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Abstract: The symmetry SU(2) and its geometric Bloch Sphere rendering have been successfully
applied to the study of a single qubit (spin-1/2); however, the extension of such symmetries and
geometries to multiple qubits—even just two—has been investigated far less, despite the centrality
of such systems for quantum information processes. In the last two decades, two different ap-
proaches, with independent starting points and motivations, have been combined for this purpose.
One approach has been to develop the unitary time evolution of two or more qubits in order to
study quantum correlations; by exploiting the relevant Lie algebras and, especially, sub-algebras
of the Hamiltonians involved, researchers have arrived at connections to finite projective geome-
tries and combinatorial designs. Independently, geometers, by studying projective ring lines and
associated finite geometries, have come to parallel conclusions. This review brings together the
Lie-algebraic/group-representation perspective of quantum physics and the geometric–algebraic
one, as well as their connections to complex quaternions. Altogether, this may be seen as further
development of Felix Klein’s Erlangen Program for symmetries and geometries. In particular, the
fifteen generators of the continuous SU(4) Lie group for two qubits can be placed in one-to-one
correspondence with finite projective geometries, combinatorial Steiner designs, and finite quater-
nionic groups. The very different perspectives that we consider may provide further insight into
quantum information problems. Extensions are considered for multiple qubits, as well as higher-spin
or higher-dimensional qudits.

Keywords: multiple-qubit unitary operators; SU(4) and sub-groups; quaternions and groups; Fano
triangle, tetrahedron and simplexes; Klein’s Erlangen Program; geometric algebra; X-states of qubits;
finite projective geometries; design theory; Bloch sphere analogs

1. Introduction

This article deals with the symmetry aspects of quantum information systems [1].
The unitary group SU(2) symmetry of a single two-level system, a “qubit”, is well-known
and exploited widely; not just in quantum information, but throughout the field of physics.
It is taught in the very first courses on quantum spin-1/2. The so-called Bloch sphere
representation [2,3] has been used from the earliest days of nuclear magnetic resonance
(NMR). Its mapping of the unitary transformations of complex wave functions onto the
rotations of a classical unit vector attached to an ordinary sphere, S2, pervades the very
language of NMR and its applications in chemistry and medicine. It even provides the
intuition for transformations between quantum states in terms of axes, and angles of
rotation about them, to achieve a desired end. “Apply a π-rotation (’spin-flip’) about some
axis followed by a different rotation around a second axis”; such phrases form the lore of
the subject [4]. In contrast, the similar SU(4), that pertains to a two-qubit system, or higher-
dimensional extensions and their corresponding geometrical pictures, have been little-used
in the field of quantum information. This is in spite of such expectations, given the central
role that two or more entangled spins play in quantum computing, quantum cryptography,
and other sub-fields. It is even more surprising when we consider that quantum physics, as
well as its various developments in atomic, nuclear, condensed matter, and particle physics,
has repeatedly shown the importance, and even the necessity, of using symmetry—for
understanding, insight, and as a technical aid to facilitate calculation. Furthermore, the
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rotations and associated symmetries of orthogonal groups, SO(d), had even already been
studied in classical physics, before being used for quantum angular momentum (both
orbital and spin). In addition, quantum physics introduced the unitary groups, SU(d), as
natural objects for analyzing the time evolution of quantum states.

This review will examine the symmetry considerations that pertain to the operators
and states of interest for entanglement [1], quantum discord [5,6], and a variety of other
quantum correlations. Our examination will develop an understanding of, and provide
convenient calculations for, these correlations. We will consider two or more qubits and
also higher-dimensional “qudits” of dimension, d, larger than two. These require higher
unitary groups, such as SU(2q) for q qubits or SU(d) for a single qudit. Whereas the SU(2)
group, and the corresponding su(2) algebra (we follow the convention of using upper case
for Lie groups and lower case for Lie algebras), involve three generators and parameters,
the higher groups deal, of course, with many more. The SU(4), for two qubits, has fifteen
generators; any general SU(d) has (d2 − 1) of them. In part, these larger numbers may
have deterred the use of these groups. Their consideration nevertheless proves useful,
especially since smaller sub-groups of them often come into play for the physics and
symmetries of the system of interest. This will be a recurring theme of this review. As an
example, many sub-groups of SU(4) have been shown to represent some of the logic gates
and Hamiltonians that arise in coupled two-qubit systems (or in more general four-level
systems of atomic and molecular physics and quantum optics [7,8]). One such sub-group,
SU(2) × U(1) × SU(2), is also the symmetry of the seven-parameter X-states [9] that were
previously defined and used for a variety of qubit-qubit problems, before this underlying
symmetry was recognized [10].

A wider context for our discussion is provided by the famous 1872 Erlangen Program
of Felix Klein [11,12]. Instead of the centuries-old view of geometry as a set of axioms
that defined points, lines, triangles, and circles—as well as theorems relating to their
properties—Klein reinterpreted geometry as the study of symmetries and their associated
transformations; each such set then defined a particular geometry. Euclidean geometry is
just one kind, which stems from Euclidean transformations in a plane. However, there is an
infinite number of others, each of which depend upon the symmetries and transformations
which are initially specified. This re-orientation and focus onto geometries in the plural,
each associated with a set of symmetries, has had a profound effect on mathematics and
physics ever since. Coupled with Emmy Noether’s theorem, which associates each sym-
metry with a conservation law (i.e., an invariant of that symmetry), the most fundamental
laws of physics—namely, the conservation laws of linear and angular momentum, energy,
charge, etc.—place symmetries at the heart of physics [2,3,13].

The influence on modern physics by Klein, as well as his contemporary colleague and
friend Sophus Lie [14], who developed the subject of continuous symmetry groups such
as SO(d) and SU(d), cannot be stressed enough. Havel and Doran [15] have produced a
striking diagram which represents this historical influence. Reproduced here as Figure 1,
they classify subsequent work into three separate ladders. The first is the study of invariants
along with geometric relations, subsumed under a general study of algebraic curves and
surfaces in the area of mathematics called algebraic geometry. A second ladder, initiated
by Grassmann, which ties to quaternions (invented by Hamilton even before the advent
of the Klein Program), has come to be known as geometric algebra. Closely linked to
Clifford algebras, it is the study of tensors and spinors of various ranks, differential forms,
etc. Its value has been recognized in recent times in the work of Baylis, Sobcyzk, Doran,
Lasenby, Hestenes, and others. Hestenes, in particular, has shown how classical and
quantum mechanics, both non-relativistic and relativistic, can be described by geometric
algebra—to great advantage—throughout his works and textbooks. This even extends to a
pedagogical benefit, when compared to alternative treatments that have otherwise become
standard [16–18]. The third ladder is group representation theory; originated by Frobenius,
it mainly became the work of Lie and Engel in the area of mathematics called Lie groups
and Lie algebras [19]. Physics students are most familiar with this third ladder, as well as
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the matrix representation that it most commonly uses, because of the wide-ranging role for
orthogonal SO and unitary SU groups.

Figure 1. Felix Klein’s Erlangen Program and its subsequent developments along three ladders,
adapted from [15]. Klein initiated the view of geometries as characteristic of symmetries of trans-
formations and their symmetry groups. The study of invariants, and of polynomials involving
them, led to the study of algebraic curves and surfaces, termed algebraic geometry. Tensors, spinors,
quaternions, Clifford algebras, and the study of differential forms came to be known as geometric
algebra. Its passionate followers advocate adopting it over what physicists have come to call the
“vector algebra”—not really an algebra—which has prevailed in physics. A third chain was the study
of group representations; both of discrete groups and continuous Lie groups and Lie algebras. Matrix
representations of these have come to dominate contemporary physics.

