning

1. Introduction

Machine learning has been widely applied to solve problems in various fields. One
of the common and important challenges in solving these problems by machine learning
is the classification under imbalanced distribution [1]. The imbalance is encountered by
a large number of applications where the concerned samples are rare, such as disease
diagnosis, financial fraud detection, network intrusion detection, and so on [2]. The data
distributions in these fields are asymmetry that the number of concerned positive samples
are smaller than that of negative samples. Most standard classification algorithms are
designed based on the concept of symmetry, relatively balanced class distribution or
equal cost of misclassification [3]. The classification performances of these algorithms are
degraded for handling the imbalance problem to some extent. Hence, building symmetry in
machine learning for data under asymmetry distribution is an important research topic [4].
In [5], a novel class imbalance reduction algorithm is proposed to build a symmetry by
considering distribution properties of the dataset to improve the performance in software
defect prediction. In addition, there are also a lot of methods are proposed to handle the
imbalance problem, which can be referred in [2,6].

Besides the imbalance, class overlap is also an important factor that affects the perfor-
mance of classification [7]. In addition, the research of Liu et al. [8] demonstrated that the
sample is often misclassified if it is in a class overlapping boundary. Oh [9] proposed the R
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value based on the ratio of overlapping areas to the whole dataset and the experimental
results show that the R value is strongly correlated with the classification accuracy. In addi-
tion, Denil [10] has given a systematic analysis on the imbalance and overlap. The analysis
shows that the overlap problem has a greater influence on classification performance than
the imbalance in isolation and the classification performance is decreased significantly
when the overlap and imbalance are both exist. To deal with the classification of datasets
with class overlap and imbalance, some research works have also been conducted [7,11].

The classification methods for the datasets with class overlap and imbalance are
important, but so are the quantitative estimation methods of the class overlap level for
imbalanced datasets [9]. It can make contributions to understand the characteristic of the
datasets and then help to design suitable methods for better classification performance.
Klomsae et al. [12] adopts the R value to indicate the classification performance of the
dataset and propose a string grammar fuzzy-possibilistic C-medians algorithm to handle
the overlapping data problem. In addition, some methods based on the R value to conduct
feature selection [13,14], feature construction [15] and data sampling [16] are proposed for
achieving better classification performance. Later, Borsos et al. [17] analyzed the problem
of the R value for estimating the overlap level of imbalanced datasets and extended the R
value to the Raug value for imbalanced datasets. The experimental results demonstrate that
the Raug value has a stronger correlation with the classification performance, and it can
also achieve better performance in algorithm selection for better classification performance.
In addition, some feature selection research works are also conducted based on the Raug
value [18,19].

The Raug value has achieved great performance for addressing the class overlap
under imbalanced distribution. However, the experimental results in [17] show that the
absolute value of the Pearson correlation coefficients of the Raug with the classification
performances are lower than 0.7 and the correlation coefficients are varied to different
algorithms. Therefore, both correlation coefficients with the classification performances and
the generalization ability for different classification algorithms need to be improved. For
this purpose, a theoretical analysis on the existing class overlap metrics is firstly conducted
and then an improved method is proposed to measure the class overlap for imbalanced
datasets in this paper. Based on the proposed method, the R and Raug are extended to
ImR and ImRaug for better estimating the class overlap level for imbalanced datasets. The
comparison experiments conducted on a well-known collection of imbalanced datasets
and eight commonly used classification algorithms are adopted to obtain the classification
performance. In addition, the performances of different overlap metrics are evaluated based
on the Pearson correlation coefficient and the ξ correlation coefficient with the classification
performance. The experimental results demonstrate the excellent performances of the
proposed metrics, which indicates the superiority of the proposed method.

The contributions of this paper can be summarized as follows:

• A theoretical analysis on the existing class overlap measure R value is presented.
• A novel method along with two metrics for estimating the class overlap of the imbal-

anced datasets is proposed based on the theoretical analysis.
• The proposed two class overlap metrics are verified to be in higher correlations with

the classification performance of imbalanced datasets.

