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Abstract: As bistable composite laminated plate and shell structures are often exposed to dynamic
environments in practical applications, the global and local dynamics of a bistable asymmetric
composite laminated shell subjected to the base excitation is presented in this paper. Temperature
difference, base excitation amplitude, and detuning parameters are discussed. With the change of
temperature difference, the super-critical pitchfork bifurcation occurs. Three equilibrium solutions
corresponding to three equilibrium configurations (two stable configurations and one unstable
configuration) can be obtained. With the increase of excitation amplitude, local and global dynamics
play a leading role successively. The global dynamics between the two stable configurations behave as
the periodic vibration, the quasi-periodic vibration, the chaotic vibration and dynamic snap-through
when the excitation amplitude is large enough. The local dynamics that are confined to a single
stable configuration behave as 1:2 internal resonance, saturation and permeation when the excitation
amplitude is small. Dynamic snap-through and large-amplitude vibrations with two potential wells
for the global dynamics will lead to a broad application prospect of the bistable asymmetric composite
laminated shell in energy harvesting devices.

Keywords: three equilibrium configurations; snap-through; global dynamics; local dynamics

1. Introduction

Bistable composite laminates possess many distinctive features regarding their two
stable equilibrium configurations, which have been proposed to generate new deformable
and deployable structures in a series of engineering fields. When asymmetric composite
laminates are cooled from higher manufacturing temperature to service temperature or
room temperature, the residual thermal stress is produced. Due to the residual thermal
stress and geometric nonlinearity, the bistable composite laminates have three equilibrium
configurations, which are two stable equilibrium configurations and one unstable equilib-
rium configuration. One stable configuration is cylindrical with a dominant x-curvature
and imperceptible y-curvature. Similarly, the other stable configuration is cylindrical with
a dominant y-curvature and imperceptible x-curvature. What needs to be pointed out
is that no energy is required to hold the two stable equilibrium configurations, and the
two stable configurations can be converted to each other through snap-through, which is
strongly nonlinear in nature when enough energy is applied.

In recent years, a flood of literature has been concerned with the statics of bistable
plate and shell structures. Due to the residual thermal stress, the asymmetric composite
laminates possess bistable characteristics [1–5]. Sorokin and Terentiev [6] found that the
transformation between the two stable configurations is realized through snap-through.
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Dano and Hyer [7] used an approximate displacement field to calculate forces and mo-
ments for static snap-through. Cantera et al. [8] modeled bistable responses including the
processes of snap-through based on the Rayleigh–Ritz method. Portela et al. [9] studied
the bistable composite laminates, which were actuated by piezoelectric patches. Dano and
Hyer [10] calculated the loads for snap-through and developed a driving scheme based
on shape memory alloys (SMAs) by extending the previous model of asymmetric bistable
composite laminates. Dano and Hyer [11] measured the force that was provided by a wire
of SMA for static snap-through by way of experiment. Pirrera et al. [12] presented analyti-
cal models by path-following techniques and provided an optimal design for morphing
structures with multi-stable states. Moore et al. [13] investigated the thermal response and
stability of the asymmetric laminated plate and shell structures for static snap-through
through a varying temperature field. Brampton et al. [14] found that the bistable lami-
nates were easily affected by the uncertainties of material properties, which were highly
dependent on moisture, temperature, ply thickness and curing temperature. Potter and
Weaver [15] developed techniques to generate a wide range of required stable structures
through designing thermal stresses. Diaconu et al. [16] proposed the concept of morphing
applications based on the multiple configurations and the snap-through, which was also
proposed by Mattioni et al. [17]. Hyer [18] found that the thin cross-ply laminates have two
stable cylindrical shapes that are perpendicular to each other. Pirrera et al. [19] proposed
displacement fields of bistable composites that can be expressed by refined higher-order
polynomial functions. SMA and piezoelectric macro fiber composite materials (MFC) are
currently commercially available for static snap-through [20–22]. Schultz et al. [23] applied
a series of quasi-static voltages through MFC for static snap-through.

In summary, the static characteristics exhibiting two stable configurations and the
static snap-through of these bistable composites have been presented fully. However,
as morphing components for adaptive aerospace structures, morphing applications are
operated in aeroelastic environments. These bistable composite laminates will inevitably
be exposed to high-level dynamic perturbations. Under dynamic perturbations, snap-
through between the two stable configurations is very likely to be induced. The local
dynamics through theoretical modeling of bistable composite laminated plate and shell
structures have been investigated by Arrieta et al. [24,25]. Arrieta et al. [26] introduced
a resonant control strategy for cantilevered wing-shaped piezoelectric bistable plates under
aerodynamic loads. Bilgen et al. [27] tested bistable wing-shaped composite laminated
plate and shell structures and studied the aerodynamic characteristics. A small amount
of literature have dealt with dynamic snap-through through theoretical modeling [28–30].
Zhang et al. [31] researched dynamic snap-through based on the nonlinear plate and shell
theory. Jiang et al. [32] researched the vibration energy harvesting for an unsymmetric
cross-ply square composite laminated plate with a piezoelectric patch on the surface.

The bistable composite laminated plate and shell structures can be regarded as mor-
phing structures due to having more than one natural equilibrium position that can be
settled without demanding an external power [33]. The bistable composite laminated plate
and shell structures prove to be a good candidate for broadband-frequency energy har-
vesters owing to the dynamic snap-through that exhibits large strains and in turn generates
more power compared with the oscillation around a single well [34]. The snap-through
of bistable composite laminated plate and shell structures using smart materials such as
piezoelectric transducer (PZT) and microfiber composite (MFC) was studied [35]. A nonlin-
ear anti-vibration mount was designed based on the high static and low dynamic stiffness
(HSLDS) concept [36].

As mentioned above, the studies on dynamic snap-through of bistable composites
have been basically focused on experiments. Theoretical studies on the global dynamics
including dynamic snap-through have not been carried out in depth yet. So far, theoretical
studies on the local dynamics including 1:2 internal resonance, saturation and permeation
have not been involved.
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In this paper, the global and local dynamics of a bistable asymmetric composite
laminated shell subjected to the base excitation are investigated. The shell is supported
at the center and are free at the four edges. When subjected to large dynamic excitation,
the center is assumed to be fixed supported [37]. When subjected to small dynamic
excitation, the center is assumed to be elastically supported [38]. The three equilibrium
configurations corresponding to two stable configurations and one unstable configuration
are determined. The global dynamics including the vibration around the two stable
equilibrium configurations respectively and the snap-through between the two stable
equilibrium configurations, as well as the local dynamics including 1:2 internal resonance,
saturation and permeation are investigated.

The novelty of this work is that the global and local dynamics fully exhibit dynamic
snap-through and large-amplitude vibrations with two potential wells of the bistable
asymmetric composite laminated shell, which prove to be a good candidate for energy
harvesters. Due to the dynamic snap-through and large-amplitude vibrations, bistable
energy harvesters will exhibit large strains and in turn generate more power compared
with conventional energy harvesters.

