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Abstract: We construct a map from solutions of the dispersionless BKP (dBKP) equation to solutions
of the Manakov–Santini (MS) system. This map defines an Einstein–Weyl structure corresponding
to the dBKP equation through the general Lorentzian Einstein–Weyl structure corresponding to the
MS system. We give a spectral characterisation of reduction in the MS system, which singles out
the image of the dBKP equation solution, and also consider more general reductions of this class.
We define the BMS system and extend the map defined above to the map (Miura transformation) of
solutions of the BMS system to solutions of the MS system, thus obtaining an Einstein–Weyl structure
for the BMS system.

Keywords: dispersionless integrable systems; the Manakov–Santini system; Einstein–Weyl structures;
the dispersionless BKP hierarchy

1. Introduction

The dispersionless BKP hierarchy is a reduction in the dispersionless KP hierarchy by a
special symmetry, which is only compatible with odd times of the hierarchy [1,2]. Equations
of the hierarchy can be represented as compatibility conditions for certain Hamilton–
Jacobi equations. For the first equation of the dispersionless BKP (dBKP) hierarchy, the
corresponding Hamilton–Jacobi equations are:

Sy = H1 = p3 + 3up

St = H2 = p5 + 5up3 + vp, p = Sx (1)

The symmetry characterising the reduction from the dKP to dBKP hierarchy is the simple
condition on the Hamiltonians H(−p) = −H(p), x = t1, y = t3, t = t5 (in terms of disper-
sionless KP hierarchy times). Compatibility of the Hamilton–Jacobi Equation (1) requires

∂tH1 − ∂yH2 + {H1, H2} = 0, (2)

where the Poisson bracket is { f , g} = fpgx − fxgp, giving rise to the dispersionless BKP
equation (see [1,2])

1
5 ut + u2ux − 1

3 uuy − 1
3 ux∂−1

x uy − 1
9 ∂−1

x uyy = 0. (3)

In what follows, we rescale the times to simplify the coefficients and use the Hamilto-
nians H1 = 1

3 p3 + up, H2 = 1
5 p5 + up3 + vp, then Equation (3) reads:

ut + u2ux − uuy − ux∂−1
x uy − ∂−1

x uyy = 0. (4)

In potential form, u = fx, we have:

∂x

(
ft +

1
3 f 3

x − fx fy

)
= fyy. (5)
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The Lax pair in terms of Hamilton–Jacobi equations (pseudopotentials) can be repre-
sented as commutation relations for Hamiltonian vector fields:

V1 = ∂y − {H1, . . . },
V2 = ∂t − {H2, . . . }, (6)

where {H, . . . } = (∂pH)∂x − (∂x H)∂p. In this Lax pair, p plays the role of ‘spectral parame-
ter’, and the commutation relation [V1, V2] = 0 gives exactly Equation (4). The procedure
for integrating equations arising as commutation relations for vector fields is not restricted to
Hamiltonian vector fields. Moreover, several interesting examples corresponding to general
vector fields were discussed, e.g., the Manakov–Santini (MS) system [3,4], which was recently
demonstrated to describe a general ocal form of Einstein–Weyl equations [5].

2. From the dBKP Equation to the MS System

In explicit form, the vector fields (6) read:

V1 = ∂y − (p2 + fx)∂x + fxx p∂p,

V2 = ∂t − (p4 + 3 fx p2 + v)∂x,+( fxx p2 + vx)p∂p, (7)

v = fy + f 2
x . The symmetry of vector fields V(−p) = V(p) characterises the dispersionless

BKP hierarchy in the framework of the dKP hierarchy.
Let us transform the spectral parameter p2 = µ. The commutation relations evidently

remain the same:

V1 = ∂y − (µ + fx)∂x + 2 fxxµ∂µ,

V2 = ∂t − (µ2 + 3 fxµ + v)∂x + 2( fxxµ + vx)µ∂µ

The vector fields are still Hamiltonian. Now, et us make the change of the spectral
parameter depending on times λ = µ + 2 fx (which preserves the commutation relations):