Although symmetries and transformations are also important in classical physics, they
became even more crucial from the very beginnings of quantum physics and its applications
in atomic, condensed matter, nuclear, and particle physics. Most physicists are, therefore,
familiar with SU(2), SU(3), SU(4), SO(3), SO(4), etc., while not as much with geometric
algebra, quaternions, Grassmann manifolds, or similar areas. However, in the last 20 years,
different lines of investigation in quantum information, and especially the study of pairs
of qubits, has pointed to further inter-connections between the topics described in the
previous paragraph; in particular, connections across the different ladders in Figure 1.
These links between continuous Lie groups and algebras, the finite discrete groups of one
or more quaternions, finite projective geometries (another field pioneered by Klein and
contemporaries, notably Gino Fano), and balanced incomplete block designs [20,21] (in
an area called design theory [22]) will be discussed in this review. It is remarkable that
the fifteen generators of the qubit-qubit SU(4) symmetry connect these disparate fields.
The same number of generators in re-arranged combinations describe SO(6), the group of
six-dimensional rotations, as well as the closely allied non-compact groups SO(4,2) which
describe the hydrogen atom in non-relativistic quantum mechanics [2,23]. In addition, there
are fifteen Dirac matrices, which occur throughout relativistic field theories and particle
physics [24], and fifteen points form the important finite projective geometry PG(3,2).
The finite group of complex quaternions also has the same number of elements. Thus, our
discussion of these disparate elements highlights the many cross-connections between the
three ladders, providing additional insight into what seem to be widely different topics.

This review is, broadly, in two parts. Section 2 constitutes the first, which deals with
the time-evolution operator of multiple qubits that is used in quantum information. This
operator is derived on the basis of a particular Lie algebra of generators that close under
commutation. The second part, contained in Sections 3 and 4, concerns the various sub-
algebras that may be involved, as well as other correspondences to the various elements
of Figure 1, such as geometric algebra, discrete groups of quaternions, finite projective
geometries, and combinatorial designs. Most of this is applied to multiple qubits, but easy
extensions to higher-dimensional qubits are indicated in Section 5.
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2. Unitary Evolution Operator

As more generally throughout quantum physics, the unitary operator, U(t), of time
evolution for a Hermitian Hamiltonian, H(t), plays a central role. (Even more general ex-
tensions to non-Hermitian Hamiltonians and Lindblad-type master equations, for handling
decoherence and dissipation, are possible. This would be through the embedding of the
elements of an n× n density matrix in an (n2 − 1)-dimensional space [25]; however, our
discussion will be confined to Hermitian and unitary language.) The basic equations of
motion, as well as the time development of wave functions, density matrices, and operators,
are governed by this U(t). The algebraic and geometric description of this unitary operator
is, therefore, central to quantum physics and quantum information science. This review’s
focus is on U(t). This particular U(t) took on greater importance for quantum information
in the aftermath of a paper by Luo [26], which set the course for handling correlations such
as the quantum discord of a composite system, AB, that call for all possible measurements
on one of the sub-systems. The logic is that local measurements on A or B alone cannot
change quantum correlations, but can provide all classical correlations. These can then be
separated from the total correlations of AB, in order to leave behind what must be quantum
correlations. Even though discord or other alternatives may have deficiencies as correlation
measures [27], the importance of the unitary evolution operator is independent of, and
more general than, any specific use of it.

To give concrete meaning to “all possible measurements”, either in a theoretical
calculation or as an operational experimental procedure, Luo [26] considered, for a single
qubit, the pair of Stern–Gerlach or von Neumann projections with respect to some z-axis,
Π±. They were then subjected to a general unitary transformation,

Ai = UiΠ±U†
i . (1)

This provides a well-defined procedure to handle all possible measurements and
resonates intuitively with the physics of a charged spin-1/2 particle. Its measurement
is a Stern–Gerlach measurement with two possible outcomes: either of the antipodal
points on the Bloch sphere. One then rotates that axis of orientation of the anisotropic
magnet through all positions in three-dimensional space, thus exhausting all possibilities
for measuring the qubit. This can, of course, be generalized to other spins, and also to qubits
with a more general POVM (positive operator valued measure [28]) than a von Neumann
projector of them but again using a general unitary U(t) of the relevant dimension in
Equation (1). This points to the requirement of such unitary evolution operators for multi-
qubit systems, in order to understand correlations or to construct logic gates in quantum
information systems.

For the SU(2) of a qubit, the general unitary transformation is unambiguous and
well known:

Ui = tI + i~y ·~σ, t2 +~y2 = 1, (2)

in terms of the unit operator and the Pauli matrices~σ, with a scalar t and vector ~y coeffi-
cients. Three parameters then describe all the measurements on sub-system A. This basic
procedure of Luo [26], initially for a very limited subset of qubit-qubit states, was later
adapted [29,30] for a larger class of density matrices called X-states [9,10]. These are of
the form,

ρ =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

. (3)
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They were, at first, named for their visual appearance, with non-zero entries standing
only along the diagonal and anti-diagonal in a 4 × 4 matrix representation in the canonical
basis. With three real diagonal elements and two complex off-diagonal ones, this is a
seven-parameter set. (Local unitary transformations can reduce this to five real parameters,
by removing the phase angles of the complex elements through unitary rotations [31].)
While smaller than the full 15 parameters of the most general qubit-qubit density matrix,
many calculations of entanglement and of other properties, as well as their evolution under
unitary or dissipative processes, can be easily carried out for such states. This makes
them appealing objects for study. Many specific states of interest, such as the maximally
entangled Bell states [1] and ’Werner’ states [32], are a sub-class of X-states, lending further
importance to their examination. The fact of fewer parameters in an X-state does not restrict
the range of physical phenomena investigated; a large variety of qubit-qubit physics can be
discussed using these states. At the same time, the restriction in the number of parameters
simplifies calculation, which accounts for their popularity. The symmetry group and
algebra of X-states will be discussed in detail in Section 3.1.

Even though SU(2) has three parameters, as does U(t) in Equation (2), it turns out
that only two are of interest, and can be identified with the two angles on the Bloch sphere.
This reduction is clearest in the symmetry decomposition of SU(2) as the base S2 and a one-
dimensional “fiber” U(1), or pure phase. The latter element commutes past the projector in
Equation (1) so as to cancel itself out in U and U†, leaving only the two Bloch angles of S2.
This has been formalized as a simple prescription in [30], which is applicable to calculations,
such as quantum discord, in a general density matrix of AB—for any dimension of B, so
long as A is a qubit. This prescription also removes the restriction to X-states, as described
in the previous paragraph, and can handle all qubit-qubit density matrices. The symmetry
decomposition of the SU(2) U(t) will be taken up in Section 2.1. It leads, suggestively, to
a similar treatment of any SU(N) in Section 2.2, thereby providing a compact and simple
procedure to construct U(t) for any dimension. Furthermore, for X-states, the θ Bloch angle
(latitude) describing U(t) suffices; that is, φ (longitude) is unnecessary. Studies [30,33]
have found that, in over 99% of tens of thousands of randomly chosen density matrices,
the extremum that produces quantum discord is reached at the extreme angle θ = π/2.
The initial prescription [29] seems to leave a very small worst case error [34] with regard to
this conclusion.