2. Equation of Motion for Global Dynamics

In this paper, a bistable composite laminated shell with asymmetric stacking sequence
[0N–90N]T subjected to the base excitation is considered, as shown in Figure 1. If the
number of layers is too large, the bistable characteristic will disappear. The bistable shell
with (0/0/0/90/90/90) is a suitable choice, while (0/90) is too thin to bear large loads.
In the experimental environment, the exciter acts the base excitation on the center of the
shell through a support bar.

The shell is assumed to be supported at the center and kept free at four edges, as
shown in Figure 1a. The rectangular coordinate system oxyz is built in the center of the
shell. The edge lengths in the x and y directions are 2Lx and 2Ly, respectively.
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Figure 1. The bistable asymmetric composite laminated shell model. (a) The bistable asymmetric
composite laminated shell. (b) The thickness of the bistable asymmetric composite laminated shell.

The base excitation Y is applied to the supporting bar, through which the vibration
exciter and shell are connected. The total thickness of the shell is 2H, the thickness of the
single layer is h, n = 2N is the quantity of layers and asymmetric stacking sequence is
[0N–90N]T, as shown in Figure 1b. The bistability is led by asymmetric residual thermal
stress that can be expressed by the thermal expansion coefficient α and temperature
difference ∆T between the manufacturing temperature and room temperature.

In global dynamics, when the dynamic excitation has large enough amplitudes,
the snap-through with large amplitudes will occurs. The extra stiffness caused by the
exciter can be ignored.

Global or local dynamics depend on whether the dynamic excitation induces the
bistable shell to vibrate between two stable configurations or around a stable configuration.
Both global and local dynamics have complex nonlinear vibrations, which are very likely
to destroy the bistable shell.

When subjected to the base excitation with large amplitudes, the bistable shell vibrates
between the two stable configurations, which is dominated by vibrations around the two
stable equilibrium configurations respectively and dynamic snap-through between the two
stable equilibrium configurations. In this section, all nonlinear vibrations and dynamic
snap-through with two potential wells are defined as global dynamics.

In order to establish the bistable shell model, the following assumptions are introduced

(1) The bistable plate model takes the zero plane before curing as the datum plane, while
the bistable shell model takes the static surface that represents a stable equilibrium
configuration after curing as the datum plane.

(2) The bistable plate and shell models are converted to each other by the static displace-
ment generated after curing.

(3) The middle plane is assumed to be a neutral surface.

For global dynamics, the displacement field is expressed as:

u(x, y, z, t) = us(x, y) + u0(x, y, t)− z
∂(ws(x, y) + w0(x, y, t))

∂x
, (1)

v(x, y, z, t) = vs(x, y) + v0(x, y, t)− z
∂(ws(x, y) + w0(x, y, t))

∂y
, (2)

w(x, y, t) = ws(x, y) + w0(x, y, t) + Y, (3)

where us, vs and ws are the initial displacements and u0, v0 and w0 are the displacements of
any point in the neutral plane along the x, y and z directions.
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What needs to be emphasized here is that according to the precise description for the
neutral surface in Reference [39], the neutral surface of the bistable asymmetric composite
laminated shell is a surface with little warping, which can be thought of as a saddle.
However, the precise neutral surface cannot be accurately determined but can only be
assumed to be a plane according to Reference [37] at present.

Considering von Kármán’s large deformation, we obtain the following strain–
displacement relations:


εx
εy

γxy

 =


ε
(0)
x

ε
(0)
y

γ
(0)
xy

+ z


kx
ky
kxy

, (4)


ε
(0)
xx

ε
(0)
yy
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(0)
xy

 =
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∂x + 1
2

(
∂(w0+ws)

∂x

)2

∂(v0+vs)
∂y + 1

2

(
∂(w0+ws)

∂y

)2

∂(u0+us)
∂y + ∂(v0+vs)

∂x + ∂(w0+ws)
∂x

∂(w0+ws)
∂y

, (5)


ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

 =


− ∂2(w0+ws)

∂x2

− ∂2(w0+ws)
∂y2

−2 ∂2(w0+ws)
∂x∂y

. (6)

The stress–strain relationship of each of the first four layers taking the thermal effect
which leads to the residual stress into account is given as follows

σx
σy
σxy

 =

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66




εx
εy
εxy

−

αxx
αyy
αxy

∆T

. (7)

Similarly, the stress–strain relationship of each of the back four layers given as follows
σx
σy
σxy

 =

 Q22 Q12 −Q26
Q12 Q22 −Q16
−Q26 −Q16 Q66




εx
εy
εxy

−

αyy
αxx
αxy

∆T

, (8)

where αxx, αyy and αxy are thermal expansion coefficients and ∆T is temperature difference
between manufacturing temperature and room temperature.

The relationship between the stiffness coefficients Qij and E11, E22, G12, G13 and G23
can be expressed as

Q11 =
E11

1− v12v21
, Q22 =

E22

1− v12v21
, Q12 =

E22v12

1− v12v21
, Q16 = Q26 = 0, Q66 = G12. (9)

The stress resultants are represented as follows
Nxx
Nyy
Nxy

 =

 A11 A12 A16
A12 A22 A26
A16 A26 A66


 ε

(0)
x

ε
(0)
y

γ
(0)
xy

+

 B11 B12 B16
B12 B22 B26
B16 B26 B66

 kx
ky
kxy

−


NT
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NT
yy

NT
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, (10)


Mxx
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Mxy

 =
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B12 B22 B26
B16 B26 B66


 ε

(0)
x

ε
(0)
y

γ
(0)
xy
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 D11 D12 D16
D12 D22 D26
D16 D26 D66

 kx
ky
kxy

−


MT
xx
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yy

MT
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, (11)
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where Aij are defined as extensional stiffnesses, Dij are defined as the bending stiffnesses
and Bij are defined as the bending-extensional coupling stiffnesses, which are defined in
terms of the lamina stiffnesses Qij as(

Aij, Bij, Dij
)
=
∫ H

0 Qij
(
1, z, z2)dz +

∫ 0
−H Qij

(
1, z, z2)dz

=
4
∑

k=1

∫ zk+1
zk

Qij
(
1, z, z2)dz +

8
∑

k=5

∫ zk+1
zk

Qij
(
1, z, z2)dz.

