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Abstract: In this paper, we propose a novel method for plant leaves recognition by incorporating an
unsupervised convolutional auto-encoder (CAE) and Siamese neural network in a unified framework
by considering Siamese as an alternative to the conventional loss of CAE. Rather than the conventional
exploitation of CAE and Siamese, in our case we have proposed to extend CAE for a novel supervised
scenario by considering it as one-class learning classifier. For each class, CAE is trained to reconstruct
its positive and negative examples and Siamese is trained to distinguish the similarity and the
dissimilarity of the obtained examples. On the contrary and asymmetric to the related hierarchical
classification schemes which require pre-knowledge on the dataset being recognized, we propose a
hierarchical classification scheme that doesn’t require such a pre-knowledge and can be employed by
non-experts automatically. We cluster the dataset to assemble similar classes together. A test image
is first assigned to the nearest cluster, then matched to one class from the classes that fall under the
determined cluster using our novel one-class learning classifier. The proposed method has been
evaluated on the ImageCLEF2012 dataset. Experimental results have proved the superiority of our
method compared to several state-of-the art methods.

Keywords: plant leaves classification; hierarchical classification; Siamese neural network; convolu-
tional auto-encoder; one class learning

1. Introduction

Plants have a significant impact on human life and development; without them, there
will be no existence of the earth’s ecology [1]. Plants play a decisive role in providing
oxygen, clean air, food, etc. Additionally, they contribute to several tasks of scientists from
different domains such as agriculture, medicine, and environmental fields.

Traditionally, botanists classify plants manually by using molecular biology and
cellular features of leaves. Nevertheless, with the huge number of plants that exist on the
earth classification through experts and botanists is subjective and requires much effort
from experts. Besides, this process is too expensive in terms of time and effort.

On the contrary, with the development of computer software and hardware, mobile
devices, and image processing. Automatically performing such a task, using machine learn-
ing techniques, is rapid, inexpensive, and accurate as well. Automatic plant identification
has become a hot research topic in recent years.

Plants can be classified using their organs such as leaves, stems, fruits [2,3], or flowers.
Nevertheless, the leaf is the most adopted part for recognition purposes since it carries out
the plant’s inherent properties and it is available all the seasons, contrary to the other parts.
In addition, the leaf flatness makes it easy to represent it by machine.
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In the literature on this subject, many researchers have attempted to put forward
systems that are capable of automatically identifying plant species based on leaf images.
Some approaches have resorted to handcrafted features, such as shape, for describing
leaves [4,5] and texture for describing the veins [6,7] or by the combinations of both [8].
Some others have tackled the problem by introducing special discriminative plant leaf
features [9] (or domain knowledge) that are based on botanical characteristics. In general,
handcrafted features are defined manually and extracted through instructed algorithms.
However, as a matter of fact, this process is complex and requires changes and recalculation
for each problem or data set.

Recently, with the impressive performance of deep learning, neural networks can
learn essential characteristics directly and automatically from raw images. Deep learning
approaches have been successfully applied in solving different issues including facial
expression recognition [10], medicine classification [11], and plant identification [12].

Despite the considerable efforts that have been undertaken by researchers, automatic
plant identification from leaf images is still an open issue, and there is room for improvement.

In this paper, we put forward a novel hierarchical method for automatic plant leaves
recognition based on a novel classifier that consists of incorporating Siamese as an alterna-
tive to traditional loss within a convolutional auto-encoder (CAE). We consider a one-class
learning strategy, in which a CAE is trained for each class. For a test image from class #N,
the loss yielded by the class N’s auto-encoder is supposed to be much smaller compared
to the losses produced for the other classes. However, this raises another issue since the
CAE trained on complicated leaf images is capable of perfectly reconstructing those rela-
tively easier images from different classes. To handle such an issue, we propose training a
Siamese on top of each CAE (i.e., the CAE of each class). This one-shot learning strategy
(i.e., SCNN) is considered as intelligent loss, which is an alternative to the conventional
CAE loss. Siamese is integrated to learn symmetric/asymmetric between images belonging
to the same class and those from different classes, respectively.