2.1. Derivation of Evolution Operator for a Qubit

Solving the Schrödinger equation for the evolution operator, idU(t)/dt = H(t)U(t),
U(0) = I, is straightforward for a qubit. We will set h̄ = 1. A non-zero trace of H can first be
filtered out as a phase factor. Since the rest can be cast in terms of the three Pauli spin oper-
ators, U(t) has three corresponding exponential factors, with each Pauli spinor multiplying
a time-dependent coefficient in the exponent. Conventionally, one would use the three
Cartesian Pauli spinors, the coefficients then being real Euler angles of rotation. They obey
a system of coupled, first-order (in t) differential equations, familiar from Euler equations
for rigid-body rotations in classical mechanics [35]. (This connection also points to differing
terminologies—for many purposes, one could refer to so(3) instead of su(2) or SU(2), but
we will use the unitary language in this review. Some of the mathematics literature uses
so(3) instead.) However, these Euler equations are highly nonlinear, involving sines and
cosines of the coefficients. Instead, and also conveniently for our later generalization to
higher SU(N), we [36–38] use the step-up/down combinations σ± ≡ σx ± iσy that lead to
simpler equations and interpretations.
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Along with σz, this alternative triplet choice of Pauli matrices spans the complete
algebra, so that a full solution for U(t) takes the form of a product of three exponential factors,

U(t) = ez(t)σ+/2ew∗(t)σ−/2e−iµ(t)σz/2. (4)

The complex quantities z, w, and µ are classical functions, vanishing at t = 0. The so-
lution is by construction [36]. Plugging Equation (4) into the evolution equation and
re-arranging operators through the Baker–Campbell–Hausdorff identity (Equation 2.3.47
in [2]) is all that is required to acquire the defining equations for z, w, and µ. We also
acquire the relations between them that guarantee that the overall U(t) is unitary, even
if the individual factors in Equation (4) no longer are as in the Cartesian decomposition.
Furthermore, those three relations reduce the three complex coefficients which are now
involved, again, into three real independent parameters. With w essentially the complex
conjugate of z, the three linearly independent quantities may be taken to be the real and
imaginary parts of z and Re µ. The last is determined by quadrature involving z, while z
itself is solved using a self-contained Riccati equation [36–38].

The complex quantity z may then be inverse stereographically projected onto the
“Bloch sphere” [2] by defining a unit three-dimensional vector ~m [37]. The nonlinear Riccati
equation for z then becomes the linear Bloch equation, d~m/dt = −2~B× ~m. However, z, ~m,
and the Bloch sphere account for only two of the three parameters of the full SU(2) problem,
the third being the phase parameter Re µ. Thus, the full (local) geometric description
is a “spiked unit sphere”, as shown in Figure 2, with the spike at each point on the
sphere representing a U(1) phase. This is what mathematicians call the “fiber bundle”
[SU(2)/U(1)] × U(1), with [SU(2)/U(1)] ∼ S2 the “base manifold” and the U(1) phase the
one-dimensional “fiber” [39]. The evolution operator U(t) in Equation (4) can be pictured
schematically as in Figure 3. Its structure, with the first two factors in Equation (4) being
triangular and the third being diagonal, suggests easy generalization, to be considered in
Section 2.2.

Figure 2. The fiber bundle for SU(2), with the Bloch sphere as a base manifold, and spikes on each of
its points representing a U(1) phase. The three parameters defining a point on the sphere, in terms
of two Bloch angles and a value for the phase at that point, provide the complete description of the
dynamics of a spin-1/2 system. These dynamics amount to rotations of the shown unit Bloch vector.
From [37].
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Figure 3. Structure of the 2× 2 matrix evolution operator in Equation (4) for SU(2). The three factors
involve, respectively, the Pauli spinors σ+, σ−, and σz. A single complex number z provides the
first two matrices, shown schematically as the Bloch sphere obtained through inverse stereographic
projection of z. The third factor is a diagonal matrix, defined through a single number or phase
depicted as a line or spike, which enters with opposite signs in the two entries. The complete fiber
bundle, SU(2) : S2 × U(1), in Figure 2 may be viewed in the above factorized form. The same form of
three factors can be generalized, as discussed later in Figure 4 in Section 2.2, to any SU(N), with the
first two factors providing the base manifold and the third the fiber. From [37].

Figure 4. Analogous to Figure 3, schematic of the evolution operator for general su(N) as three factors
but now of block matrices—the last of the diagonal blocks of lower dimension. For concreteness,
the so(5) sub-algebra of su(4) is illustrated when z consists of four real parameters, and shown as
inverse stereographically rendered by a four-sphere S4; the third factor has two su(2) blocks along
the diagonal. This is shown geometrically later in Section 3.2. From [37].

This unitary integration procedure has as its its key feature, and as the only algebraic
manipulation needed, the Baker–Campbell–Hausdorff identity (Equation 2.3.47 in [2]),
which involves a sequence of successive commutators of the operators that occur in the
problem. It is for this reason that Lie algebras and Lie groups arose and have fit naturally
into quantum physics applications. It also means that unitary integration seems to have
been introduced independently several times, even if not named as such. The earliest
occurrence may be in [40], so that it may be referred to as the Wei–Norman method. It
is related to, but different from and more convenient than, the Magnus expansion [41],
and has had a revival since the mid-1980s for su(2), su(1,1), and also quantum spin-1 cases,
among many different groups [42–45]. For problems involving two qubits and the algebra
su(4), different applications were developed in the last twenty years, again independently,
for Cartan decompositions of su(4) in quantum control [46,47] and more generally [48].
A decomposition of U(t) for su(4), into factors of local unitaries of individual qubits and
a 3-parameter diagonal unitary matrix, was produced independently in [47,49] and [50].
Related work on generating entanglement dynamics and the minimum number of unitaries
required can be found in [51].

With 15 generators and their commutators involved (and eight for su(3) of a single
spin-1), products which require so many exponentials, as in Equation (4), become unwieldy.
Symmetries that restrict to a smaller number of generators of sub-algebras, especially in
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an NMR problem using just seven, help practical implementation [7]. In the next section,
we consider a derivation of U(t) that can handle this. Then, in Section 3, we consider
some of the main sub-algebras of su(4) which are involved, as well as their associated
physical systems.

2.2. Derivation of Evolution Operator for SU(N)

The above construction of U(t) in the form of a three-term product, as in Equation (4)
and Figure 3, can be carried over to any N-level or SU(N) problem. Thereby, the form
and simplicity of the N = 2 case can be extended to arbitrarily large N. The final result
is very simply stated based on symmetry patterns alone. Consider the N-dimensional
Hamiltonian H(N) as 2× 2 blocks,

H(N) =

(
H(N−n) V

V† H(n)

)
, (5)

with n, 1 ≤ n < N, an arbitrary choice. The diagonal blocks are square matrices, while
the off-diagonal V is (N − n)× n, and V† is n× (N − n). These latter two are taken as
Hermitian adjoints, and H(N) is considered traceless; however, much of our construction
applies more generally [25,37].

With a 2× 2 block view of the N-dimensional H, a solution for U(t) can be written, in
close analogy to Equation (4), as a product of three 2× 2 block matrices; the first two having
one non-zero off-diagonal block while the last is block-diagonal. This structure, of two
idempotent factors (the multiplication of two such matrices resulting in a similar matrix
with a zero off-diagonal block) and a third that is block diagonal, was a result of our chosen
step-up/down combination rather than Cartesian operators in Equation (4), and proves
crucial. The rectangular matrices, z and w†, now stand in place of the complex numbers
z and w, respectively, in Equation (4). This key step is illustrated in Figure 4, in direct
analogy to Figure 3; now, however, the entries in the 2 × 2 structure are block matrices.
First, one solves the equation satisfied by z, now a matrix Riccati equation [52]. For unitary
problems, the matrix w is simply related to z, again as in the N = 2 case [37]. Additionally
from z, effective Hamiltonians are constructed for the two diagonal blocks of the third
factor in U(t), for subsequent handling as smaller SU(N− n) and SU(n) problems. We refer
to [37] for details. For any N, and choice of n, the procedure can thus be iterated down
to a final SU(2). One can describe this construction as following the spirit of Schwinger’s
method of building higher angular momentum, j, representations of SU(2) as products of
the “fundamental” j = 1/2 [2,3]. However, instead of the different representations of the
same SU(2) that are used in Schwinger’s method, we instead construct representations of
different SU(N) in terms of a succession of three-factor products of block matrices, which
are of the same form as the three Pauli factors in SU(2)’s Equation (4).