V1 = ∂y − (λ− fx)∂x + 2( fxy − fx fxx)∂λ,

V2 = ∂t − (λ2 − fxλ + fy − f 2
x )∂x

+2(( fxy − fx fxx)λ + ( fxt − fy fxx + f 2
x fxx − 2 fxy fx))∂λ. (8)

The Lax pair V1, V2 has the structure of the Manakov–Santini (MS) system Lax pair:

X1 = ∂y − (λ− vx)∂x + ux∂λ,

X2 = ∂t − (λ2 − vxλ + u− vy)∂x + (uxλ + uy)∂λ,
(9)

whose compatibility engenders the MS system:

uxt = uyy + (uux)x + vxuxy − uxxvy,

vxt = vyy + uvxx + vxvxy − vxxvy.
(10)

A comparison of the Lax pairs (8) and (9) gives the map from solutions of the dBKP
Equation (5) to solutions of the MS System (10):

v = f , u = 2 fy − f 2
x , (11)

and corresponding solutions for the MS system satisfy the reduction:

u = 2vy − v2
x. (12)

This map defines the Einstein–Weyl structure corresponding to the dBKP equation.
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2.1. Einstein–Weyl Structure for the dBKP Equation

We do not give a detailed description of Einstein–Weyl structures, because it is out of
the scope of this work. We just formulate some basic facts we need (see [6,7] for more detail).

Let us start with a Weyl structure. The Weyl structure is defined by a pair (g, ω),
where g is a metric tensor and ω is a one-form. It is possible to introduce a symmetric
connection D satisfying the relation:

Dg = ω⊗ g; (13)

explicit expression for this connection in terms of (g, ω) is given in [6]. Relation (13) is
invariant under Weyl transformations:

g→ eρg, ω → ω + dρ,

which represent a combination of a conformal transformation of the metric g and a gauge
transformation of the one-form ω (ρ is an arbitrary scalar function). Thus, the connection
D only depends on the equivalence class of pairs (g, ω) modulo Weyl transformations,
and it preserves a conformal class of the metric. Introducing the curvature tensor and the
Ricci tensor of the connection, it is possible to define Einstein equations for this connec-
tion, which together with relation (13) constitute the Einstein–Weyl equations system in
coordinate form:

Dkgij = ωkgij, R(ij) = Λgij, (14)

where Λ is some function. In the three-dimensional case considered in this work, the
Einstein–Weyl equations are integrable by twistor methods [8].

In what follows, we exploit a nice result of the work [5], where it was proved that
the Manakov–Santini system (10) defines a general ocal form of the (2 + 1)-dimensional
Lorentzian Einstein–Weyl structure (modulo coordinate transformations) with metric g
and one-form (covector) ω, defined as:

g = −(dy + vxdt)2 + 4(dx + (u− vy)dt)dt,

ω = vxxdy + (−4ux + 2vxy + vxvxx)dt, (15)

where u, v sastisfy the MS system. Using the map (11), we obtain the Einstein–Weyl
structure corresponding to solutions of the potential dispersionless BKP Equation (5),

g = −(dy + fxdt)2 + 4(dx + ( fy − f 2
x )dt)dt,

ω = fxxdy + 3(−2 fxy + 3 fx fxx)dt. (16)

It could be possible to construct this Einstein–Weyl structure by the methods of the
work in [7], starting from the symbol of inearisation of Equation (5). Here, we do it directly,
using the map (11).

2.2. dBKP Equation as a Reduction of the MS System

It is possible to obtain condition (12) by means of a reduction in the MS hierarchy,
characterised by the existence of wave function of adjoint inear operators of the hierarchy
with special analytic properties (with respect to the spectral variable). The technique for
constructing this type of reduction was developed in [9]. Here, we carry out an elementary
derivation on the evel of the Lax operator for the MS system.

First, we introduce formally adjoint inear operators, defined by the rule (u∂)∗ = −∂u
(for all partial derivatives),

−X∗ = X + div X,
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for the Lax operator of the MS system (9), we obtain

−X∗1 = ∂y − (λ− vx)∂x + ux∂λ + vxx = X1 + vxx (17)

We should emphasize that adjoint vector fields in general are not vector fields and
contain an extra term without derivative, equal to the divergence of the vector field, for zero
divergence vector fields are (anti) self-adjoint. However, the commutation of adjoint vector
fields gives the same compatibility conditions.