Plants are organized in a hierarchical order (i.e., family, genus, and species). According
to the literature, hierarchical plant classification applied by the relevant methods [13,14]
consists in assigning test images (first to the coarse classes and then to the fine classes)
by progressing through the plant’s hierarchy (i.e., genus, and species). Nevertheless, this
process requires pre-knowledge of the dataset being classified, which is actually difficult
to do, especially for non-experts. In this paper, we propose a hierarchical classification
scheme that doesn’t require pre-knowledge, and which can be used by non-experts. Our
scheme consists in clustering the entire dataset to gather symmetric classes together. A
test image is first assigned to the most suitable cluster using a clustering algorithm and
then matched to one class from the classes that fall under the detected cluster by using our
novel one class learning classifier (i.e., CAE based on Siamese as an alternative loss).

The evaluation of the proposed method was carried out on a well-known dataset,
namely ImageCLEF2012. Experimental results have demonstrated the efficiency of our
method and a noteworthy performance has been reached compared to certain other meth-
ods. The remainder of this paper is organized as follows. A brief review of related work is
presented in Section 2. In Section 3, we describe the details of the proposed method. The
experimental results are presented in Section 4. Finally, we draw some conclusions for
future work.

2. Related Work

In recent years, a lot of effort has been made to achieve more reliability in automatic
leaf recognition. From the literature, two main approaches have been considered: plant
classification based on hand-designed features using a classifier and deep learning strate-
gies. For the first one, features are chosen manually and extracted through instructed
algorithms, then only a subset of the most discriminant features are considered the ob-
tained handcrafted features are used to train classifiers (SVM, NN, NB, etc. [15]). For the
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second one (i.e., deep learning), it can learn discriminative characteristics from the raw
images and recognize them automatically.

As instance for the hand crafted features, Hu et al. [16] proposed a contour-based shape
descriptor named the multi-scale distance matrix (MDM) for fast plant leaf recognition.
They used the matrix for pairwise distances between points sampled on the boundary of a
leaf to capture the geometric structure of the shape, and 1-NN in the classification stage.
In [17], Wang et al. proposed a method that uses a multi-scale arch height (MARCH), where
the hierarchical arch height features at the K-scale are extracted from each contour point to
capture concave and convex characteristics. This method provides a coarse-to-fine shape
description of the leaf. The recognition rate was calculated using the 1-Nearest-Neighbor
classifier, and a prototype system for online plant leaf identification was developed to be
used on a mobile platform. The authors in [18] proposed to represent the leaf contour using
two matrices. The first one is the sign matrix to extract the convex and concave features,
and the second one is the triangle center distance to extract the spatial properties of the
contour; the 1-NN is used for recognition.

Although leaf shape may be adequate to distinguish between some species, the shapes
of others may be highly symmetrical, making differentiation difficult. Such a problem
could be solved by taking additional leaf features such as texture and veins. According
to [15], GLCM and Gabor wavelet are the most commonly used texture features. Typically,
as in [9], wavelets have been used to decompose images, fractals to extract features, and
artificial neural network to classify leaf images. Ghasab et al. [19] used texture features
derived from GLCM, namely contrast, correlation, energy, homogeneity, and entropy, and
combined them with shape, color, and vein features. In [20], Kadir et al. built foliage
plant identification systems. Zernike moments were combined with other features (namely
geometric features, color moments, and gray-level co-occurrence matrix (GLCM)). The
results show that Zernike Moments have a prospect as features in leaf identification systems
once they are combined with other features. In [21], a modified local binary pattern was
proposed to extract texture features, and a simple nearest neighbor classifier was performed
for classification, to decrease the intra-class variation the clustering was exploited in order
to group symmetric leaf samples; the results prove that considering texture features alone
is not sufficient. In [22], the authors propose to classify plant species using 19 leaf venation
features using a support vector machine (SVM) with an RBF kernel. In [23], the authors
propose to identify plant leaf based on visual features using different artificial intelligence
techniques such as artificial neural networks, the naive Bayes algorithm, the random forest
algorithm, the K-nearest neighbor (KNN), and the support vector machine (SVM). The best
results were carried by SVM. In [24], the authors propose morphological features and the
support vector machine (SVM) with an adaptive boosting technique to classify plants.

Despite the effectiveness of the handcrafted features in the plant classification system,
such features are limited to specific conditions, if the characteristics of the images change
(e.g., over space or time), then the performance of these algorithms significantly decreases. In
the last few years, to overcome the drawbacks of existing approaches, deep learning methods
have proved to demonstrate significant success in several plant identification systems.