The rest of the paper is organized as follows. The existing overlap metrics, the R and
Raug values, are introduced in Section 2. Section 3 presents a theoretical analysis on the R
value. Then, an improved method and two corresponding overlap metrics for imbalanced
datasets are proposed based on the theoretical analysis. In addition, Section 4 describes
the information about the experiments, such as experiment setup, adopted datasets, and
performance evaluation. The experimental results and discussions are given in Section 5.
Finally, the conclusions are drawn in Section 6.
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2. The Existing Overlap Metrics

To estimate the level of class overlap, there are two metrics, the R value and the Raug
value. These two metrics are introduced in this section. Before introducing the two metrics,
some notations are presented as follows:

• N: the number of the samples
• n: the number of the classes
• Cl : the set of samples belonging to class l, l ∈ [1, n]
• U: the set of all samples, U = C1 ∪ ...∪ Ci ∪ ...∪ Cn

• xl
i : the ith sample in Cl

• k-NN(xl
i , U − Cl): the set of samples in k-nearest neighbor samples of xl

i that belong
to the class different from Cl

• λ(z): a 0-1 function that returns 1 when z > 0 and returns 0 otherwise
• θ: a threshold value within the range [0, k/2]

2.1. The R Value

The original R value is proposed by Oh [9] based on the assumption that a sample from
class Cl is overlapped with other samples if the number of the samples that is in its k nearest
neighbors and also belongs to a class rather than Cl is at least θ + 1. In addition, the R
values of class Cl and the whole dataset f are defined as Equations (1) and (2), respectively:

R(Cl) =
1
|Cl |

|Cl |

∑
i=1

λ(|k-NN(xl
i , U − Cl)| − θ) (1)

R( f ) =
1
|U|

n

∑
l=1

|Cl |

∑
i=1

λ(|k-NN(xl
i , U − Cl)| − θ) (2)

According to the definition, the R value can be considered as the ratio of samples
in the overlapping area. The range of the R value is [0, 1]. In addition, there are two
parameters, k, θ needed to be predefined to calculate the R value. According to [9], the R
value is strongly correlated with the accuracy of Support Vector Machine (SVM), Artificial
Neural Network (ANN), and K Nearest Neighbor (KNN) algorithms when k = 7 and θ = 3.
With this parameter setting, a sample is considered to be in the overlapping area if at least
four samples in its seven nearest neighbors belong to another class.

2.2. The Raug Value

In [9], the results also show that the R value is most strongly correlated with the
classification accuracy of the majority class. In addition, Borsos et al. [17] evaluated R value
on some imbalanced data sets with different imbalanced ratios and the experiment results
showed that R value is almost constant, while the classification performance decreases
with a larger imbalance ratio (IR). Therefore, they conducted an analysis of the R value in a
simple case with only two classes, the majority class and minority class. The majority class
and minority class are denoted as CN and CP, respectively. Then, the R value of the whole
dataset can be calculated as Equation (3):

R =
1

|CN |+|CP|
(∑

i=1
|CN |λ(|k-NN(xN

i , CP)| − θ) + ∑
i=1
|CP|λ(|k-NN(xP

i , CN)| − θ))

=
1

|CP|+|CN |
(|CN | · R(CN)+|CP| · R(CP)) (3)
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By introducing the imbalance ratio IR = |CN |/|CP| into Equation (3), the equation
can be simplified as Equation (4):

R =
1

IR + 1
(IR · R(CN) + R(CP)) (4)

As the weight of the R value of the majority class is IR, the R value of the whole dataset
will be dominated by R value of the majority class when the dataset has a large IR. Actually,
the sample in the majority class has a low probability to be recognized in the overlap area,
while the sample in the minority class has a high probability. Therefore, the weight of the R
value of the majority class should be smaller than that of the minority class. Based on this
analysis, the augmented R value defined as Equation (5) is proposed by Borsos et al. [17]:

Raug =
1

IR + 1
(R(CN) + IR · R(CP)) (5)

It can be seen that the Raug value is dominated by the R value of the minority class
for datasets with large IR, and it is equal to R value for balanced datasets with IR = 1.
The experimental results in [17] demonstrated that it could achieve a stronger correlation
with the classification performance evaluated by the metric of the area under the Receiver
Operating Characteristic (ROC) curve.

3. The Proposed Method and Corresponding Overlap Metrics

In this section, the theoretical analysis of the R value is firstly conducted. Then, an
improved method to recognize the overlap area for imbalanced datasets is proposed and
the corresponding overlap metrics are introduced.

3.1. Theoretical Analysis of the R Value

Consider a dataset with N samples X = {x1, ..., xi..., xN}, the number of samples in
the same class with each sample xi is denoted as ri. In the ideal non-overlapping data
distribution, all samples are distributed very well so that the ri nearest samples of the
sample xi along with the sample xi itself are all in the same class, while there may be some
samples in the ri nearest samples of the sample xi that are in a different class to the class of
xi in real data distribution.