(12)

The equivalent thermal force and moment resultants related to thermal stress are
expressed by

NT
xx

NT
yy

NT
xy

 =
∫ H

0

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

 αxx
αyy

2αxy

∆Tdz +
∫ 0

−H

 Q22 Q12 −Q26
Q12 Q11 −Q16
Q26 Q26 Q66

 αyy
αxx
2αxy

∆Tdz, (13)


MT

xx
MT

yy
MT

xy

 =
∫ H

0

 Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

 αxx
αyy

2αxy

∆Tzdz +
∫ 0

−H

 Q22 Q12 −Q26
Q12 Q11 −Q16
Q26 Q26 Q66

 αyy
αxx
2αxy

∆Tzdz. (14)

In the light of the Hamilton’s principle, the equations of motion for global dynamics
are derived by using Equations (1)–(9) as follows

∂Nxx

∂x
+

∂Nxy

∂y
= I0

..
u0 − c1 I3

∂
..
w

∂x
, (15)

∂Nyy

∂y
+
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..
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∂
..
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, (16)

∂
(
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∂
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.
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∂2 ..
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..
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∂x + ∂
..
v0

∂y

)
.

(17)

Substituting Equations (4)–(14) into Equations (15)–(17), Equations (15)–(17) are con-
verted as follows

A12

(
∂2(v0+vs)

∂x∂y + ∂(w0+ws)
∂y

∂2(w0+ws)
∂x∂y

)
− B11

∂3(w0+ws)
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∂x∂y2
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(
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A66

(
∂2(u0+us)

∂x∂y + ∂2(v0+vs)
∂x2 + ∂(w0+ws)

∂y
∂2(w0+ws)

∂x2 + ∂(w0+ws)
∂x

∂2(w0+ws)
∂x∂y

)
+A12

(
∂2(u0+us)

∂x∂y + ∂(w0+ws)
∂x

∂2(w0+ws)
∂x∂y

)
− B16

∂3(w0+ws)
∂x3 − B26

∂3(w0+ws)
∂x∂y2

+A22

(
∂2(v0+vs)
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∂y
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∂y2

)
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)
,

(19)
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∂x2

∂2(w0+ws)
∂x∂y

+ ∂(w0+ws)
∂x

∂3(w0+ws)
∂x2∂y

)
− D11

∂4(w0+ws)
∂x4 − D12

∂4(w0+ws)
∂x2y2 − 2D16

∂4(w0+ws)
∂x3∂y

+2B16

(
∂3(u0+us)

∂x2∂y + ∂2(w0+ws)
∂x2

∂2(w0+ws)
∂x∂y + ∂(w0+ws)

∂x
∂3(w0+ws)

∂x2∂y

)
+2B26

(
∂3(v0+vs)

∂x∂y2 + ∂2(w0+ws)
∂y2

∂2(w0+ws)
∂x∂y + ∂(w0+ws)

∂y
∂3(w0+ws)

∂x∂y2

)
+2B66

(
∂3(u0+us)

∂x∂y2 + ∂2(w0+ws)
∂y2

∂2(w0+ws)
∂x2 + ∂(w0+ws)

∂y
∂3(w0+ws)

∂x2∂y

+ ∂3(v0+vs)
∂x2∂y + ∂2(w0+ws)

∂x∂y
∂2(w0+ws)

∂x∂y + ∂(w0+ws)
∂x

∂3(w0+ws)
∂x∂y2

)
+B12

(
∂3(u0+us)

∂x∂y2 + ∂2(w0+ws)
∂x∂y

∂2(w0+ws)
∂x∂y + ∂(w0+ws)

∂x
∂3(w0+ws)

∂x∂y2

)
−2D26

∂4(w0+ws)
∂x∂y3 + B26

(
∂3(u0+us)

∂y3 + ∂3(v0+vs)
∂x∂y2 + ∂(w0+ws)

∂y
∂3(w0+ws)

∂x∂y2

+2 ∂2(w0+ws)
∂x∂y

∂2(w0+ws)
∂y2 + ∂(w0+ws)

∂x
∂3(w0+ws)

∂y3

)
− 4D66

∂4(w0+ws)
∂x2∂y2

+B22

(
∂3(v0+vs)

∂y3 + ∂2(w0+ws)
∂y2

∂2(w0+ws)
∂y2 + ∂(w0+ws)

∂y
∂3(w0+ws)

∂y3

)
−D12

∂4(w0+ws)
∂x2∂y2 − D22

∂4(w0+ws)
∂y4 − 2D26

∂4(w0+ws)
∂x∂y3 + N(w0 + ws)

−
(

∂2 MT
xx

∂x2 + 2
∂2 MT

xy
∂y∂x +

∂2 MT
yy

∂y2

)
− 2D16

∂4(w0+ws)
∂x3∂y = −I2

∂2

∂t2

(
∂2w0
∂x2 + ∂2w0

∂y2

)
+I0

∂2w0
∂t2 + I0

..
Y + I1

∂2

∂t2

(
∂u0
∂x + ∂v0

∂y

)
.

(20)

As the boundary condition and static cylindrical shape, the static transverse displace-
ments of the shell are symmetrical along the axes x and y respectively and the static in-plane
and twist displacements are antisymmetrical along the axes x and y respectively. Therefore,
according to Reference [19], the static displacements us, vs and ws can be set as

us(x, y) =
N

∑
m=0

m

∑
n=0

un,m−nxnyn−m, (21)

vs(x, y) =
N

∑
m=0

m

∑
n=0

vn,m−nxnyn−m, (22)

ws(x, y) =
N

∑
m=0

m

∑
n=0

wn,m−nxnyn−m, (23)

where un,m−n, vn,m−n and wn,m−n are coefficients related to curvatures.
For global dynamics without the extra stiffness caused by the exciter, dynamic dis-

placements for the central fixed support according to Equations (21)–(23) are given

u0(x, y, t) =
N

∑
m=0

m

∑
n=0

un,m−n(t)xnyn−m, (24)
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v0(x, y, t) =
N

∑
m=0

m

∑
n=0

vn,m−n(t)xnyn−m, (25)

w0(x, y, t) =
N

∑
m=0

m

∑
n=0

wn,m−n(t)xnyn−m, (26)

The in-plane vibrations and torsional vibrations are negligible relative to the transverse
vibrations. Dropping in-plane and torsional vibration terms and combining Equations
(24)–(26) with Equations (18)–(20), the displacement components u0 and v0 are transformed
into functions of w0. Substituting Equations (24)–(26) into Equation(20) and integrating
the obtained equations in the in-plane domain (x ε [–Lx, Lx] and [–Ly, Ly]), a two-degrees-
of-freedom nonlinear ordinary differential equation concerning the global dynamics can
be obtained

..
w1 + c1

.
w1 + k1w1 + k2w2 + N1(∆T)w1 + N2(∆T)w2 + α1w2

1 + α2w2
2 + α3w1w2

+α4w3
1 + α5w3

2 + α6w2
1w2 + α7w1w2

2 + N5(∆T) = α8
..
Y,

(27)

..
w2 + c1

.
w2 + k3w1 + k4w2 + N3(∆T)w1 + N4(∆T)w2 + β1w2

1 + β2w2
2 + β3w1w2

+β4w3
1 + β5w3

2 + β6w2
1w2 + β7w1w2

2 + N6(∆T) = β8
..
Y.