Let us suppose that the adjoint Lax operator (17) possess a wave function of the form

ψ̃ = (λ− η)α, X∗1 ψ̃ = 0, (18)

where η is a function of times. This condition is compatible with the dynamics of the
hierarchy and defines a reduction, see [9]. This form of the wave function can be found by
inspection of the map from the dispersionless BKP equation to the MS system; we skip the
details. For the ogarithm of the wave function, we have the equation

X1 ln ψ̃ + vxx = (∂y − (λ− vx)∂x + ux∂λ) ln ψ̃ + vxx = 0,

and, substituting ψ̃ = (λ− η)α, we get

ux = ηy + ηxvx − ηηx,

vx = −αη, (19)

implying the condition

u = −α−1vy −
1
2
(α−2 + α−1)v2

x. (20)

For α = − 1
2 , this condition coincides with condition (12) and the MS system (10)

reduces to the potential dispersionless BKP Equation (5) ( f = v). For α = 0, relations (19)
imply that v = 0, and we obtain the dKP equation for the function u, ux = gy − ggx. For
general α, the MS system reduces to the equation

vxt = vyy − α−1(vy +
1
2
(α−1 + 1)v2

x)vxx + vxvxy − vxxvy. (21)

An interesting special case corresponds to α = −1, then condition (20) takes the form
u = vy and the MS system reduces to the equation

vxt = vyy + vxvxy. (22)

This equation is known in the iterature; it belongs to the dKP hierarchy and corre-
sponds to the flow defined by the ‘vertex’ time.

The Einstein–Weyl structure for Equation (21) is obtained by substitution from (20) for
u into the Einstein–Weyl structure (15) for the MS system; thus,

g = −(dy + vxdt)2 + 4(dx− (α−1 + 1)(vy +
1

2α
v2

x)dt)dt,

ω = vxxdy + (2(1 + 2α−1)vxy + (1 + 4(α−2 + α−1))vxvxx)dt,

which for Equation (22), reduces to

g = −(dy + vxdt)2 + 4(dx + dt)dt,

ω = vxxdy + (−2vxy + vxvxx)dt.
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It is natural to expect that, similar to the dBKP case, Equation (21) for arbitrary α could
be obtained from some Hamiltonian Lax pairs. Indeed, this is so! Let us consider the dBKP
type Lax pair (1) with Hamiltonians

H1 =
1

1 + β
pβ+1 + fx p,

H2 =
1

1 + 2β
p2β+1 + fx pβ+1 + wp; (23)

β = 2 corresponds to the dBKP equation case. The corresponding Hamiltonian vector
fields are

V1 = ∂y − (pβ + fx)∂x + fxx p∂p,

V2 = ∂t − (p2β + (β + 1) fx pβ + w)∂x,+( fxx pβ + wx)p∂p. (24)

Similarly to the dBKP equation Lax pair, we transform this Lax pair to obtain the Lax
pair of MS type. The first step is to perform the transformation µ = pβ,

V1 = ∂y − (µ + fx)∂x + β fxxµ∂µ,

V2 = ∂t − (µ2 + (β + 1) fxµ + w)∂x,+β( fxxµ + wx)µ∂µ.

The second step is the transformation λ = µ + β fx,

V1 = ∂y − (λ + (1− β) fx)∂x + (β fxy − β fx fxx)∂µ.

Comparing this Lax operator with the MS Lax operator (9), we get

ux = β fxy − β fx fxx,

v = (β− 1) f .

After the identification g = β fx, β−1 = α + 1, this transformation coincides with the one
in (19). Thus, Equation (21) can be obtained from the Hamiltonian Lax pair (23) and (24),
upon substituting β−1 = α + 1, v = α f .

The Hamiltonians (23) are connected with the Kupershmidt hydrodynamic chains [10].