Let’s keep it simple; only consider the ki nearest data samples (ki < ri) of the sample
xi in real data distribution. As shown in Figure 1, let Pi be denoted as the set of ri nearest
samples of the xi in the ideal data distribution, and Qi represents the set of ki nearest
samples of the xi in the real data distribution. For any sample except xi, it can be represented
by xTP, xFP, xFN , and xTN . The meanings of these four kinds samples are presented
as follows:

• xTP: the sample which is in both Pi and Qi
• xTN : the sample in neither Pi nor Qi
• xFN : the sample which is in Pi but not in Qi
• xFP: the sample that are not in Pi but in Qi

Denote the number of xTP samples as NTP
i , the number of xFN samples that as NFN

i ,
the number of xFP samples that as NFP

i and the number of xTN samples that are as NTN
i .

According to the definition of R value, the contribution of the sample xi to the R value is
determined by NTP

i and NFP
i as ki = NTP

i + NFP
i . Actually, the contribution of xi to the

R value can be determined based on the probability distribution. In the following, the
contribution is analyzed based on the distance between the real data distribution and the
ideal data distribution from the perspective of probability.
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Figure 1. The comparison analysis of the data distribution.

To measure the distance between distributions, the Kullback–Leibler (K-L) divergence
is commonly used. In addition, to conduct the calculation of K-L divergence, denote pj|i
and qj|i as the conditional probabilities of sample xj given xi for the ideal data distribution
and the real data distribution. In addition, the conditional probability of the samples in the
Pi and Qi can be defined to be an equal non-zero probability and the conditional probability
of the other samples can be defined to a near zero probability according to [20]. Then, the
detailed conditional probabilities of pj|i and qj|i are shown in Equations (6) and (7):

pj|i =

{
1−δ

ri
, i f xi ∈ Pi

δ
N−ri−1 , otherwise

(6)

qj|i =

{
1−δ

ki
, i f xi ∈ Qi

δ
N−ki−1 , otherwise

(7)

Based on the conditional probabilities, the distance, the K-L divergence D(qj|i, pj|i),
can be defined as Equation (8) shows. Due to the near zero value of δ, the distance can be
simplified to Equation (9). According to Equation (9), NTP

i and NFP
i dominate the distance,

which is consistent with the definition of the R value:

D(qj|i, pj|i) = ∑
j 6=i,xj∈Pi ,xj∈Qi

(qj|i log
qj|i
pj|i

) + ∑
j 6=i,xj∈Pi ,xj /∈Qi

(qj|i log
qj|i
pj|i

)

+ ∑
j 6=i,xj /∈Pi ,xj∈Qi

(qj|i log
qj|i
pj|i

) + ∑
j 6=i,xj /∈Pi ,xj /∈Qi

(qj|i log
qj|i
pj|i

) (8)

D(qj|i, pj|i) ≈ NTP
i {

1− δ

ki
log(

1− δ

ki

ri
1− δ

)}+NFP
i {

1−δ

ki
log(

1−δ

ki

N−ri−1
δ

)} (9)

Equation (9) can be further simplified to Equation (10) because of the near zero
value of δ. It can be seen that the distance actually is dominated by the ratio of NFP

i and
ki (ki = NFP

i + NTP
i ). Therefore, a reasonable threshold for judging whether xi has a

contribution to the R value is 0.5. If NFP
i /ki > 0.5, it indicates that xi is in the overlap

area. For ki = 7, if NFP
i /ki > 0.5, NFP

i should be at least 4. It is consistent with the
implementation of the R value in the experiments of [9]:

D(qj|i, pj|i) ≈
NTP

i
ki

(1− δ) log
ri
ki

+
NFP

i
ki

(1−δ)(log
1−δ

δ
+log

N−ri−1
ki

)

≈
NFP

i
ki

(1− δ) log
1− δ

δ
(10)
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In addition, the sample xi is correctly classified to a class if NTP
i > NFP

i in the k
nearest neighbor for the KNN algorithm, which is contrary to the definition of the R value.
Therefore, the R value can be strongly and negatively correlated with the accuracy of the
KNN algorithm.