For instance, in [25], the authors proposed a CNN model for plant leaf classification
(Leaf-Net). The model was carried on three public datasets. The results prove that CNN
outperformed the hand-crafted method. In [26], the authors recognized leaf image at
different scales. Images are first down-sampled into multiples low resolution images. Then,
in order to learn different characteristics in various layers, the MSF-CNN is proposed.
The final feature is obtained by fusing all the last layer information. The classification is
performed using either a support vector machine (SVM) or multi-layer perceptron (MLP)
classifier. In [27], Lee et al. designed a hybrid feature extraction models for plant identi-
fication based on de-convolution neural network. They attempted to analyze how CNN
learn directly features from the raw representations of an input image. Their main con-
clusion was that veins are the best representative features compared to those of outline
shape. Ghazi et al. [28] analyzed the influence of different parameters, such as batch size
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and number of iterations, on the performance of the different deep learning architectures,
including Google-Net, Alex-Net, and VGG-Net. They revealed that the number of itera-
tions was the most significant factor that affects fine-tuning performance, whereas data
augmentation comes in the second place. In [29], the authors proposed to identify leaf
species by fine-tuning the Alex-Net.

In [13], the authors present a fine-grained plant leaf classification method based on the
fusion of deep models. The basic idea consists of the adoption of hierarchical classification
strategies by using two levels of CNN. In the first level, global features are extracted, while
in the second one, local features are considered. The fusion of the hierarchical levels is
conducted using a coarse-to-fine strategy (i.e., the predicted coarse categories (i.e., genus)
are used to define which subordinate category will be evaluated during the fine prediction
(i.e., species)). Similarly, in [14], the authors also proposed two representations as in
the previous work, albeit by considering Siamese at each level to overcome unbalanced
and scalable problems. In [30] they performed a comparison between Siamese and CNN
for plant species identification with small datasets. Their conclusion is that the Siamese
performed better than CNN in terms of lower computational cost and can generalize better
than CNN.

Despite the improvement brought by deep learning in plant recognition, most meth-
ods exploit it as a feature extractor whilst it has several properties that can be introduced to
improve and give reliable results. Furthermore, according to the literature, most methods
treat plant identification as a flat classification problem, whereas plant hierarchical organi-
zation may serve to accelerate and facilitate the identification process as well as reduce the
problem of inter-species.

3. Proposed Method

In this section, we give details on the proposed method for plant leaves recognition. In
this work, we propose a hierarchical plant classification system based on one-class learning
scheme with convolutional auto-encoder and Siamese neural network. The hierarchy of
our system consists mainly of two steps (clustering and classification). Figure 1 presents a
Hierarchical classification scheme followed by the proposed method.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 15 
 

 

final feature is obtained by fusing all the last layer information. The classification is per-

formed using either a support vector machine (SVM) or multi-layer perceptron (MLP) 

classifier. In [27], Lee et al. designed a hybrid feature extraction models for plant identifi-

cation based on de-convolution neural network. They attempted to analyze how CNN 

learn directly features from the raw representations of an input image. Their main conclu-

sion was that veins are the best representative features compared to those of outline shape. 

Ghazi et al. [28] analyzed the influence of different parameters, such as batch size and 

number of iterations, on the performance of the different deep learning architectures, in-

cluding Google-Net, Alex-Net, and VGG-Net. They revealed that the number of iterations 

was the most significant factor that affects fine-tuning performance, whereas data aug-

mentation comes in the second place. In [29], the authors proposed to identify leaf species 

by fine-tuning the Alex-Net. 

In [13], the authors present a fine-grained plant leaf classification method based on 

the fusion of deep models. The basic idea consists of the adoption of hierarchical classifi-

cation strategies by using two levels of CNN. In the first level, global features are ex-

tracted, while in the second one, local features are considered. The fusion of the hierar-

chical levels is conducted using a coarse-to-fine strategy (i.e., the predicted coarse catego-

ries (i.e., genus) are used to define which subordinate category will be evaluated during 

the fine prediction (i.e., species)). Similarly, in [14], the authors also proposed two repre-

sentations as in the previous work, albeit by considering Siamese at each level to overcome 

unbalanced and scalable problems. In [30] they performed a comparison between Siamese 

and CNN for plant species identification with small datasets. Their conclusion is that the 

Siamese performed better than CNN in terms of lower computational cost and can gener-

alize better than CNN. 