2.3. BMS System

The symmetry of vector fields V(−p) = V(p) (7) characterising the dispersionless
BKP hierarchy in the framework of the dKP hierarchy can be extended to the Manakov–
Santini hierarchy. We call the arising hierarchy the BMS hierarchy by analogy with the
dispersionless BKP hierarchy. The Lax pair for the first equation of the hierarchy (the BMS
system) reads

V1 = ∂y − (p2 − vx)∂x + ux p∂p,

V2 = ∂t − (p4 + (2u− vx)p2 + w1)∂x + (ux p2 + w2)p∂p, (25)

Compatibility conditions imply that w2 = uy + (u2)x, and the BMS system can be
written in the form

vxt = vxxw1 − vw1x − w1y,

uxt = uyy + (u2)xy + uxxw1 + vuxy + v(u2)xx, (26)

w1x = −2uvxx − vxy.
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For u = 0, corresponding to the inearly degenerate case, when vector fields in the Lax
pair do not include the derivative with respect to the spectral parameter, the BMS system (26)
reduces to the equation

vxt = vxvxy − vxxvy + vyy,

coinciding with the inearly degenerate reduction in the MS system (10). This is not unex-
pected, because in the inearly degenerate case, we have the freedom to make an arbitrary
transformation (independent of times) of the spectral variable.

Hamiltonian reduction corresponds to u = −vx, and system (26) reduces to the
potential dBKP Equation (5) for the function f = −v.

The condition v = 0 is evidently also a reduction in system (26); it eads to the equation

uxt = uyy + (u2)xy,

which coincides with Equation (22) after the identification vx = 2u.
It is rather suprising that, following the steps of transformation of the dBKP Lax pair to

the MS-type Lax pair described above, we are able to define a map (Miura transformation)
from solutions of the BMS system to solutions of the MS system, thus defining the Einstein–
Weyl structure corresponding to the BMS system.

Performing the transformation λ = p2 + 2u in the Lax pair (25), we obtain a Lax pair
of MS type with a Lax operator:

V1 = ∂y − (λ− 2u− vx)∂x + 2(uy + vxux)∂λ.

Comparing this Lax operator to the MS Lax operator (9), we obtain a transformation
of solutions of the BMS system to solutions of the MS system:

2u + vx → vx,

2(uy + vxux)→ ux.

Substituting this transformation into the Einstein–Weyl structure (15), we obtain the
Einstein–Weyl structure corresponding to the BMS system (26),

g = −(dy + (2u + vx)dt)2 + 4(dx + (2∂−1
x (vxux)− vy)dt)dt,

ω = (2ux + vxx)dy + (−8vxux − 4uy + 2vxy +
1
2
((2u + vx)

2)x)dt.

2.4. Hydrodynamic Type Reductions of the MS System

Let us consider a multicomponent generalisation of reduction (18) ψ̃ = ∏(λ− ηi)αi

and complement it with a standard waterbag ansatz [11] for the wave functions of MS inear
operators (9) ψ = λ + ∑ γj ln(λ− φj). Some special examples of related reductions were
considered in [12]. These reductions lead to (1+1)-dimensional systems of hydrodynamic
type, defining the dynamics with respect to y,

ηi
y − (ηi − vx)η

i
x − ux = 0,

φ
j
y − (φj − vx)φ

j
x − ux = 0,

vx = −∑ αiη
i, u = −∑ γjφ

j
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and with respect to t,

ηi
t − ((ηi)2 − vxηi + u− vy)η

i
x − (ηiux + uy) = 0,

φ
j
t − ((φi)2 − vxφi + u− vy)φ

i
x − (φiux + uy) = 0,

∂xvy = −∂y ∑ αiη
i = −∑ αi((η

i − vx)η
i
x + ux),

uy = −∑ γj((φ
j − vx)φ

j
x + ux).

These (1 + 1)-dimensional systems are compatible and their common solution defines
a solution of the MS system

vx = −∑ αiη
i, u = −∑ γjφ

j.

The Einstein–Weyl structure corresponding to this solution is given by expressions (15).
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