3.2. The Proposed Method

From the above theoretical analysis, it can be seen that the class overlap is actually
not only determined by NFP

i but also NTP
i , while the contribution of NTP

i is ignored for the
R value. As Equation (10) shows, it can be omitted as the coefficient log ri

ki
is constant for

balanced data sets with the same ki for all samples. However, when the same ki is adopted,
the coefficient is varied from different classes due to the different ri for imbalanced data sets.
To make the coefficients of NTP

i equal for different classes in an imbalanced dataset, the
condition shown in Equation (11) should be satisfied. Then, Equation (12) can be obtained.
Besides, the same result will be obtained if the deduction is conducted based on Hellinger
distance, which can be found in Appendix A. It indicates that the adopted value of k should
be in proportion to the number of samples in the class and the smaller value of kmin should
be adopted for the minority class:

log
rN
kN

= log
rP
kP

(11)

kN
kP

=
rN
rP

= IR (12)

According to Equation (12), if k is used for the majority class, dk/IRe should be used
for the minority class as it must be a positive integer. Based on this analysis, an improved
method to calculate the overlap of different classes is proposed as Equation (13) shows,
where CN is the number of samples in the majority class. In this way, the samples in the
minority class will not be considered in an overlap area easily:

R(Cl) =
1
|Cl |

|Cl |

∑
i=1

λ(|d k · |Cl |
|CN |

e-NN(xl
i , U−Cl)|−θ)) (13)

An intuitive demonstration of how the proposed method works is presented in
Figure 2. For the sample xN

i in the majority class, both k = 3 and k = 5 are suitable
to decide whether xN

i is in the class overlap region or not, while the sample xP
i in the minor-

ity class will be recognized to be in the overlap region when k = 5. When k = 3 = d5/2e,
the xP

i can be correctly recognized to be in the non-overlap region.

Figure 2. An intuitive demonstration of how the proposed method works.
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3.3. The Proposed Metrics

According to the proposed method, two improved overlap metrics based on the R
and Raug for binary imbalance datasets can be introduced. The two metrics, denoted as
ImR and ImRaug, are defined as Equations (14) and (15):

ImR =
1

IR + 1
(IR · R(CN) + R(CP))

=
1

|CN |+ |CP|
(
|CN |

∑
i=1

λ(|k-NN(xN
i , CP)| − θ) +

|CP |

∑
i=1

λ(|d k
IR
e-NN(xP

i , CN)| − θ)) (14)

ImRaug =
1

IR + 1
(R(CN) + IR · R(CP))

=
1

|CN |+|CP|
(

1
IR

|CN |

∑
i=1

λ(|k-NN(xN
i , CP)|−θ) + IR

|CP |

∑
i=1

λ(|d k
IR
e-NN(xP

i , CN)|−θ)) (15)

According to the definition of the two metrics, they can both be equal to the original
R value when the dataset is balanced (IR = 1). In addition, the experimental results
in [9,17] demonstrate that the R and Raug are strongly correlated with the accuracy and
the area under the ROC curve (AUC) respectively. Therefore, it is expected that ImR is
more strongly correlated with the accuracy of the imbalanced datasets and ImRaug is more
strongly correlated with the AUC of the imbalanced datasets.

4. Experiment Design

In this section, the experiment setup is firstly introduced. Then, the datasets adopted
in the experiments are presented. Finally, the evaluation metric for the comparison of
different class overlap metrics is described.

4.1. Experiment Setup

The experiments are conducted to prove the effectiveness of the proposed method and
the two metrics for addressing the class overlap of the imbalanced datasets. To evaluate
the effectiveness, not only the correlation of different overlap metrics with the classification
performance but also the time consuming of the overlap metrics and the classification
modeling are compared. The Pearson correlation coefficient and the ξ correlation coefficient
are adopted to obtain the correlation result. The Pearson correlation coefficient can only
handle the linear correlations, while the ξ correlation coefficient can deal with both the
linear and nonlinear correlations.

According to the investigation of Guo et al. in [2], the AUC and accuracy are the most
frequently used metrics for evaluating the classification performance. The AUC is obtained
based on the ROC curve which consists of a series points of (false positive rate, true positive
rate) [21]. In addition, the points are generated by varying different thresholds for the
prediction probability of the classifier. As the AUC is robust to the imbalanced datasets [22],
it is recognized as an objective metric and widely utilized to evaluate the classification
performance for imbalanced problems. The accuracy is defined as the rate of the number
of correctly predicted samples to the number of samples in the whole dataset. Although
the accuracy has been proved to be biased to the majority class, it is still frequently used
in the research on imbalance learning as it is the most general and intuitive metric [2]. In
addition, the proposed metrics ImR and ImRaug are expected to be strongly correlated
with the accuracy and AUC respectively based on the analysis in Section 3. Therefore,
the two metrics are both adopted to evaluate the classification performance for the better
evaluation of the proposed overlap metrics.