Despite the improvement brought by deep learning in plant recognition, most meth-

ods exploit it as a feature extractor whilst it has several properties that can be introduced 

to improve and give reliable results. Furthermore, according to the literature, most meth-

ods treat plant identification as a flat classification problem, whereas plant hierarchical 

organization may serve to accelerate and facilitate the identification process as well as 

reduce the problem of inter-species. 

3. Proposed Method 

In this section, we give details on the proposed method for plant leaves recognition. 

In this work, we propose a hierarchical plant classification system based on one-class 

learning scheme with convolutional auto-encoder and Siamese neural network. The hier-

archy of our system consists mainly of two steps (clustering and classification). Figure 1 

presents a Hierarchical classification scheme followed by the proposed method. 

 

Figure 1. Hierarchical classification scheme followed by the proposed method (stage1: cluster-
ing, stage2: classification using our novel method (classifier), TRC: the trained novel classifier, C:
the classes).

Through this section, we first show the general pipeline of our novel classification
scheme that is based on one-class learning strategy based on a convolutional auto-encoder
using a Siamese neural network as an intelligent loss. Then, we present details on each
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step, and at the end of this section, we will provide the general strategy of our hierarchi-
cal scheme.

3.1. General Pipeline of the Novel Classifier

In the proposed plant classification system, each image Ii is labeled with a label
from the set = {i/i = 1, . . . , n} , where n stands for the number of classes. For each class
ci we design a convolutional auto-encoder, denoted as CAEi. Images within class ci are
firstly fed to the encoder to generate the latent representation termed as R (Ij → R ), then
the decoder reconstruct the code R to produce the reconstructed image I′ j

(
R→ I′ j

)
. On

the top of each CAEi, a Siamese is integrated as an indicator for the class to which an
image sample belongs. After training CAEi for each class, Siamesei is trained using positive
examples (represent images Ii and its reconstructions I′ i generated by the trained CAEi)
and negative examples (represent images Ij and its reconstructions I′ j generated by the
trained CAEi/(j 6= i)). The Siamese is an efficient alternative of the conventional loss of
CAEi. This one-class strategy is repeated for all of the remaining classes.

To sum up, hereafter, we summarize the steps of our method

• In the first step, the unsupervised CAE of each class ci (from the set of classes =
{i/i = 1, . . . , n}) is trained separately using images of ci . Figure 2 presents the
flowchart of the first step.
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• In the second step, images intended to be used for SCNN training are generated.
For each class, original images, their respective reconstructed versions are serve as
positive examples as well as randomly selected images from other classes (i.e., other
than the concerned class) and their respective reconstructed versions serve as negative
instances, are prepared. Figure 3 presents the flowchart of the second step.

• In the third step, Siamese is trained using positive and negative instances prepared in
the previous step. (Where the size of negative and positive examples that are fed to
train Siamese is equal). Figure 4 presents the flowchart of the third step.

For a new probe p to be classified, a confidence score is generated for each class ci
by feeding p to CAEi + SCNNi. In particular, p is passed by each CAEi to generate its
reconstructed version p′. It is expected that once p and p′ are passed. By the actual class
(i.e., the class to which p belongs), a high similarity score will be yielded by the SCNN. On
the contrary, passing by other classes yields low similarity scores that are near to zero. A p
is assigned to the class having obtained the maximum confidence score.
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• To speed up computations and reduce more the problem of inter species, we have
opted for a hierarchical classification fashion by reducing the classification space based
on clustering images from different classes using K-means [31]. For a test image, it
is first mapped to the most appropriate cluster then matched solely with classes that
belong to the selected cluster using our novel classifier (CAE base on Siamese as a
loss). Figure 1 presents the two stages that the image feeds into our system.

3.2. Network Architecture and Loss Function

In our work, we have dealt with a convolutional auto-encoder that has been success-
fully applied to the computer vision domain. The convolutional auto-encoder is a subset
of convolutional neural networks. They are similar, but the difference between them is
that the weights in the CAE are shared among the inputs, preserving the spatial locality.
Due to the use of CNN’s integrated properties, some specific layers, such as convolutional,
pooling, and so on, aid in feature extraction. Each convolution operation represents a
filter that learns how to extract a specific plant feature by using filters. Following the
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convolutional operation, a pooling layer is usually included. The pooling layer reduces the
input data’s dimensionality.