Typically, n will be chosen to be 1 or 2. In the former case, z is a vector of (N − 1)
complex zi. Furthermore, the lower diagonal block in the effective Hamiltonian is a single
element, and its corresponding element in U(t) is a phase. This generalizes the fiber bundle
description for SU(2) to SU(N) with a base manifold SU(N)/[(SU(N− 1)×U(1)]. Iteratively,
one can reduce from N to a lower value, extracting a U(1) phase at each step [37,38]. This is
called the flag manifold. The construction for SU(3) is given in [53]. The case n = 2 is also
interesting and useful; here, the lower block in H is a 2× 2 matrix. Again, the Hamiltonians
and unitary matrices at each step can be explicitly worked out [37] using Pauli algebra. We
will return to this in Sections 3.2 and 3.3, after considering sub-group symmetries that may
apply in a high N case.

3. Sub-Group Symmetries and Sub-Algebras

The previous section constructed U(t) for any SU(N) no matter how large N is. There
is an explosive growth of N for multiple qubits, with N = 2q for q qubits, and N even larger
for multiple qubits of higher dimension. However, physical situations often introduce
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further symmetries, which limit us to a smaller number which can be handled more easily.
As already noted, even for SU(4) of q = 2 with fifteen operators and parameters in general,
Hamiltonians and states may involve fewer operators and parameters, so that identifying
a corresponding sub-group to which they belong can be useful. Many SU(2) and SU(2) ×
SU(2) are trivial examples of such sub-groups of SU(4). The latter would pertain to two
completely independent spins with no coupling between them. In that case, U(t) does not
need to be written as a product of fifteen exponentials, but more simply as two factors of
the form in Equation (4) for each qubit or SU(2). These six operators and the unit operator
close under commutation, further dividing into two independent sets. The other nine need
not be invoked at all. The unit operator is the only one that commutes with everything in
this sub-group; the only “center” in the language of group theory.

A less trivial, but very important, example is the sub-group SU(2) × U(1) × SU(2),
which involves seven operators and parameters in a Hamiltonian with this sub-group
symmetry. The U(1) is a single, but non-trivial, operator, that also is a center, commuting
with all six others which themselves can be arranged as two independent SU(2) or sets of
three. In quantum error correction, it is referred to as the “stabilizer” [54]. In this case, again,
U(t) splits into two independent factors as in Equation (4), with an additional exponential
in the U(1) element. Concrete examples occur in logic gates and Hamiltonians in quantum
information theory [7]. Two independent spiked Bloch spheres, as in Figure 2 and the
previous section, along with a U(1) fiber element linking them, provide a geometrical
rendering of this kind of sub-group symmetry. The decomposition into the sub-algebra of
the previous paragraph is referred to as so(3) ⊕ so(3) in Equations (45) and (46) of a general
mathematical study [15], which also noted a seven-dimensional so(2) ⊕ so(3) ⊕ so(3) in
its Section 5. Quantum physics applications have pointed to its importance in a variety of
problems [7,37].

Other sub-groups of SU(4) include, of course, several SU(3) of sets of eight generators,
as well as SO(5), the rotation or orthogonal group in five dimensions with 10 generators.
Again, many instances occur in quantum optics, quantum information, atomic and molecu-
lar physics [37]. To identify all such sub-groups systematically, a table of commutators of all
fifteen operators of SU(4), shown in Table 1, proves useful [8,37,55]. It follows immediately
from inspection, for instance, that every row or column of this table has seven zeroes. This
means that every one of the fifteen can play the role of the non-trivial center in an SU(2)
× U(1) × SU(2) sub-group. (Other sets that close under commutation, of eight or ten, can
also be seen in Table 1 to represent SU(3) and SO(5) symmetry, respectively; this is to be
discussed in Section 3.2.)

Different notations have proved useful; a sequential set Oi, i = 1, 2, . . . 16 [7,37,55] is
applicable to any four-level system, or the direct products of two sets of Pauli operators
when there is a two-qubit origin can be written as (I, I ⊗ σi, τi ⊗ I, τi ⊗ σj). Two different
symbols, σ and τ, prove convenient for two independent spin-1/2 qubits; however, for
easier generalization to more qubits, an upper index~σ(i) serves better [55]. When dealing
with three components, the natural short-hand notation of (X, Y, Z) proves convenient.
Thus, XZ denotes τxσz, σ

(2)
x σ

(1)
z or O11, while IX is σx and ZI is τz, or O5 and O3, respec-

tively. Table 2 gives the complete list, along with a correspondence to the Dirac gamma
matrices [24] used in relativistic quantum field theories. Yet another notation is a conve-
nient 4-binary labelling that we will take up in Section 3.5. In addition, a mapping onto
complex quaternions and their finite groups, along with a different binary labelling, will
be discussed in Section 3.6. Yet another labelling, in terms of bivectors Gij to be discussed
in Section 4, is also shown. The Dirac gamma matrices constitute four four-vectors—γµ,
µ = 1− 4—denoted V and obeying anti-commutation relations. Six anti-symmetric prod-
ucts of two of them are denoted: T(ensor) as σµν = − i

2 γµγν. One P(seudo-scalar) γ5 is the
product of all four gamma matrices, and four pseudo-vectors or A(xial vectors) are given
by iγ5γµ [24].
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Table 1. Table of commutators displaying a closed algebra of fifteen operators Oi of the SU(4) group for a pair of qubits.
Each entry provides the commutator [Oi, Oj]. The seven zeroes in any row or column point to sub-groups SU(2) × U(1) ×
SU(2). Other sets of eight and ten that close under commutation give, similarly, SU(3) and SO(5) sub-groups, respectively.
From [7,8,55].

OX O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

O2 0 0 0 iO6 −iO5 iO8 −iO7 0 0 0 0 iO16 −iO15 iO14 −iO13

O3 0 0 0 0 0 0 0 iO10 −iO9 iO12 −iO11 iO15 −iO16 −iO13 iO14

O4 0 0 0 iO8 −iO7
i
4 O6 − i

4 O5 iO12 −iO11
i
4 O10 − i

4 O9 0 0 0 0
O5 −iO6 0 −iO8 0 iO2 0 iO4 0 0 −iO16 −iO14 0 iO12 0 iO11

O6 iO5 0 iO7 −iO2 0 −iO4 0 0 0 iO13 iO15 −iO11 0 −iO12 0
O7 −iO8 0 − i

4 O6 0 iO4 0 i
4 O2 iO15 −iO13 0 0 i

4 O10 0 − i
4 O9 0

O8 iO7 0 i
4 O5 −iO4 0 − i

4 O2 0 iO14 −iO16 0 0 0 − i
4 O9 0 i

4 O10

O9 0 −iO10 −iO12 0 0 −iO15 −iO14 0 iO3 0 iO4 0 iO8 iO7 0
O10 0 iO9 iO11 0 0 iO13 iO16 −iO3 0 −iO4 0 −iO7 0 0 −iO8