Moreover, for the comparison of the generalization ability, eight commonly used al-
gorithms are adopted to obtain the classification performance and the performances are
obtained based on the 5-fold cross validation. The eight classification algorithms are k-nearest
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neighbor (KNN), Naive Bayesian (NB), Support Vector Machine with linear kernel (SVM-L),
Support Vector Machine with radial basis kernel (SVM-R), Decision Tree (DT), Multiple Layer
Perceptron (MLP), Random Forest (RF), and Adaptive Boosting (AdaB). All methods in the
experiments are implemented in python based on some packages like scikit-learn [23] and so
on. The parameters of the eight classification algorithms are set to default in the experiment.
In addition, the same parameter setting, k = 7, θ = k/2, is adopted for all overlap metrics.

4.2. Datasets

In the experiments, a relatively well-known collection of 66 datasets for imbalanced
classification is utilized. This collection can be obtained from the KEEL repository and has
been adopted in [17,24]. The descriptions of these datasets are shown in Table 1, where
#Inst. and #Attrs indicate the number of samples and attributes, respectively, and IR means
the imbalance ratio. The imbalance ratios of the datasets are in a very wide range. The
minimum imbalance ratio is 1.82, while the maximum imbalance ratio is 128.87.

Table 1. The information about the imbalanced datasets.

Dataset #Inst. #Attrs IR Dataset #Inst. #Attrs IR

Glass1 214 9 1.82 Glass04vs5 92 9 9.22
Ecoli0vs1 220 7 1.86 Ecoli0346vs5 205 7 9.25
Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28
Pima 768 8 1.9 Yeast05679vs4 528 8 9.35
Iris0 150 4 2 Ecoli067vs5 220 6 10
Glass0 214 9 2.06 Vowel0 988 13 10.1
Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29
Vehicle1 846 18 2.52 Glass2 214 9 10.39
Vehicle2 846 18 2.52 Ecoli0147vs2356 336 7 10.59
Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97
Haberman 306 3 2.68 Glass06vs5 108 9 11
Glass0123vs456 214 9 3.19 Ecoli01vs5 240 6 11
Vehicle0 846 18 3.23 Glass0146vs2 205 9 11.06
Ecoli1 336 7 3.36 Ecoli0147vs56 332 6 12.28
New-thyroid2 215 5 4.92 Cleveland0vs4 177 13 12.62
New-thyroid1 215 5 5.14 Ecoli0146vs5 280 6 13
Ecoli2 336 7 5.46 Ecoli4 336 7 13.84
Segment0 2308 19 6.01 Yeast1vs7 459 8 13.87
Glass6 214 9 6.38 Shuttle0vs4 1829 9 13.87
Yeast3 1484 8 8.11 Glass4 214 9 15.47
Ecoli3 336 7 8.19 Page-blocks13vs2 472 10 15.85
Page-blocks0 5472 10 8.77 Abalone9vs18 731 8 16.68
Ecoli034vs5 200 7 9 Glass016vs5 184 9 19.44
Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.5
Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.1
Ecoli0234vs5 202 7 9.1 Glass5 214 9 22.81
Glass015vs2 172 9 9.12 Yeast2vs8 482 8 23.1
Yeast0359vs78 506 8 9.12 Yeast4 1484 8 28.41
Yeast02579vs368 1004 8 9.14 Yeast1289vs7 947 8 30.56
Yeast0256vs3789 1004 8 9.14 Yeast5 1484 8 32.78
Ecoli046vs5 203 6 9.15 Ecoli0137vs26 281 7 39.15
Ecoli01vs235 244 7 9.17 Yeast6 1484 8 39.15
Ecoli0267vs35 224 7 9.18 Abalone19 4174 8 128.87

4.3. Evaluation of Correlation

Pearson correlation coefficient [25] is defined to measure the strength of the relation-
ship between two variables in statistics. The equation of Pearson correlation coefficient is
shown in Equation (16), where X and Y are two variables, X̄ and Ȳ are the mean value of
the two variables, cov(., .) is the covariance, and σ is the standard deviation:

ρX,Y =
cov(X, Y)

σXσY
=

∑n
i=1(Xi−X̄)(Yi−Ȳ)√

∑n
i=1(Xi−X̄)2

√
∑n

i=1(Yi−Ȳ)2
(16)
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The Pearson correlation coefficient is widely utilized to calculate the linear correlation
of two variables. It has been used to compare the performance of R and Raug in [17], and it
is also used in the experiments of this paper. In addition, the range of Pearson correlation
coefficient ρ is [−1, 1]. The bigger of the absolute value of ρ, the stronger correlation of the
two variables. ρ = 1 indicates that there is a perfect positive correlation between the two
variables, while ρ = −1 means a perfect negative correlation. In addition, when ρ = 0, it
indicates that the two variables are dependent and there is no correlation can be found
between them.