In our work, for each class ci we have designed a convolutional auto-encoder CAEi,
images within the class ci are first fed to the encoder to generate the latent representation(

Ij → R
)

through a series of convolutional and max-pooling layers, then second to the
decoder with a series of de-convolutions and up-pooling layers to reconstruct the code(

R→ I′ j
)
.

3.2.1. Convolutional Auto-Encoder Architecture

It consists of four convolutional blocks: convolutional layer with 8 filters with 10 × 10,
Relu activation function, and max pooling layer; convolutional layer with 16 filters with
5 × 5, Relu activation function, and max pooling layer; convolutional layer with 32 filters
with 3 × 3, Relu activation function, and max pooling layer; convolutional layer with
64 filters with 3 × 3, Relu activation function, and max pooling layer; and finally the Dense
layer. Since we have to deal with CAE as a binary classifier (one class learning), the binary
cross-entropy is used as a loss function (Equation (1)):

BCE(y, p) = −y. log(p)− (y− 1). log(1− p) (1)

where y is the original image that we present to the AE and p is the reconstructed image
obtained by the AE. For the decoder we have used de-convolutional and un-pooling layer
it performs the inverse operation of the convolution layer and pooling layer. The network
has symmetric architecture, with the same number of layers and feature maps generated in
each layer in both parts.

Figure 5 gives an overview of CAE architecture. As it can be seen, this CAE is trained
for class a which it could reconstruct images from this class well, on the contrary images
from other classes (eg; b) can’t be well reconstructed since it is not trained for.
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3.2.2. Siamese Convolutional Neural Network Architecture, Loss Function

A Siamese neural network consists of two or more sub-networks that accept different
inputs but are linked at the top by an energy function. A Siamese CNN consists of two
symmetrical CNN neural networks both sharing the same weights and architecture. The
objective of the Siamese network is to learn whether two input values are similar or
dissimilar. Each CNN receives an input image, which is then processed through a series of
convolutional and max-pooling layers. The last volume containing the extracted features is
flattened into a 1D vector of features. A connected function will be used to connect the two
vectors extracted by the convolutional neural network.

In our work on the top of CAE, we integrate a Siamese, which consists of two CNN as
sub-networks of two convolutional blocks: convolutional layer with 32 filters with 10 × 10,
Relu activation function, and max-pooling layer; and convolutional layer with 64 filters
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with 7 × 7, Relu activation function, and Max pooling layer. The units of this convolutional
layer are flattened into a single vector using global average pooling. This vector is then
connected to a fully-connected layer (FCN) with 4096 neurons, a Relu activation function,
and a soft-max layer. In order to merge the obtained two vectors L1 is used, from [32] the
L1 distance since it is better than the L2 distance for Siamese based on CNN. A final dense
layer (fully connected layer) with a sigmoid activation merges all the values into a single
vector and produces the similarity or dissimilarity response. The dense layer computes a
weighted sum of the vector’s values (Equation (2)).

y =
N

∑
i=1

(W(i)× X (i)) + b (2)

where wi/(i = 1, . . . , n) represent the weights of the synapses of the dense layer; Xi
(i = 1, . . . , n) represent the elements of the merged vector achieved from l1 (Equation (3)). distance.

l1 = (|X11 − X21|, |X12 − X22|, . . . . . . . . . , |X1n − X2n|) (3)

where X1 and X2 are the two vectors obtained from the two CNN; n represent the number
of elements in each vector.

Then it adds a bias value to it and applies the sigmoid (σ) function (Equation (4)) to
this value. The outcomes are in the interval of [0, 1]. The cross-entropy (Equation (1)) is
exploited for training the network.