O11 0 −iO12 − i
4 O10 iO16 −iO13 0 0 0 iO4 0 i

4 O3
i
4 O6 0 0 − i

4 O5

O12 0 iO11
i
4 O9 iO14 −iO15 0 0 −iO4 0 − i

4 O3 0 0 − i
4 O5

i
4 O6 0

O13 −iO16 −iO15 0 0 iO11 − i
4 O10 0 0 iO7 − i

4 O6 0 0 0 i
4 O3

i
4 O2

O14 iO15 iO16 0 −iO12 0 0 i
4 O9 −iO8 0 0 i

4 O5 0 0 − i
4 O2 − i

4 O3

O15 −iO14 iO13 0 0 iO12
i
4 O9 0 −iO7 0 0 − i

4 O6 − i
4 O3

i
4 O2 0 0

O16 iO13 −iO14 0 −iO11 0 0 − i
4 O10 0 iO8

i
4 O5 0 − i

4 O2
i
4 O3 0 0

Table 2. Dictionary for the fifteen operators Oi of the two-qubit system [7,8,55] in alternative languages: as direct products
of individual Pauli matrices of the two spins in the second row; the same in shorthand in the third row; in allied binary
notation with square brackets in the fourth row; as Dirac gamma matrices in the sixth row; in other combinations of Dirac
matrices in the seventh [13,24]; next as the bivectors Gij of [15]; and in complex quaternions (i, j, k) with K an independent
square root of −1 in the last row, along with an allied binary in round brackets in the fifth row.

O3 O10 O9 O2 O4 O12 O11 O6 O8 O14 O16 O5 O7 O15 O13
1
2 τz

1
2 τy

1
2 τx

1
2 σz

1
4 τzσz

1
4 τyσz

1
4 τxσz

1
2 σy

1
4 τzσy

1
4 τyσy

1
4 τxσy

1
2 σx

1
4 τzσx

1
4 τyσx

1
4 τxσx

ZI YI XI IZ ZZ YZ XZ IY ZY -YY XY IX ZX YX XX
[0100] [1000] [1100] [0001] [0101] [1001] [1101] [0010] [0110] [1010] [1110] [0011] [0111] [1011] [1111]
(0101) (1110) (1011) (0010) (0111) (1100) (1001) (1010) (1111) (0100) (0001) (1000) (1101) (0110) (0011)
− i

2 γ1γ2 − i
2 γ3γ1 − i

2 γ2γ3
1
2 γ4

i
4 γ5γ3

i
4 γ5γ2

i
4 γ5γ1 − i

2 γ5γ4
1
4 γ3

1
4 γ2

1
4 γ1 − 1

2 γ5 − i
4 γ3γ4 − i

4 γ2γ4 − i
4 γ1γ4

Σ3 Σ2 Σ1 γ4 A3 A2 A1 α5 γ3 γ2 γ1 γ5 α3 α2 α1

G03 G02 G01 G30 G33 G32 G31 G20 G23 G22 G21 G10 G13 G12 G11

−i −Kj −Kk i ±I Kk Kj Ki −K k j K −Ki −j −k

3.1. The SU(2) × U(1) × SU(2) “Fano Sub-Group” Symmetry and X-states

As mentioned above, an interesting sub-group, or sub-algebra, of the 15-generator
SU(4) is provided by a subset of seven of them which plays a role in many physical
systems. To identify them, Table 1 shows that each of the 15 operators Oi can serve as a
non-trivial center U(1), since it commutes with six others. Take as an example the operator
ZZ, or O4, which we will use as a running example in later sections—we emphasize,
however, that any of fifteen choices can serve. Its six companions in such a sub-group
are (IZ, ZI, XX, YY, XY, YX); that is, (O2, O3, O13−16). For charged spin-1/2 particles
in an external magnetic field along the z-axis, the Hamiltonian, with scalar couplings
(XX, YY, ZZ) and what are termed cross-coherences (XY, YX), is an example of a physical
situation with this sub-symmetry [7]. It is realized in the CNOT quantum logic gate
constructed out of two Josephson junctions [56]. Another example is to take ZI, or O3,
as a center. Now, the other six are (IX, IY, IZ, ZX, ZY, ZZ) or (O5, O6, O2, O7, O8, O4); or,
more compactly, (~σ, τz~σ). That is, all three Pauli matrices of the first spin, along with their
multiplication by (any) one of the matrices of the second, such as τz, clearly provides six
matrices that commute with this choice of center ZI. These two examples differ, however,
in their quantum entanglement properties.

While they do not, as they stand, split into two sets of three that mutually commute
with each other, the linear combinations 1

2 (I ± Z)⊗ (X, Y, Z)—that is, the triplet 1
2 (IX +

ZX, IY + ZY, IZ + ZZ) and similar triplet with minus signs—indeed provide two sets of
triplets that obey SU(2) commutation relations within themselves, while each member
commutes with all three of the other set. The operators 1

2 (I I ± ZI) behave like projection
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operators. The presence of a non-trivial center, along with the trivial unit center, leads
immediately to such projection operators and a division of the space into two separate
ones. These are termed, generically, P and Q; with P + Q = 1, P2 = P, Q2 = Q, PQ =
QP = 0. For the purposes of unitary integration, since only commutation relations enter,
the evolution U(t) does indeed simplify into two independent factors, as in Equation (4),
which may be termed pseudo-spin SU(2)s [7]. The prefix “pseudo-” is invoked because
each member of the triplet no longer squares to unity, as with Pauli spinors, but into the
overall commuting objects 1

2 (I I ± ZI), involving both centers. Note that, in more general
contexts beyond our currently considered multiple qubits, the presence of a non-trivial
center that squares to unity leads to a similar decomposition into orthogonal P and Q spaces.
While all fifteen Oi lead to such a separation into two complementary projected spaces
within a set of seven generators, only the nine involving both spins can accommodate
quantum entanglement, as will be discussed further below. Explicitly, when ZZ is the U(1)
center, the two mutually commuting SU(2) triplets are 1

2 (XX−YY, XY +YX, IZ + ZI) and
1
2 (XX + YY, XY−YX, IZ− ZI). They square to 1

2 (I I ± ZZ), and again behave similarly
to pseudo-spins, but cannot be written in the same factorized form of ⊗ of the two spins
(as at the beginning of this paragraph) for the center ZI (or for any choice of center with
only one of the spins).

The above discussion for operators and generators of a sub-group symmetry of SU(4)
applies also to the states of a two-qubit system. In a matrix representation, they are again
equivalent to 4 × 4 Hermitian matrices. The general 4 × 4 density matrix of pure or
mixed states is characterized by 15 parameters, three real ones along the diagonal and six
complex off-diagonal elements in a Hermitian matrix. It was natural in the original heuristic
definition [9] to denote those with only two non-zero off-diagonal entries, namely those on
the anti-diagonal, as X-states, from visual appearance, as in Equation (3). There are now
seven parameters in all, and this indeed provides an instance of the previous paragraph’s
SU(2) × U(1) × SU(2) sub-group symmetry [7]. Depending on the center U(1), the density
matrix may or may not look like the letter X, but this symmetry perspective shows their
commonality [10]. In addition, under operations by members of that same set of seven
operators, the X character of the physical system is preserved. This proves very convenient
in many physical applications, by reducing the number of parameters and operators that
we are required to handle. This accounts for the popularity of discussing the X-states
of a two-qubit system. It also points toward a natural extension; to higher multiples of
qubits and of higher-dimensional qudits. We will take this up in Section 3.4. We note that
both the Lie-algebraic aspect—that the seven operators close under commutation—and
their Clifford-algebraic structure—that they close under multiplication—are important [10].
A mathematical description of the occurrence of such sets, due to Clifford groups, is
in [57,58].