To further verify the linear correlation of the proposed metrics and the classification
performance, the probabilities of the Pearson correlation results are also compared. The
probability can be indicated by p-value, where the smaller p-value indicates the stronger
support for the result of Pearson correlation coefficient. Generally, a p-value smaller than
0.05 means that the result of linear correlation is solid. In addition, the result is significantly
solid when the p-value is smaller than 0.01.

Besides the Pearson correlation coefficient, the ξ correlation coefficient is also used
to the evaluate the relationships of different overlap metrics with the classification perfor-
mance. ξ correlation coefficient, which was proposed in [26], can not only measure the
linear correlation but also the nonlinear correlation. To calculate the ξ correlation coefficient
of a pair of variables (X, Y), the data should be rearranged as (X1, Y1), ..., (Xn, Yn) such that
X1 ≤··· ≤ Xn. Let hi be the number of j such that Yj ≤ Yi and li are the number of j such
that Yj ≥ Yi, and the ξ correlation coefficient is defined as Equation (17) shown. It is in
range of [0, 1], where ξ(X, Y) = 0 indicates that X and Y are independent and ξ(X, Y) = 1
indicates that Y is a measurable function of X:

ξ(X, Y) = 1−
n ∑n−1

i=1 |hi+1 − hi|
2 ∑n

i=1 li(n− li)
(17)

5. Results and Discussion

To verify the efficiency of the proposed method to measure class overlap, both the
correlation results of different metrics with the AUC and the accuracy are compared. As
the AUC metric is more objective than the accuracy for imbalance learning, the comparison
of the correlations of different overlap metrics and the AUC of different algorithms is firstly
conducted. In addition, then the correlation results of different metrics with the accuracy
are compared. Finally, the overall results are summarized.

5.1. The Correlation Results for the AUC Metric

Figure 3 shows the correlation results of different overlap metrics with the AUCs of
classification algorithms. The results demonstrate that the ImRaug metric achieved the
best performance among these metrics for all classification algorithms. In addition, the
ImR metric also obtained better performance than the original R metric based on the AUC
metric of classification algorithms. In addition, both the original R and Raug value have
low correlation coefficients with the AUC of the NB algorithm. It can be seen that the
generalization ability of the existing overlap metrics is not good. While, the correlation
coefficients of the R and Raug with the NB algorithm are both largely improved by the
proposed method. The ImR and ImRaug seem to have better generalization abilities for
these algorithms than the R and Raug, respectively.
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Figure 3. The Pearson correlation comparison between different overlap metrics and the AUCs of
different algorithms on all data sets.

As expected, the Raug and ImRaug achieve much stronger correlations with the AUC
of different algorithms. It is consistent with the result in [17]. In the following, the detailed
correlation results of the Raug and ImRaug with different classification algorithms are
compared. The detailed correlation coefficients along with the p-values of Raug and ImRaug
with the AUC of different algorithms are presented in Table 2. It can be seen that the
correlation coefficients of the Raug with the AUC of the DT, MLP, RF, and AdaB algorithms
are all lower than 0.7, while the correlation coefficients with the AUC of these algorithms
are all improved to more than 0.8 by ImRaug. On average, the ImRaug achieves a 34.7488%
improvement to the Raug. An illustration of the correlation coefficient improvements of
ImRaug over Raug is shown in Figure 4. The correlation coefficient between Raug and the
AUC of the NB algorithm is largely improved by the proposed ImRaug.

Table 2. The detailed Pearson correlation coefficient results of Raug and ImRaug with the AUCs of
different algorithms on all data sets.