(28)

The coefficients in Equations (27) and (28) can be determined by material properties
shown in Table 1 and step-by-step numerical calculations from Equations (1)–(28).

Table 1. Material properties of the bistable asymmetric composite laminated shell.

Properties Data

E11[GPa] 146.95
E22[GPa] 10.702
G12[GPa] 6.977
G13[GPa] 6.977
G23[GPa] 6.977
ν12 0.3

α1[◦C]−1 5.028 × 10−7

α2[◦C]−1 2.65 × 10−5

h[mm] 0.122
Lx[mm] 300
Ly[mm] 300

It should be pointed out that thermal expansion coefficients α1 and α2, length Lx,
width Ly and thickness h are the main factors of the static bifurcation, which is the super-
critical pitchfork bifurcation. In order to obtain two stable equilibrium configurations with
ideal initial curvatures, appropriate parameters α1, α2, Lx, Ly and h should be selected. The
material properties collected in Table 1 are selected based on the above principles.

Dimensionless variables are introduced

u1 = u1, u2 = L2
yu2, u3 = L2

xu3, v1 = v1, v2 = L2
xv2, v3 = L2

yv3,
w1 = Lxw1, w2 = Lyw2, t =

√
k1t, Ω = Ω√

k1
. (29)

By using Equation (29), dimensionless equations can be derived

..
w1 + c1

.
w1 + k1w1 + k2w2 + N1(∆T)w1 + N2(∆T)w2 + α1w2

1 + α2w2
2

+α3w1w2 + α4w3
1 + α5w3

2 + α6w2
1w2 + α7w1w2

2 + N3(∆T) = f cos
(
Ωt
)
,

(30)

..
w2 + c2

.
w2 + k3w1 + k4w2 + N4(∆T)w1 + N5(∆T)w2 + β1w2

1 + β3w1w2
+β3w1w2 + β4w3

1 + β5w3
2 + β6w2

1w2 + β7w1w2
2 + N6(∆T) = f cos

(
Ωt
)
.

(31)
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3. Three Equilibrium Configurations

Due to the residual thermal stress, the bistable composite laminated shell has three
equilibrium configurations, which are two stable equilibrium configurations and one unsta-
ble equilibrium configuration. In order to determine the three equilibrium configurations,
the time derivatives and dynamic load in Equations (27) and (28) are dropped. Making u0
= v0 = w0 = 0, the static equations can be derived as follows:

A11
∂2us
∂x2 + (A12 + A66)

∂2vs
∂x∂y + A16

∂2vs
∂x2 + 2A16

∂2us
∂x∂y + A26

∂2vs
∂y2 + A66

∂2us
∂y2

−3B16
∂3ws
∂x2∂y − B26

∂3ws
∂y3 − (2B66 + B12)

∂3ws
∂y2∂x − B11

∂3ws
∂x3 + A26

∂ws
∂y

∂2ws
∂y2

+(A66 + A12)
∂ws
∂y

∂2ws
∂y∂x + A66

∂ws
∂x

∂2ws
∂y2 + A11

∂ws
∂x

∂2ws
∂x2 + A16

∂ws
∂y

∂2ws
∂x2

+2A16
∂ws
∂x

∂2ws
∂y∂x −

∂NT
xx

∂x −
∂NT

xy
∂y = 0,

(32)

A66
∂2vs
∂x2 + (A12 + A66)

∂2us
∂x∂y + A16

∂2us
∂x2 + 2A16

∂2vs
∂x∂y + A22

∂2vs
∂y2 + A26

∂2us
∂y2

−3B26
∂3ws
∂y2∂x − B16

∂3ws
∂x3 − (2B66 + B12)

∂3ws
∂x2∂y − B22

∂3ws
∂y3 + A22

∂ws
∂y

∂2ws
∂y2

+(A66 + A12)
∂ws
∂x

∂2ws
∂y∂x + A26

∂ws
∂x

∂2ws
∂y2 + A16

∂ws
∂x

∂2ws
∂x2 + A66

∂ws
∂y

∂2ws
∂x2

+2A26
∂ws
∂x

∂2ws
∂y∂x −

∂NT
yy

∂y −
∂NT

xy
∂x = 0,

(33)

B11

(
∂3us
∂x3 + ∂2ws

∂x2
∂2ws
∂x2 + ∂ws

∂x
∂3ws
∂x3

)
+ B12

(
∂3vs

∂x2∂y + ∂2ws
∂x∂y

∂2ws
∂x∂y + ∂ws

∂y
∂3ws
∂x2∂y

)
+B16

(
∂3us

∂x2∂y + ∂3vs
∂x3 + ∂ws

∂y
∂3ws
∂x3 + 2 ∂2ws

x2
∂2ws
∂x∂y + ∂ws

∂x
∂3ws
∂x2∂y

)
− D11

∂4ws
∂x4

−D12
∂4ws

∂x2∂y2 − D16
∂4ws
∂x3∂y + 2B16

(
∂3us

∂x2∂y + ∂2ws
∂x2

∂2ws
∂x∂y + ∂ws

∂x
∂3ws
∂x2∂y

)
+2B26

(
∂3vs

∂x∂y2 +
∂2ws
∂y2

∂2ws
∂x∂y + ∂ws

∂y
∂3ws
∂x∂y2

)
+ B12

(
∂3us

∂x∂y2 +
∂2ws
∂x∂y

∂2ws
∂x∂y + ∂ws

∂x
∂3ws
∂x∂y2

)
+2B66

(
∂3us

∂x∂y2 +
∂2ws
∂y2

∂2ws
∂x2 + ∂ws

∂y
∂3ws
∂x2∂y + ∂3vs

∂x2∂y + ∂2ws
∂x∂y

∂2ws
∂x∂y + ∂ws

∂x
∂3ws
∂x∂y2

)
−4D66

∂4ws
∂x2∂y2 + B22

(
∂3vs
∂y3 + ∂2ws

∂y2
∂2ws
∂y2 + ∂ws

∂y
∂3ws
∂y3

)
− D12

∂4ws
∂x2∂y2 − D22

∂4ws
∂y4

−D26
∂4ws
∂x∂y3 + N(ws)−

(
∂2 MT

xx
∂x2 + 2

∂2 MT
xy

∂y∂x +
∂2 MT

yy
∂y2

)
− 2D16

∂4ws
∂x3∂y = 0.

(34)

Substituting Equations (21)–(23) into Equations (32)–(34) and taking two degrees of
freedom, a set of static nonlinear equations are derived:

k1w1 + k2w2 + N1(∆T)w1 + N2(∆T)w2 + α1w2
1 + α2w2

2 + α3w1w2
+α4w3

1 + α5w3
2 + α6w2

1w2 + α7w1w2
2 + N5(∆T) = 0,

(35)

k3w1 + k4w2 + N3(∆T)w1 + N4(∆T)w2 + β1w2
1 + β2w2

2 + β3w1w2
+β4w3

1 + β5w3
2 + β6w2

1w2 + β7w1w2
2 + N6(∆T) = 0.