σ(y) =
ey

ey
+ 1 (4)

Figure 6 gives an overview of SCNN architecture. As it can be seen, this SCNN
is trained on negative examples (images from class b and its reconstruction from CAE
Figure 3) and positive examples (images from class a and its reconstruction from CAE).
Siamese is trained with the output of y = 1 for positive examples and y = 0 for negatives.
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The integration of the two architectures presents our novel classifier that is based on
CAE Using Siamese neural network as an alternative loss. Figure 7 present the architecture
of our novel classifier.
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3.3. Rationality of the Proposed Method

The main novelty in this work lies in considering a one-class learning strategy, where
CAE and SCNN are integrated into a unified framework. Indeed, it is well-known that
auto-encoder is an unsupervised network that is mainly used for dimensionality reduction
and features learning. However, in our case, we extend it to a supervised scenario by
considering loss values produced by each class. In particular, an auto-encoder is trained
for each class separately, and the loss value is considered as an indicator of the class to
which a test sample belongs. If a test sample is reconstructed for a class A with loss equals
to x, and for class B with a loss equals to y, and x < y, then we can assign the sample to
class A. Nevertheless, the CAE trained on complicated leaf images is eligible to punctually
reconstruct those of relatively easier images from other classes. To overcome this problem,
we propose using the Siamese neural network (Siamese for each class) as an intelligent loss
metric on top of each CAE to alleviate the shortcomings of conventional loss. For the sake of
illustration, the Siamese network of class 1 is trained using negative and positive examples,
where positive is the original leaf image from class 1 and its reconstructed image, and the
negative one is an image from other classes and its reconstructed one by the CAE of class 1.
For a test image that is from class 1, as SCNN1 is trained on maximizing confidence score for
original images from class 1 and their respective reconstructed versions (minimize the score
for images from other classes, respectively), passing by CAE1 (+ Siamese 1) will almost
produce a high similarity score. For another test sample from a class different than class 1,
CAE1 (+ Siamese 1) will produce a low similarity score, as SCNN1 is trained to do so. As for
testing strategy, some relevant works [13,14] have considered a hierarchical classification
procedure, wherein classification is firstly performed for the coarse classes, and then passed
to the subsequent levels in the hierarchy (i.e., genus, species). However, this procedure
requires pre-knowledge of the dataset being classified, which is predominantly not possible.
Thus, using those methods is limited to persons with knowledge of this field (i.e., experts).
In this work, however, we adopt a hierarchical classification scheme that doesn’t require
this pre-knowledge, making it feasible to employ our method by non-experts. We cluster
the whole dataset using K-means, such that each class falls exactly in one cluster. For
a test image, instead of performing matching with all classes, it is mapped to the most
appropriate cluster then matched only with classes that fall under the detected cluster. This
permits a reduction in the classification space, and thus speeds up the recognition process.

4. Experiment

This section is devoted to evaluating our proposed approach under different condi-
tions. In addition, we conduct a comparative evaluation against other recent works in
order to prove the effectiveness of our method.
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4.1. Dataset

ImageCLEF2012 leaf dataset: this dataset was created as part of the Pl@ntNet project.
Images are collected from Western European regions. ImageCLEF2012 is one of the most
challenging datasets due to its richness in terms of leaf categories (compound and simple
realistic), species, variability, and similarity between species. As well as, differences on the
acquisition level in terms of period, location and person. ImageCLEF2012 contains three
types of images which are: scan, scan-like and photograph. The scan images have a white
background, scan-like are images with minimal shadowing, and the photograph images are
captured in nature with an uncontrolled manner. In our experiments, we have considered
the scanned images, which represent 57% of the total database. There are 6630 images in
this subset; 4870 in the training set are from 115 species and 1760 in the test set are from
110 species. Each class contains between 2 and 249 images. Figure 8 depicts representative
samples from the ImageCLEF2012 scan dataset.
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4.2. Results

In this section, we will provide the results of our experiments. In all of the experiments,
we have used the same protocol of the ImageCLEF2012 scan dataset. Approximately
4870 images are for training and 1760 images are for testing. From the training set, we have
set 80% for training and 20% for validation.

4.2.1. Experiment 1: Measuring the Processing Time

As previously explained, the proposed model is made up of two components namely
unsupervised convolutional auto-encoder (CAE) and the Siamese convolutional neural
network that replaces the conventional loss function. The target of this experiment is to
demonstrate that our model can converge rapidly, and Siamese doesn’t require a high
processing time. The Siamese curve of train and validation accuracy of class one of the first
category are presented in Figure 9.