Analytical handling is also simplified, reducing to merely evaluating traces. This is
because all the Oi are traceless and square to unity. With any such subset of seven {Xi} out
of the Oi, the density matrix that remains invariant under their operations can be rendered
as a linear superposition of them,

ρ = (I + ∑
i

giXi)/4, (6)

in analogy to that for a single spin, (I + ∑i giσi)/2. The seven real coefficients gi in
the sum in Equation (6) parametrize X-states, and are given by Tr[ρXi]. Eigenvalues,
and entanglement or other correlation properties, can be expressed compactly in terms of
these coefficients [10]. Furthermore, the triplet structure of the Lie–Clifford algebra is most
conveniently captured geometrically, in Figure 5 [10,55,59,60].

This figure, a beautifully symmetric pattern in its own right, occurs in projective
geometry as the “Fano Plane” [22], where it is described as the finite projective geometry
PG(2,2). Arranging the seven operators at the vertices, the mid-points of the sides, and in
the center of an equilateral triangle, the seven lines shown (including the inscribed circle)
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each pass through three points, providing the multiplication rule for those {Xi}. The center
U(1) element occupies the center of the triangle. On the three un-arrowed median lines, all
three operators mutually commute, so that the product of two gives the third, regardless of
order. On the four arrowed lines, the operators mutually anticommute, so that the product
of two gives (±i) times the third, with plus (minus) signs along (against) the line of the
arrow [10,55]. They may be termed “cyclic”, to contrast with “commuting” (also called
isotropic in [61] and orthogonal in [62]) for the other set of three medians. The central
element commutes, of course, with all six of the others. Each of those six has one ’conjugate’
element with which it commutes, and four with which it anticommutes. All of this can be
read off by merely glancing at Figure 5, which provides simple rules for their manipulation
when calculating entanglement and discord [10]. Indeed, this figure may be regarded as
a direct extension of the “(i, j, k) cycle”, familiar from the multiplication or commutation
of the Pauli operators for a single qubit. (Additionally, in vector product and quaternion
multiplication rules.) It seems natural to call this Figure 5 the “Fano triangle”, after its
Italian geometer originator Gino Fano, and the sub-group symmetry of two qubits as
the “Fano sub-group”, in addition to its designation as the Fano Plane of finite projective
geometry [22].

Figure 5. The multiplication diagram for the seven operators that underlie X-states. Resembling the
Fano Plane, each operator stands on three lines, and each of the seven lines, including the inscribed
circle, has on it three operators. All lines are equivalent in finite projective geometry; as are all
points. On the interior medians, the product of any two operators gives the third, with these objects
commuting. On the remaining four lines, the operators anticommute, and the product of any two
gives, cyclically, the third, with a multiplicative ±i; the plus (minus) depends on the direction along
(against) the arrow. In the Fano Plane, all seven lines would be arrowed. The points are shown in
quaternionic (Section 3.6), binary (Section 3.5), and two-qubit labelling. With quaternions, the center
is ±1, but for two-qubits any of the fifteen generators can occupy that center (ZZ shown as an
illustrative choice). Endpoints of medians are related by a change in sign of the quaternions and an
I ↔ Z, X ↔ Y “duality” in the qubit generators. Adapted from [10,55,59,60].

Besides the labels of the Xi that are shown, Figure 5 also displays a binary and a
quaternionic labelling to be discussed in subsequent sub-sections. For the purpose of
this later discussion of quaternionic groups, note the placement of the ijk cyclic triplet on
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four lines, with one minus sign on the three edges and three minus signs for the circle;
the cyclicity arrow is used in opposite senses between them. The extension to octonions,
that have seven independent square roots of −1 and all seven lines arrowed, will be taken
up at the end of Section 3. In addition, the finite projective geometry PG( 2, 2), of seven
points and seven lines, with a complete duality between these points and lines, differs
interestingly from the finite Euclidean geometry EG(2, 2) of four points and six lines—this is
obtained by dropping the midpoints in the diagram and terminating the median lines at the
center. In finite geometries, only the points matter, and not the continuous lines connecting
them. Furthermore, while two points define a line in Euclidean geometry, three do so in
projective geometries. Another perspective is that the midpoints in Figure 5 are points “at
infinity”, just as the circle is a line at infinity in Euclidean terms, but projective geometry
makes no distinction between points at infinity and “regular” points at finite location.

In Dirac language, a sub-set of seven operators in a Fano sub-group —such as, for ex-
ample, the one at the beginning of this section with ZZ = O4 as the center—are one A, three
V, and three T of three indices different to the ones chosen in A. Other possibilities are one
V plus three each of T and A, or P plus the six T. Now, classify the Dirac matrices into five
groups: three γi, three Ai = iγ5γi, three αi = −iγiγ4, three Σi = −iγjγk (cyclic), and the
three singletons A4 = γ4, γ5, α5 = −iγ5γ4. In terms of these five classes, the 15 Fano
sub-group sets are (γi; Σi, αj, αk, Aj, Ak, α4),(Ai; Σi, γj, γk, αj, αk, γ4),(αi; Σi, γ5, γj, γk, Aj, Ak),
(Σi; γ4, γ5, γi, αi, Ai, A4),(γ4; A1−3, Σ1−3),(γ5; α1−3, Σ1−3),(α5; γ1−3, Σ1−3). In each set of
seven, the first entry, separated by a semi-colon, is the commuting U(1) element. A glance
at the sets shows the involvement of the five classes in natural symmetric patterns. In-
terestingly, the division of 15 Dirac gamma matrices into five classes, four triplets or
vector quantities and three scalar ones, parallels a geometric discussion where twelve are
numbered numerically and three with alphabets a, b, and c [62], or an analogous division
among the generators of the group symmetry of the hydrogen atom [23]. These connections
between widely disparate problems may deserve further exploration.

While each Oi acting as a center produces 15 different X-states, they differ in terms
of their quantum entanglement which rests on the cross-correlation between the 1–2 and
3–4 sub-spaces of each spin of the two-qubit system in the canonical basis. When the Oi
is a single spin operator in Table 1, it does not mix these two spaces, and the projection
operators provided by such a center do not describe entanglement. As an example, neither
the O2 = IZ nor the O3 = ZI diagonal operators, with (1, 1, −1, −1) and (1, −1, 1, −1)
entries along the diagonal, respectively, has entanglement, whereas for O4 = ZZ with
(1, −1, −1, 1), X-states may display entanglement for certain values of the parameters
in the density matrix. The first of the three diagonal operators acts as a unit operator of
opposite sign in the 1–2 and 3–4 spaces of the two qubits; the second, similarly, within 1–3
and 2–4, which are the spaces of same spin orientation—up or down. It is the third, with
center ZZ and grouping 1–4 and 2–3, that pairs a qubit with another of the opposite spin.
This simultaneous involvement of both particle and spin seems necessary for quantum
entanglement. There is a striking correspondence to Dirac theory, where the lower 3 and 4
components of negative-energy electron states are reinterpreted as positive-energy positron
states, with a similar spin-flip involved; the 4 interpreted as up spin and the 3 as down
spin of the positron (Section 3.10 of [24]). Thus, charge conjugation in that context is the
analog of the entanglement of two qubits.