(36)

Changing the variable parameter ∆T, a series of static solutions for the equilibrium
configurations can be derived, which form static bifurcation diagrams shown in Figure 2.
In Figure 2, (a) donates the static bifurcation curve of w1 which represents x-curvature,
(b) donates the static bifurcation curve of w2 which represents y-curvature.

The asymmetric composite laminated plate starts almost flatly at the elevated manu-
facturing temperature, point A in Figure 2. As the elevated manufacturing temperature
increases, small curvatures develop. The curvatures are equal in magnitude but opposite
in symbol, which indicates that the composite laminated plate warps, forming a shallow
saddle shell. At point B, the curve of curvature-temperature relationship bifurcates into
three paths BC, BD and BE, which represent curvatures in three cases. Along the path BC,
the y-curvature increases while the x-curvature decreases. That is to say, the y-curvature
dominates along the path BC, leading to one stable cylindrical equilibrium configuration.
Along the path BE, the x-curvature increases while the y-curvature decreases. That is to
say, the x-curvature dominates along the path BE, leading to another one stable cylindrical
equilibrium configuration. Along the path BD, the x and y-curvatures increase slightly and
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remain equal in magnitude but opposite in symbol. Point D corresponds to the unstable
saddle equilibrium configuration. It is concluded from Figure 2 that the number of equilib-
rium solutions varies from 1 to 3 with the change of parameter ∆T. The static bifurcation
called supercritical pitchfork bifurcation occurs in the formation process of the bi-stability.
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4. Equation of Motion for Local Dynamics

When subjected to the base excitation with small amplitudes, the bistable shell vibrates
around just one stable configuration, which are defined as local dynamics. All vibrations
confined to a single stable configuration behave as 1:2 internal resonance, saturation and
penetration.

For local dynamics around one of the two stable equilibrium configurations, the above
relationships will have to be redefined.

The nonlinear strain–displacement relations are rewritten as follows:


εxx
εyy
εxy

 =


ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

+ z


ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

 (37)


ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

 =


∂u0
∂x + 1

2

(
∂w0
∂x

)2
+ w0

R1

∂v0
∂y + 1

2

(
∂w0
∂y

)2
+ w0

R2
∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y

,


ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

 =


− ∂2w0

∂x2

− ∂2w0
∂y2

−2 ∂2w0
∂x∂y

, (38)

where R1 and R2 are radii of curvatures of one of the two stable equilibrium configurations
corresponding to the initial curvatures ∂2ws

∂x2 and ∂2ws
∂y2 determined above.



Symmetry 2021, 13, 1690 11 of 29

Using Equations (7), (8), (37) and (38), the strain energy can be rewritten as follows:

U =
1
2

∫ Lx

−Lx

∫ Ly

−Ly

[
ε(0) ε(1)

][ [A] [B]
[B] [D]

][
ε(0)

ε(1)

]
dxdy. (39)

The kinetic energy can be rewritten as follows:

K =
1
2∑ρ

∫
Ω

∫ H

−H

( .
u2

+
.
v2

+
.

w2
)

dxdydz. (40)

By using Chebyshev polynomials, u0, v0 and w0 are expanded as follows:

u0(x, y, t) = Ru(x, y)U(x, y)r(t), (41)

v0(x, y, t) = Rv(x, y)V(x, y)r(t), (42)

w0(x, y, t) = Rw(x, y)W(x, y)r(t), (43)

where Ru(x,y), Rv(x,y) and Rw(x,y) are boundary functions, U(x,y), V(x,y) and W(x,y) are
spatial functions and r(t) is a temporal function.

The boundary functions can be expressed as follows:

Rα(x, y) =
(

1 +
2x
Lx

)p(
1− 2x

Lx

)q(
1 +

2y
Ly

)r(
1− 2y

Ly

)s
, (44)

where α = u, v, w. p, q, r, s depends on the constraint boundaries of the bistable shell and
are equal to either 0 or 1. Different values of the boundary functions are shown in Table 2.

Table 2. Different values of the boundary functions.

Ru(x) Rv(x) Rw(x) Ru(y) Rv(y) Rw(y)

FFFF 1 1 1 1 1 1
FSFF 1 1 − x 1 − x 1 − y 1 1 − y
SFFF 1 1 + x 1 + x 1 + y 1 1 + y
SSFF 1 1 − x2 1 − x2 1 − y2 1 1 − y2

FCFF 1 − x 1 − x 1 − x 1 − y 1 − y 1 − y
CFFF 1 + x 1 + x 1 + x 1 + y 1 + y 1 + y
SCFF 1 − x 1 − x2 1 − x2 1 − y2 1 − y 1 − y2

CSFF 1 + x 1 − x2 1 − x2 1 − y2 1 + y 1 − y2

CCFF 1 − x2 1 − x2 1 − x2 1 − y2 1 − y2 1 − y2

As the four edges of the shell are free, Rα(x,y) = 0. The shape functions are expressed as:

U(ξ,η) =
M

∑
m=0

N

∑
n=0

Um,nTm(2ξ − 1)Tn(2η− 1), (45)

V(ξ,η) =
M

∑
m=0

N

∑
n=0

Vm,nTm(2ξ − 1)Tn(2η− 1), (46)

W(ξ,η) =
M

∑
m=0

N

∑
n=0

Wm,nTm(2ξ − 1)Tn(2η− 1), (47)

where Tm and Tn are the m-th and n-th order Chebyshev polynomial of the first kind,
respectively.

As the vibration exciter itself is composed of a series of spring components, when the
shell is subjected to the base excitation with small amplitudes by the vibration exciter, the
local dynamics confined to one stable configuration occur and the vibration behavior of the
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system is similar to that of a spring-mass system. That is to say, the local dynamics around
one stable configuration need to take additional spring stiffness due to the vibration exciter
into account [38,40]. Therefore, the additional stiffness is applied to the supporting bar,
through which the shell and vibration exciter are connected. In this case, it is assumed that
the center of the shell is elastically supported and the four edges are free.

The additional elastic potential energy due to the vibration exciter is given by:

Ub =
1
2

kbw2
0(0, 0), (48)

where kb is the additional stiffness caused by the supporting bar.
The total strain energy is thus:

Utotal = U + Ub. (49)

The Rayleigh–Ritz method is used, and the following equation is applied:

∂(K−Utotal)

∂p
= 0, (50)

where:
p = {U11 , . . . , UMN , V11 , . . . , VMN , W11 , . . . , WMN }. (51)

Substituting Equations (37)–(49) into Equation (50), Equation (50) is expressed in the
form of matrix: (

K−ω2M
)

p = 0, (52)

where K and M represent stiffness matrix and mass matrix respectively, p is n-dimensional
displacement vector and n = 3MN.