As can be seen from the two curves, our model can converge very quickly in more than
95% with only a few epochs. For example, at three and five epochs, the model achieved
93% and 94% for validation, respectively, and 96% and 97% for training, respectively. This
proves that our system does not require a high processing cost and can learn to predict in a
very short period of time.

To demonstrate that SCNN has improved our model and that it converges faster than
a model based solely on CAE. The training and validation loss of CAE and Siamese are
depicted in Figure 10. As can be seen in the first epoch, the CAE’s loss for training is
34% and 30% for validation that is higher than the loss of SCNN which is only 21% for
training and for 22% validation, two epochs after the SCNN has a training loss of 0.8% and
a validation loss of 10% that is lower compared to 18% and 16% of the CAE’s training and
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validation loss. From the curves, SCNN proves that it has improved our model and doesn’t
require a high processing time.
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4.2.2. Experiment 2: Confusion Matrix

Regardless of the high performance that yields our method, it seems to occasionally
confuse some leaf species. To discover the reason behind this confusion, we have to analyze
the results in more detail. To this end, we have generated the confusion matrix of one
category that contains 17 classes. The obtained confusion matrix are presented in Figure 11.

As it is illustrated in Figure 11, the confusion matrix provides more details about the
evaluation outcomes. For instance, we can see that misclassification occurs among the
species (21/41), (57/71), and (122/21) respectively. By taking a closer look at leaf images
belonging to these species, we found out that some of their samples look visually identical
in terms of color, veins and shape. Figure 12. Shows representative samples of a high
color/geometric symmetry between leaves belonging to different species.
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4.2.3. Experiment 3: Comparison with State of the Art

In this sub-section, we aim to compare the proposed approach with other recent and
relevant works on leaf classification. To do so, we opted for the ImageCLEF2012 dataset a
configuration as in [17]. This subset contains 4870 leaf images for training and 1760 leaf
images for testing. The performance evaluation standard employed was the same as [17].
Our comparison included a number of studies that were interested in leaf species and in
the ImageCLEF2012 dataset. Figure 13 presents curves that give the results obtained by
our novel method and the works involved.

Since we have dealt with categories and in order to get the final curve of the proposed
method, we have first obtained the top ten of each category then, the sum of them represent
our final curve. From the results, we can observe that our novel method (NM) achieves
the best recognition performance among all of the competing methods in only the top ten.
The recognition rate of our novel method is much higher compared to the deep learning
methods VGG16 and Alex-Net [16], and the recognition accuracy of our method is higher
than that of the two networks by 20% and 13%, respectively in just the top one. For the
handcrafted methods, our system has also yielded very good results compared to that of
the MDM [14], MTCD [4], and triangle-distance representation [16] methods; our system is
higher than the mentioned methods by 22%, 21%, and 10%, respectively, when only one
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candidate result is considered. These results indicate that the proposed approach using
hierarchical methods based on one class learning techniques can distinguish different plant
species very well. Furthermore, our novel system is well suited for large-scale images.
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5. Conclusions

An accurate hierarchical automatic recognition system based on a novel one-class
learning classifier has been presented in this paper. In contrast to the conventional ex-
ploitation of CAE and Siamese in our case, we have proposed to extend CAE for novel
supervised scenario by considering it as a one-class learning classifier in which a CAE is
trained for each class and a Siamese is integrated as an alternative to the conventional loss
of CAE. For each class, after training the CAE to reconstruct images from this class and
to reconstruct images from other classes, Siamese is trained to distinguish the similarity
and dissimilarity between the reconstructed leaf images from the trained class and the
reconstructed images from the remaining classes. In contrast to the related hierarchical
classification schemes, which require pre-knowledge of the dataset being recognized, our
scheme consists of clustering the entire dataset to gather similar classes together. This
strategy is simple, effective, and doesn’t require experts or botanists. The performance
of our system has been evaluated on well-known leaf datasets, namely ImageCLEF2012,
and the results demonstrate that our approach exceeds existing state-of-the-art methods.
A hierarchical representation has reduced the complexity of the process of classification
and reduced inter-species problems. Furthermore, our novel one class learning classifier
has outperformed the results of our system and the proposed intelligent loss; Siamese
has exceeded the results of the CAE. Our perspective in future work will be driven by
exploiting more objects that present hierarchical organization, and we expect to get reliable
results from this approach.
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