Such a sub-division of the 15 into 6 + 9, with single and double spin centers—the for-
mer always separable while the latter may admit entanglement—has also been discussed
in detail from a finite geometric perspective [58]. Fifteen different Fano planes are listed in
their Appendix A. A particular type of geometric hyperplane, called a perp-set, is identified
as a symplectic polar space of rank 2 and order 2, called W(3, 2). Depending on a unique
quadric Q0 of this space, that involves only non-trivial Pauli matrices, and whether the
perp-sets intersect that quadric tangentially or transversally, one can distinguish the groups
of 9 and 6, respectively. An X-state set, such as (ZZ, IZ, ZI, XX, YY, XY, YX) from the
beginning of this section, is described in that language as one vector, ZZ, that is orthogonal



Symmetry 2021, 13, 1732 14 of 34

to the other six [61] (in place of commuting in Lie-algebraic language). There will be further
discussion in Section 4, but note that the simpler perspective is provided by spin/qubit
language in terms of the nature of the center, whether it is a single or double spin operator.
In terms of Dirac matrices, it is the nine (γi, Ai, αi) as centers that exhibit entanglement,
not the other six of the Σi and the singletons enumerated above.

3.2. The SO(5) “Desargues Sub-Group” Symmetry

Identifying sub-group symmetries other than the Fano sub-group of the previous section
proceeds, again, through the commutator Table 1 and by picking subsets that close under
commutation as triplets. As mentioned, such a closed sub-algebra is all that is required for
efficient construction of the evolution operator U(t). Thus, (O2, O3, O13−16, O5, O6, O11, O12)
is such a set. Atomic and molecular four-level systems often have Hamiltonians that involve
only ten parameters, because of the dipole selection rules for transitions between the four
states. As a result, two parameters characterize energy positions along the diagonal, as in the
case of two identical qubits when they share the same energy separation, and four complex
off-diagonal dipole couplings display such a sub-group symmetry. Together then, ten real
parameters define such a system [37]. It is the symmetry SO(5) of five-dimensional rotations.
(Actually, it is the double covering group Spin(5), just as SU(2) is such a cover of SO(3);
however, the distinction is unimportant for most of our discussion.)

As in the previous SU(2) × U(1) × SU(2) Fano sub-group, there are many such SO(5)
that can be identified in Table 1. Indeed, the above set of ten operators, when compared with
a similar set in Section 3.1, has the first six common, while the previous center of that Fano
sub-group has been removed and replaced with the last four. This points to a systematic
way of picking out the SO(5) examples, just as before for SU(2) × U(1) × SU(2). Again,
for every Oi in Table 1, pick the six other zeroes in that row or column and supplement
by four others as required to close the sub-algebra. In terms of Dirac matrices, the above
mentioned set of ten are four of the γ, with indices 1, 2, 4, and 5, and their pairwise
combinations. That is, three each of V, A, and T plus P. There is no involvement of the
γ3. On the other hand, an alternative set of ten (O2, O3, O13−16, O7, O8, O9, O10), with the
same initial six, but a different set of four (to replace the O4 element) is V+T with no
involvement of γ5 or any pseudoscalar aspect. Yet another example is A+T, in the language
of Dirac matrices.

The pleasing geometric figure of an equilateral triangle with an inscribed circle, as
well as seven line triplets of seven operators (Figure 5), provided a rendering of the Fano
sub-group in Section 3.1. Similarly, the well-known Desargues diagram of projective
geometry [63,64], placing ten points on ten lines, produces a rendering of the SO(5) sub-
group which may, therefore, be called the “Desargues sub-group”. Various renderings are
in [55,59], as well as in [65], whose Figure 5 refers to it as the “Petersen” graph, dual to
a five-point “ovoid”. These objects are to be discussed further in Section 4. Yet another
geometric alternative, that follows the previous paragraph’s prescription of dropping the
center in the set of seven and adding four others, is to remove the center and add a new
vertex off the plane of the triangle, along with edges to the other three already-extant
vertices and their corresponding three mid-points. This produces the next order simplex
after the 2-simplex triangle, namely the 3-simplex tetrahedron, which represents the SO(5)
Desargues sub-group. The ten lines are the six edges and four face circles of a tetrahedron,
which will be shown and discussed in Section 3.3.

We turn now to the evolution U(t), as per Equation (4); for such an SO(5), the Hamil-
tonian with N = 4 is most naturally chosen as n = N − n = 2, so that all handling is
of 2 × 2 block matrices. For the ten-parameter H, a convenient representation [37] is
H(t) = F21σ

(2)
z − F31σ

(2)
y + F32σ

(2)
x − F4iσ

(1)
z σ

(2)
i + F5iσ

(1)
x σ

(2)
i − F54σ

(1)
y , where the ten arbi-

trarily time-dependent coefficients Fµν(t) form a 5× 5 antisymmetric real matrix, keeping
with the aspect of five-dimensional rotations. (We will use µ, ν = 1− 5 and i, j, k = 1− 3
with summation over repeated indices.) As noted, several quantum optics and multiphoton
problems of four levels, driven by time-dependent electric fields, have such a Hamiltonian.
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It has also been considered extensively in coherent population transfer for many molecular
and solid state systems [66]. Casting this Hamiltonian in the form of Equation (5), we have

H(1,2) = (∓F4k −
1
2

εijkFij)σk, V = iF54I(2) + F5iσi. (7)

The 2 × 2 block matrix z in Figure 4 obeys a matrix Riccati equation, and the four
entries (µ = 1− 4) can be chosen as real: zµ = z4, zi; z = z4I(2) − iziσi. The equation for zµ

takes the form [37]
dzµ/dt = F5µ(1− z2

ν) + 2Fµνzν + 2F5νzνzµ. (8)

(As an alternative, V and z can also be rendered in terms of quaternions (1,−iσi)). We can
now construct a five-dimensional unit vector ~m out of the four real z,

mµ =
−2zµ

(1 + z2
ν)

, m5 =
(1− z2

ν)

(1 + z2
ν)

, µ, ν = 1− 4. (9)

The nonlinear Equation (8) in z, takes on a simple, linear Bloch-like form,

dmµ/dt = 2Fµνmν, µ, ν = 1− 5, (10)

which is the obvious analog of the Bloch equation of a single spin involving the cross prod-
uct; that is, its higher-dimensional antisymmetric counterpart for rotations in five dimensions.

Solving this provides the first two factors in Figure 4, as well as the effective Hamil-
tonian for the two diagonal blocks of the third factor, which may in turn be analyzed as
the spiked Bloch sphere of a single SU(2) [37]. As in the single-spin case, one can perform
an inverse stereographic projection, now from the four-dimensional plane z ∈ R4 to the
four-sphere S4. It provides a higher-dimensional polarization vector for describing two
spin problems such as these. Hamiltonians possessing Spin(5) symmetry are, therefore,
described by the geometrical picture of one S4 and two S2 spheres, along with two phases,
as shown in Figure 6, and the unitary evolution operator depicted as in Figure 4. The for-
mer base manifold is similar, albeit of higher dimension than that of a single qubit, while
the fiber is now a six-dimensional object and not a single phase. This can be pictured as
two spiked Bloch spheres sitting on each point of the base manifold. Although a much
larger, ten-dimensional, object than in the single-spin case, it is nevertheless an elegant and
accessible generalization of Figure 2 [37].

Figure 6. Analogous to Figure 2, the fiber bundle for a two-qubit system that involves an so(5)
sub-algebra of the full su(4). The base manifold is now a four-sphere S4, at each point of which is a
six-dimensional fiber consisting of two spiked-spheres of su(2), as in Figure 2 [37].
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3.3. SU(3) Sub-Groups and the Complete SU(4) Hamiltonian Involving all Fifteen Operators

Other sub-group symmetries of SU(4) include SU(3) with eight parameters; these can
be thought of as two independent energy parameters along the Hamiltonian’s diagonal and
three complex off-diagonal couplings. A general three-level system, embedded into four
with the fourth level completely uncoupled, constitutes a trivial example of such an su(3)
sub-algebra. However, less trivial examples can also occur. The z now contains two non-
zero complex z for a total of four parameters. The description [53] of this four-dimensional
manifold, as well as the remaining SU(2) and a U(1) phase, parallel the discussion of the
general SU(4) that we now take up. Their manifolds are, however, more complex than
spheres and one-dimensional fibers.