The eigenvalues of matrix (52) are solved to derive the natural frequencies and the
eigenvalues are brought back to matrix (52) to obtain the corresponding eigenvectors, so as
to calculate the shape functions:

U(i)(ξ,η) =
M

∑
m=0

N

∑
n=0

U(i)
m,nTm(2ξ − 1)Tn(2η− 1), (53)

V(i)(ξ,η) =
M

∑
m=0

N

∑
n=0

V(i)
m,nTm(2ξ − 1)Tn(2η− 1), (54)

W(i)(ξ,η) =
M

∑
m=0

N

∑
n=0

W(i)
m,nTm(2ξ − 1)Tn(2η− 1), (55)

Then the corresponding modal functions can be determined:

u0(ξ,η, t) =
M̃

∑
j=J

uj(t)U(j)(ξ,η), i = 1, . . . , M, j = J, . . . , M̃, (56)

v0(ξ,η, t) =
M̃

∑
j=J

vj(t)V(j)(ξ,η), i = 1, . . . , M, j = J, . . . , M̃, (57)

w0(ξ,η, t) =
M

∑
i=1

wj(t)W(i)(ξ,η), i = 1, . . . , M, j = J, . . . , M̃. (58)

According to Hamilton’s principle, the equations for the local dynamics can be
obtained:

∂Nxx

∂x
+

∂Nxy

∂y
= I0

∂2u0

∂t2 − I1
∂2

∂t2

(
∂w0

∂x

)
, (59)
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∂Nxy

∂x
+

∂Nyy

∂y
= I0

∂2v0

∂t2 − I1
∂2

∂t2

(
∂w0

∂y

)
, (60)

∂2 Mxx
∂x2 + 2 ∂2 Mxy

∂y∂x +
∂2 Myy

∂y2 − Nxx
Rx
− Nyy

Ry
+ N(w0) = I0

∂2w0
∂t2 + I0

∂2Y
∂t2

−I2
∂2

∂t2

(
∂2w0
∂x2 + ∂2w0

∂y2

)
+ I1

∂2

∂t2

(
∂u0
∂x + ∂v0

∂y

)
,

(61)

where:

N(w0) =
∂

∂x

(
Nxx

∂w0

∂x
+ Nxy

∂w0

∂y

)
+

∂

∂y

(
Nxy

∂w0

∂x
+ Nyy

∂w0

∂y

)
. (62)

In order to analyze local dynamics with the extra stiffness caused by the exciter around
one of the two stable equilibrium configurations, the initial curvatures ∂2ws

∂x2 and ∂2ws
∂y2 of the

second stable equilibrium configuration according to the previous section are transformed
into the radii of curvatures R1 and R2 of the cylindrical shell. The Rayleigh–Ritz method is
used to determine the modal shapes for the boundary conditions of central elastic support,
as shown in Figure 3.

In order to analyze local dynamics with the extra stiffness caused by the exciter around
one of the two stable equilibrium configurations, the initial curvatures ∂2ws

∂x2 and ∂2ws
∂y2 of the

second stable equilibrium configuration according to the previous section are transformed
into the radii of curvatures R1 and R2 of the cylindrical shell. The Rayleigh–Ritz method is
used to determine the modal shapes for the boundary conditions of central elastic support,
as shown in Figure 3.

Substituting Equations (56)–(58) into Equations (59)–(61), selecting the first two modal
functions and using the Galerkin approach, two degree of freedom ordinary differential
equations are determined as:

..
w1 + c

.
w1 +ω

2
1w1 + α11w2

1 + α12w2
2 + α13w1w2 = γ1

..
Y, (63)

..
w2 + c

.
w2 +ω

2
2w2 + β11w2

1 + β12w2
2 + β13w1w2 = γ2

..
Y. (64)
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Figure 3. The first four mode shapes of the bistable asymmetric composite laminated shell, (a) the
translational mode, (b) the rotational mode, (c) the flexible torsional mode, (d) the flexible bend-
ing mode.
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Dimensionless variables are introduced:

w1 =
w1

Lx
, w2 =

w2

Ly
, x =

x
Lx

, y =
y
Ly

, t = ω1t, Ω =
Ω
ω1

. (65)

By using Equation (65), dimensionless equations can be derived:

..
w1 + c1

.
w1 +ω

2
1w1 + α1w2

1 + α2w2
2 + α3w1w2 = γ1 f cos

(
Ωt
)
, (66)

..
w2 + c2

.
w2 +ω

2
2w2 + β1w2

1 + β2w2
2 + β3w1w2 = γ2 f cos

(
Ωt
)
. (67)

5. Numerical Simulation
5.1. Global Dynamics

To study the global dynamics, the fifth-order Runge–Kutta algorithm is adopted to
solve Equations (30) and (31), which demonstrates the bifurcation diagram, the phase
portrait, the time-history graph and the Poincaré map. For convenience in this study,
the overbars in Equations (30) and (31) are dropped in the following analysis.

(a) donates the time-history on the plane (t, w1), (b) donates the phase portrait on
the plane

(
w1,

.
w1
)
, (c) donates the time-history on the plane (t, w2), (d) donates the phase

portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase portrait in space(

w1,
.

w1, w2
)

and (f) donates Poincaré map on the plane
(
w1,

.
w1
)
, which are shown in

Figures 4–10 respectively. The vibration form is judged by distribution of points in Poincaré
map. When the Poincaré map shows only one point, periodic vibration is determined.
When the Poincaré map shows a closed curve, quasi-periodic vibration is determined.
When the Poincaré map shows a large cluster of points, chaotic vibration is determined.