Algorithm Raug ImRaug Improvement

KNN −0.7425
(9.62× 10−13)

−0.8525
(1.09 × 10−19) 14.8108%

NB −0.2900
(1.82× 10−02)

−0.6125
(4.60 × 10−08) 111.2128%

SVM-L −0.6985
(7.03× 10−11)

−0.7718
(3.30 × 10−14) 10.5068%

SVM-R −0.8176
(5.48× 10−17)

−0.8783
(3.51 × 10−22) 7.4199%

DT −0.6253
(2.00× 10−08)

−0.8598
(2.38 × 10−20) 37.5162%

MLP −0.6695
(7.94× 10−10)

−0.8477
(2.81 × 10−19) 26.6104%

RF −0.6986
(6.92× 10−11)

−0.8936
(5.99 × 10−24) 27.9070%

AdaB −0.6163
(3.62× 10−08)

−0.8752
(7.49 × 10−22) 42.0063%

Mean −0.6448 (-) −0.8239 (-) 34.7488%
SD 0.1571 (-) 0.0930 (-) -

The bold values means better results and the values in the brackets are the p-value.

In addition, all the p-values of ImRaug are far less than 0.01, which indicates that
ImRaug does have linear correlations with the AUC of these algorithms. In addition, the
p-values of ImRaug are also much less than that of Raug. Therefore, the ImRaug has a
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much better performance than the Raug for estimating the level of class overlap under
imbalanced distribution. Moreover, ImRaug can not only achieve the better mean value of
correlations with the AUCs of all classification algorithms, but also achieve the smaller
standard deviation. It demonstrates that ImRaug also has a better generalization ability to
these algorithms.

Figure 4. Correlation coefficient improvements of the ImRaug over the Raug with the AUCs of
different algorithms on all datasets.

Figure 5 demonstrates the ξ correlation coefficients of the AUCs of different algorithms
with the Raug and ImRaug. It can be seen that the result of the ξ correlation coefficient is
similar to the result of the Pearson correlation coefficient. The xi correlation coefficient of
the AUC of the RF algorithm with the ImRaug is the highest and the correlation coefficient
of the NB algorithm with Raug is largely improved by ImRaug. In addition, the ξ correlation
coefficients of the AUCs of different algorithms with the ImRaug are all higher than that
with the Raug. Therefore, the comparison of ξ correlation coefficient also demonstrates the
superior of ImRaug.

Figure 5. ξ Correlation coefficients of the AUCs of different algorithms with the Raug and ImRaug.
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5.2. The Correlation Results for the Accuracy Metric

Figure 6 shows the correlation results of R and ImR with the accuracy of several
classification algorithms. It can be seen that the ImR achieves better performance than the
original R for more classification algorithms. In addition, the ImRaug measure also obtained
better performance than the Raug measure based on the accuracy of classification algorithms.

Figure 6. The correlation comparison of different overlap metrics and classification accuracies of
different algorithms on all datasets.

The detailed correlation coefficients and p-values of the R and ImR with the accuracy
of different algorithms are shown in Table 3. As expected, the ImR is strongly correlated
with the accuracy of the KNN algorithm. The Pearson correlation coefficient of the ImR
with the accuracy of the KNN algorithm is more than 0.9. In addition, the ImR also
achieves high correlation coefficients with the accuracy of the SVM-R, DT, MLP, RF, and
AdaB algorithms. Although the correlation coefficients of the R and ImR with the accuracy
of the NB algorithm are very low, the correlation coefficient is greatly improved by the
ImR. On average, the ImR achieves a 8.0898% improvement of the Pearson correlation
coefficient to the R. Therefore, the ImR has a better performance than the R for estimating
the level of class overlap under imbalanced distribution.

Table 3. The detailed Pearson correlation coefficient results of R and ImR with the accuracies of
different algorithms on all data sets.

Algorithm R ImR Improvement

KNN −0.9085
(6.11× 10−26)

−0.9125
(1.53 × 10−26) 0.4441%

NB −0.1091
(3.83× 10−01)

−0.1742
(1.62 × 10−01) 59.6436%

SVM-L −0.7787
(1.40 × 10−14)

−0.7674
(5.67× 10−14) −1.4452%

SVM-R −0.9145
(7.76× 10−27)

−0.9192
(1.33 × 10−27) 0.5234%

DT −0.8376
(1.86× 10−18)

−0.8498
(1.84 × 10−19) 1.4656%

MLP −0.8229
(2.31 × 10−17)

−0.8160
(7.05× 10−17) −0.8434

RF −0.8672
(4.77× 10−21)

−0.9014
(6.04 × 10−25) 3.9400%

AdaB −0.8451
(4.56× 10−19)