w1 represents the vibration for curvature in the x direction while w2 represents the
vibration for curvature in the y direction. Through the comparative study of w1 and w2,
the vibrations of the bistable shell can be determined. When f = 0.2, w1 and w2 remain
almost zero around the equilibrium position (0, 0), that is to say, the bistable shell vibrates
slightly around the first stable equilibrium configuration, which is the periodic vibration
according to Poincaré map shown in Figure 4. When f = 0.35, w1 increases rapidly while w2
remain almost zero around the equilibrium position (0, 0),that is to say, the bistable shell
vibrates violently around the first stable equilibrium configuration, which is the chaotic
vibration according to Poincaré map shown in Figure 5. When f = 0.425, in a phase after the
start, w1 increases rapidly while w2 remain almost zero around the equilibrium position
(0, 0), at a certain moment, w1 increases from 0 to 0.2 and remains almost constant while
w2 increases from 0 to 0.2 and vibrates violently around the equilibrium position (0.2, 0.2),
that is to say, dynamic snap-through occurs, which is the chaotic vibration according to
the Poincaré map shown in Figure 6. When f = 0.43, w1 and w2 vibrate violently around
the equilibrium position (0.2, 0.2), that is to say, the bistable shell vibrates violently around
the second stable equilibrium configuration, which is the chaotic vibration according to
the Poincaré map shown in Figure 7. When f = 0.5, w1 and w2 change repeatedly between
0 and 0.2 simultaneously, namely, the constant dynamic snap-through occurs between
the two stable equilibrium configurations, which is the chaotic vibration according to the
Poincaré map shown in Figure 8. When f = 0.8, w1 vibrates slightly while w2 remain almost
zero around the equilibrium position (0, 0), that is to say, the bistable shell vibrates slightly
around the first stable equilibrium configuration, which is the quasi-periodic vibration
according to the Poincaré map shown in Figure 9. When f = 0.9, w1 and w2 remain almost
0.2 around the equilibrium position (0.2, 0.2), that is to say, the bistable shell vibrates
slightly around the second stable equilibrium configuration, which is the periodic vibration
according to the Poincaré map shown in Figure 10.
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Figure 4. The periodic motion around the first stable equilibrium configuration when f = 0.2, (a) donates the time-history
on the plane (t, w1), (b) donates the phase portrait on the plane

(
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(d) donates the phase portrait on the plane
(
w2,

.
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)
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,

(f) donates Poincaré map on the plane
(
w1,

.
w1
)
.
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Figure 5. The chaotic motion around the first stable equilibrium configuration when f = 0.35, (a) donates the time-history
on the plane (t, w1), (b) donates the phase portrait on the plane

(
w1,

.
w1
)
, (c) donates the time-history on the plane (t, w2),

(d) donates the phase portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase portrait in space

(
w1,

.
w1, w2

)
,

(f) donates Poincaré map on the plane
(
w1,

.
w1
)
.
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Figure 6. The snap-through and chaotic motion between the two stable equilibrium configurations when f = 0.425,
(a) donates the time-history on the plane (t, w1), (b) donates the phase portrait on the plane

(
w1,

.
w1
)
, (c) donates the

time-history on the plane (t, w2), (d) donates the phase portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase

portrait in space
(
w1,

.
w1, w2

)
, (f) donates Poincaré map on the plane

(
w1,

.
w1
)
.
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Figure 7. The chaotic motion around the second stable equilibrium configuration when f = 0.43, (a) donates the time-history
on the plane (t, w1), (b) donates the phase portrait on the plane

(
w1,

.
w1
)
, (c) donates the time-history on the plane (t, w2),

(d) donates the phase portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase portrait in space

(
w1,

.
w1, w2

)
,

(f) donates Poincaré map on the plane
(
w1,

.
w1
)
.
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Figure 8. The constant snap-through and chaotic motion between the two stable equilibrium configurations when f = 0.5,
(a) donates the time-history on the plane (t, w1), (b) donates the phase portrait on the plane

(
w1,

.
w1
)
, (c) donates the

time-history on the plane (t, w2), (d) donates the phase portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase

portrait in space
(
w1,

.
w1, w2

)
, (f) donates Poincaré map on the plane

(
w1,

.
w1
)
.
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Figure 9. The quasi-periodic motion around the first stable equilibrium configuration when f = 0.8, (a) donates the time-
history on the plane (t, w1), (b) donates the phase portrait on the plane

(
w1,

.
w1
)
, (c) donates the time-history on the

plane (t, w2), (d) donates the phase portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase portrait in space(

w1,
.

w1, w2
)
, (f) donates Poincaré map on the plane

(
w1,

.
w1
)
.
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Figure 10. The periodic motion around the second stable equilibrium configuration when f = 0.9, (a) donates the time-history
on the plane (t, w1), (b) donates the phase portrait on the plane

(
w1,

.
w1
)
, (c) donates the time-history on the plane (t, w2),

(d) donates the phase portrait on the plane
(
w2,

.
w2
)
, (e) donates three-dimensional phase portrait in space

(
w1,

.
w1, w2

)
, (f)

donates Poincaré map on the plane
(
w1,

.
w1
)
.

In order to understand the influence of excitation amplitude f on global dynamics
more comprehensively, make f locate in a range of 0~1.2 and bifurcation diagrams can be
obtained shown in Figure 11.
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Figure 11. The bifurcation diagrams for w1 and w2 via the base excitation amplitude f. (a) The
bifurcation diagram for w1 via the base excitation amplitude f. (b) The bifurcation diagram for w2 via
the base excitation amplitude f.

In Figure 11, when f is located in the interval 0~0.25, w1 and w2 vibrate slightly around
the equilibrium position (0, 0), when f is located in the interval 0.25~0.43, w1 and w2 vibrate
violently around the equilibrium position (0, 0), when f is located in the interval 0.43~0.72,
w1 and w2 vibrate violently between the equilibrium positions (0, 0)and (0.2, 0.2) and when
f is located in the interval 0.72~1.2, w1 and w2 vibrate slightly around the equilibrium
position (0, 0) or (0.2, 0.2).

Combined with the vibration and Poincaré map shown in Figures 4–10 respectively,
we can find from Figure 11 that the vibration of the bistable shell changes from the periodic
vibration around the first stable equilibrium configuration→ the quasi-periodic vibration
around the first stable equilibrium configuration→ the chaotic vibration around the first
stable equilibrium configuration→ the snap-through and chaotic vibration between the
two stable equilibrium configurations→ the constant snap-through and chaotic vibration
between the two stable equilibrium configurations→ the quasi-periodic vibration around
the second stable equilibrium configuration→ the periodic vibration around the second
stable equilibrium configuration when the excitation amplitude f changes from 0 to 1.2.
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From another point of view, it is seen from Figure 11 that the vibration of the bistable
asymmetric composite laminated shell changes from the vibration with small amplitude
around the first stable equilibrium configuration→ the oscillation with large amplitude
around the first stable equilibrium configuration→ the oscillation with large amplitude
between the two stable equilibrium configurations→ the oscillation with large amplitude
around the second stable equilibrium configuration→ the vibration with small amplitude
around the second stable equilibrium configuration.

Figures 8 and 11 exhibit the global dynamics. The global dynamics consist of the
vibrations around the two stable equilibrium configurations respectively, which can be
taken as the local dynamics and dynamic snap-through between the two stable equilibrium
configurations. In other words, Figures 8 and 11 exhibit dynamic snap-through and
nonlinear vibrations with two potential wells.

5.2. Local Dynamics

For convenience, the overbars are dropped in Equations (63) and (64). Considering the
case of primary parametric and 1:2 internal resonance, the resonant relations are given by:

ω2 = 2ω1 − εσ2, Ω = ω2 + εσ1, (68)

where σ1 and σ2 are two detuning parameters.
Small parameter variable ε is introduced:

c1 → εc1 , c2 → εc2 , α1 → εα1 , α2 → εα2 , α3 → εα3 , β1 → εβ1 , β2 → εβ2,
β3 → εβ3 , γ1 → εγ1 , γ2 → εγ2.

(69)

Using Equations (68) and (69) and the method of multiple scales, Equations (63) and
(64) are averaged as follows:

D1a1 + c1a1 +
α14

4ω1
a1a2 sinφ2 = 0, (70)

D1a2 + c2a2 −
β11
4ω2

a2
1 sinφ2 −

γ2 f2

2ω2
sinφ1 = 0, (71)

a1D1φ1 − σ1a2 +
β11
4ω2

a2
1 cosφ2 −

γ2 f2

2ω2
cosφ1 = 0, (72)

a2D1φ2 + σ2a2 +

(
α14

2ω1
a2

2 −
β11
4ω2

a2
1

)
cosφ2 −

γ2 f2

2ω2
cosφ1 = 0, (73)

where a1 and a2 represent the amplitude of w1 and w2 respectively and ϕ1 and ϕ2 and φ2
represent the phase angle of w1 and w2 respectively.

Let the derivatives at the left end of Equations (70)–(73) be zero as follows:

c1a1 +
α14

4ω1
a1a2 sinφ2 = 0, (74)

c2a2 −
β11
4ω2

a2
1 sinφ2 −

γ2 f2

2ω2
sinφ1 = 0, (75)

σ1a2 −
β11
4ω2

a2
1 cosφ2 +

γ2 f2

2ω2
cosφ1 = 0, (76)

σ2a2 +

(
α14

2ω1
a2

2 −
β11
4ω2

a2
1

)
cosφ2 −

γ2 f2

2ω2
cosφ1 = 0, (77)

The solutions of Equations (74)–(77) are divided into two sets by whether a1 is zero
or not.
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When a1 = 0, the first set of solutions is:

a1 = 0, a2 =
γ2 f2

2ω2

√
c2

2 + σ
2
1

. (78)

When a1 6= 0, the second set of solutions satisfies the following relation:

ω2
1β

2
1

[
c2

1 +
(
σ2−σ1

2

)2
]

a4 −ω1ω2α14β1[2c1c2 + σ1(σ2 − σ1)]a2
1a2

2

+ω2
2α

2
14
(
c2

2 + σ
2
1
)
a4

2 =
(
α14a2γ2 f2

2

)2
.

(79)

Solving Equation (79) and considering Equation (78), a series of solutions can be
determined shown in Figures 12–17.
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Figure 12. When σ2 = 0, the force-amplitude characteristic curve of the system.
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Figure 13. When σ1 = σ2 = 0, the force-amplitude characteristic curve of the system.

Figure 12 shows the force-amplitude curve for σ2 = 0. In Figure 12, solid lines AK,
FE and dotted line KF represent the amplitude a1 of the first mode and solid lines AB,
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GC and dotted line KF represent the amplitude a2 of the second mode. When the base
excitation amplitude f 2 increases gradually from zero, a1 changes along AK and a2 changes
along AB. When f 2 = 5.8, a1 transfers from AK to DE by snap-through and a2 transfers from
AB to BC. When the base excitation amplitude f 2 decreases gradually from 8, a1 changes
along EF and a2 changes along CG. When f 2 = 2, a1 transfers from EF to JA by snap-through
and a2 transfers from CG to HA by snap-through. When a2 goes along CG, no matter how
f 2 changes, a2 remains constant, that is to say, the response of the second mode enters
saturation state. This is because the energy applied to the second mode is transferred to
the first mode, which means that permeation takes place. Saturation and permeation are
the peculiar phenomena of forced vibration of nonlinear multi-degree of freedom system
related to 1:2 internal resonance.
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Figure 17. Amplitude-frequency curve of the second mode when σ2 is changed.

Figure 13 shows the force-amplitude curve for σ1 = σ2 = 0. Similar to Figure 12,
with the change of base excitation amplitude f 2, saturation and permeation occur.

Figure 14 is the frequency-amplitude curve of the first mode with respect to σ1. It can
be seen from Figure 14 that when σ1 changes from negative to positive, the system shows
the softening and hardening nonlinearity successively.

Figure 15 is the frequency-amplitude curve of the second mode with respect to σ1.
Different from Figure 14, with the change of σ1, the system shows only linear characteristics.

Figure 16 is the frequency-amplitude curve of the first mode with respect to σ2.
It can be seen from Figure 16 that with the change of σ2, the system shows the hardening
nonlinearity.

Figure 17 is the frequency-amplitude curve of the second mode with respect to σ2.
It can be seen from Figure 17 that when σ2 changes from negative to zero, the system shows
the linear characteristics with negative slope, while when σ2 changes from zero to positive,
the system shows the linear characteristics with positive slope.

It can be found from Figures 12–17 that when only the base excitation amplitude is
changed, the system may have saturation and penetration, and when only the detuning
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parameter σ1 or σ2 is changed, the first mode of the system shows nonlinear characteristics
(softening and hardening nonlinearity) while the second mode shows linear characteristics.

6. Conclusions

In this paper, the global and local dynamics of a bistable asymmetric composite lami-
nated shell subjected to the base excitation are investigated. The shell is supported at the
center and are free at the four edges. When subjected to the base excitation with small
amplitude, the shell vibrates around just one stable configuration, which is dominated
by the local dynamics while when subjected to the base excitation with large amplitude,
the shell vibrates between the two stable configurations, which is dominated by the global
dynamics. The vibrations around the two stable equilibrium configurations and the dy-
namic snap-through between the two stable equilibrium configurations constitute the
global dynamics. The 1:2 internal resonance, saturation and penetration appear in the local
dynamics, which is confined to a single stable configuration. We can draw the following
main conclusions:

(1) Choosing difference temperature ∆T as the controlling parameter, the super-critical
pitchfork bifurcation can be obtained. When ∆T is set to a specific value, three
equilibrium configurations corresponding to two stable equilibrium configurations
and one unstable equilibrium configuration are determined.

(2) The global dynamics behave as the snap-through between the two stable equilibrium
configurations and the vibrations around the two stable equilibrium configurations
respectively.

(3) The dynamic snap-through of the bistable system often occurs in chaos. In other
words, the bistable system is often accompanied by the chaotic vibration in the process
of the dynamic snap-through.

(4) In the global dynamics, the vibrations behave as the periodic vibration, the quasi-
periodic vibration and the chaotic vibration.

(5) In the local dynamics, saturation and permeation occur in the process of the 1:2
internal resonance.

Due to the dynamic snap-through and large-amplitude vibrations, the bistable asym-
metric composite laminated shell prove to be a good candidate for energy harvesters.
Bistable energy harvesters will exhibit large strains and in turn generate more power
compared with conventional energy harvesters.

In the near future, we will pay attention to another application of the asymmetric lam-
inates via the concept of 4D printing of composites, which is advanced and significant [41].
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