−0.8535
(8.83 × 10−20) 0.9902%

Mean −0.7393 (-) −0.7545 (-) 8.0898%
SD 0.2809 (-) 0.2609 (-) -

The bold values means better results and the values in the brackets are the p-value.
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In addition, all the p-values of ImR except for the NB algorithm are far less than 0.01,
which indicates that ImR does have linear correlations with the ACC of most algorithms.
In addition, the p-values of ImR except for SVM-L and MLP algorithms are much less than
that of R. Therefore, the ImR has a much better performance than the R for estimating the
level of class overlap under imbalanced distribution. Moreover, ImR can not only achieve
the better mean value of correlation coefficients with the accuracy of all classification
algorithms, but also achieve the smaller standard deviation. It demonstrates that ImR also
has a better generalization ability to these algorithms.

Figure 7 presents the ξ correlation coefficients of the accuracies of different algorithms
with the Raug and ImRaug. It can be seen that the result of the ξ correlation coefficient is
also similar to the result of the Pearson correlation coefficient. The xi correlation coefficient
of the accuracy of the NB algorithm with the R is much smaller than that of the accuracies
of other algorithms with the R, and the coefficient is largely improved by the ImR. The
xi correlation coefficient of the accuracy of the SVM-R algorithm with the ImR is also the
highest. Meanwhile, the ξ correlation coefficients of the accuracies of different algorithms
with the ImR are all higher than that with the R. Therefore, the comparison of ξ correlation
coefficient also shows that the ImR has a better performance than that of the R.

Figure 7. ξ correlation coefficients of the accuracies of different algorithms with the R and ImR.

5.3. The Comparison of Time Consumption

The average time-consuming comparison of different overlap metrics and 5-fold cross
validation of different classification algorithms is shown in Figure 8. It can be seen that the
MLP algorithm has the most time-consuming performance due to the backpropagation.
In addition, the RF and AdaB algorithms are also very time consuming because of the
ensemble learning. In addition, these overlap metrics have a similar time consuming
performance and the consuming time of the KNN algorithm is approximately four times
that of the overlap metric. The main reason is that the k-nearest neighbors searching is
the most time-consuming process for these overlap metrics and the KNN algorithm. The
searching process will be conducted in the range of n samples for a dataset, and it will
be conducted five times in the range of 4n

5 samples for the 5-fold cross validation of the
KNN algorithm. Therefore, the result is consistent to the analysis and the proposed overlap
metrics are also superior in terms of time consumption.

To sum up, the metrics ImR and ImRaug, which are proposed based on the proposed
method, can achieve better performance than the original R and Raug respectively for
estimating the level of class overlap of imbalanced datasets. Therefore, the conclusion
that the proposed method and metrics are superior to address the class overlap under
imbalanced distribution can be drawn.
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Figure 8. The average time-consuming comparison of different overlap metrics and 5-fold cross
validation of different algorithms.

6. Conclusions

In this paper, a theoretical analysis is conducted on the existing class overlap metrics
and an improved method to address the class overlap under imbalanced distribution is
proposed based on the theoretical analysis. Then, the corresponding metrics for estimating
the class overlap of imbalanced datasets are also introduced. A well-known collection of
the imbalanced datasets is used to compare the Pearson correlation coefficients and the
ξ correlation coefficients of different overlap metrics with the classification performance.
In addition, the experimental results demonstrate that the proposed data overlap metrics
outperform other compared metrics for the imbalanced datasets. The Pearson correlation
coefficients with the AUC metric and the accuracy metric can be improved by 34.7488%
and 8.0898% on average, respectively. Therefore, the proposed method and metrics can
much better estimate the class overlap under imbalanced distribution.

In the future, the proposed metrics can be applied to feature selection and feature
construction. In addition, they can also be used as meta-features in meta-learning for
algorithm selection and parameters optimization.
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Appendix A

If the distance between the real data distribution and the ideal data distribution is
replaced by Hellinger distance, the distance can be shown in Equation (A1). In addition, it
can be simplified to Equation (A2) as δ is a near zero value:

H(qj|i, pj|i) =
1√
2
(
√

qj|i −
√

pj|i)
2

= ∑
j 6=i,xj∈Pi ,xj∈Qi

1√
2
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2 + ∑
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2
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2
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(A2)

To make the distance fair to different classes in an imbalanced dataset, the coefficients
of NTP

i for different classes are equal as shown in Equation (A3). Then, it can be seen that
the result is consistent to the result obtained by K-L divergence:

kN
rN

=
kP
rP

(A3)
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