Moving beyond sub-groups to the full SU(4), consider an arbitrary 4× 4 Hamiltonian
with its entire complement of 15 operators/matrices. This H is obtained by adding five
additional terms to the previous Spin(5) Hamiltonian in Section 3.2: F65σ

(1)
z + F64σ

(1)
x +

F6iσ
(1)
y σ

(2)
i . This corresponds to the energy levels being arbitrarily positioned, as they

would be in a general four-level (not necessarily two-qubit) system, and the two other
couplings restored. Correspondingly, Equation (7) acquires an additional term, ±F65I(2),
in the diagonal H(1,2). Meanwhile, in V, the F5µ are replaced by F5µ − iF6µ. Thus, the full
SU(4) amounts to a simple modification to the previously considered Spin(5), executed
by adding a term, which is proportional to the unit operator, to the diagonal blocks and
making the four F5µ complex; F6µ is absorbed as their imaginary parts [37]. A full 6 × 6
antisymmetric collection of generators (see Appendix B of [37]) may then be viewed as the
symmetry SO(6) to be discussed further below.

Combined with the tetrahedron introduced above for the ten-parameter SO(5), the full
fifteen-parameter SU(4) completes that figure by adding the four face centers and the body
center. In turn, there are now 35 triplet lines that have Lie–Clifford algebra. Besides the
previous 6 edges and 4 face circles, there now are 12 medians, 4 altitudes, 3 lines that
link the body center to two midpoints, and 6 that link two face centers to a midpoint.
The full tetrahedron is shown in Figure 7 [55]. A similar description is provided in [67]. It
is difficult to display all of the 35 lines, but Figure 8 of [62] makes a good attempt. Each
of the four faces of the tetrahedron is now a Fano subgroup. A less immediately visual
one is formed by the six midpoints and body centre of the tetrahedron; the seven lines
now being the facial circles and the three lines connecting opposite midpoints to the body
centre. The various Desargues sub-groups of 10 points and 10 triplet lines (6 edges and 4
face circles, as noted) with their labelling, and the ovoid consisting of five complementary
points, are shown in [67].

In constructing U(t), now for the full SU(4), the Riccati Equation (8), now for complex
z, becomes

dzµ/dt = F5µ(1− z2
ν)− iF6µ(1 + z2

ν) + 2Fµνzν

+ 2(F5ν+iF6ν)zνzµ−2iF65zµ, µ, ν = 1− 4. (11)

Just as the structure of Equation (8) suggests that zµ and (1 − z2
ν), with suitable

normalization, define a five-dimensional unit vector ~m in Equation (9), we now have the
same for a set of six complex quantities ~m. The nonlinear Riccati equation for the four
complex zµ in Equation (11) becomes a linear Bloch-like equation, as before, but now in six
dimensions,

dmµ/dt = 2Fµνmν, µ, ν = 1− 6. (12)

Once again, the mµ obey a first-order equation with an antisymmetric matrix which
describes rotations in six dimensions. Since the 15 Fµν are real, the real and imaginary
parts of the six mµ each obey a six-dimensional rotational transformation. The geometrical
picture is of a Grassmannian manifold [37], with details as follows. The six complex mµ

obey three constraints, and thus describe a nine-dimensional Stiefel manifold St(6, 2, R)
with SU(4)/[SU(2) × SU(2)] symmetry. This differs in a phase parameter from an eight-
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dimensional Grassmannian manifold Gr(4, 2, C), according to St(6, 2, R) ' Gr(4, 2, C) ×
U(1). Such a Gr manifold describes the four complex zµ. An alternative view, in terms of a
five-sphere S5 that has two orthogonal six-dimensional unit vectors radiating from its origin,
each of which rotated within that sphere, is given in [37]. Yet another description is to use
what are called Plücker coordinates—six complex parameters which identify complex hy-
perplanes of Gr(4, 2, C), and are again discussed in [37]. They have been further discussed
for pure states of three qubits, which is also a system with 15 real parameters, and used [68]
for transforming between the so-called W and GHZ (Greenberger–Horne–Zeilinger) states
that are familiar from quantum information theory [69]. Such a transformation has also
been discussed using a SU(2) × SU(2) sub-group symmetry [70].

Figure 7. The fifteen generators of two qubits placed on a tetrahedron (3-simplex) in bi-quaternion,
4-binary, and qubit language. Vertices are the quaternion (kij) with corresponding binary (0xyz) of
one non-zero unit entry for the base, as in Figure 5, and an independent imaginary unit K placed at
(1000). Midpoints of the six edges and four face centers, obtained by binary addition or quaternionic
multiplication, are shown, with the face center of the base kept as ±1 (as in Figure 5). The body
center is −K. Triplet lines, 35 in number, are the 6 edges, 12 medians on the faces, 4 face circles, 4
altitudes, 3 of the body center with a pair of opposite midpoints (such as (−i,−K, Ki)), and 6 that
link two face centers with a midpoint (such as (−Kj,−Kk,−i)). With the choice of qubit-qubit ZZ
as center, same as in Figure 5, points are also labelled in terms of those generators as per Table 2.
Dropping the face and body centers gives the 10 point, 10 triplet lines (6 edges and 4 face circles) of
the Desargues sub-group of Section 3.2. Note a duality between face and edge midpoints, or corners
and midpoints, marked by a change in sign of the quaternions or the interchange of generators
I ↔ Z, X ↔ Y. Adapted from [55].

The occurrence of five- and six-dimensional antisymmetric equations in Equations (10)
and (12) that are simple generalizations of the familiar vector Bloch equation for a single
qubit, reflects the isomorphism between the groups SU(4) and SO(6) (more accurately, its
covering group Spin(6): SU(4): SO(6) ∼ SU(4)/Z2). They suggest a mapping between
the 15 generators of these groups, as given in Equation (B1) of [37]. That mapping also
extends to the full set of operators that describe the non-relativistic hydrogen atom and



Symmetry 2021, 13, 1732 18 of 34

its transitions in quantum mechanics [23]. Interestingly, this correspondence between SU
and SO symmetries is only present in the single- and two-qubit problems; it does not hold
for any higher number of qubits. This fact rests on a curiosity in number theory called
the Ramanujan–Nagell theorem, which states that the Diophantine equation which relates
squares of integers and integer powers of two, 2n = k2 + 7, has solutions for only five
values of integer n and k [71].

3.4. Larger Numbers of Qubits and Their X-States

Recognizing the symmetry group and structure behind X-states permits simple gen-
eralization to a larger number of qubits. For this purpose, when we step back from
two-qubits to a single qubit, any 2 × 2 density matrix looks necessarily like the letter X!
It has, of course, SU(2) symmetry. The Fano sub-group symmetry of two-qubit X-states,
SU(2) × U(1) × SU(2), may be regarded as repeating the previous one-qubit SU(2), along
with attaching the center U(1) in between. This view also fits into a 4 × 4 density matrix,
interpreted as two 2 × 2 ones of 1–4 and 2–3 spaces in the canonical basis, with a mutual
phase between these spaces. This specific breakdown into 1–4 and 2–3, as in Equation (3)
and the example in Figure 5, as opposed to other 2 × 2 breakdowns, will be discussed
further below. The generalization to a higher number of q qubits is immediate. At each step,
two copies of the previous step, with an added U(1) in between, provides the corresponding
symmetry and set of X-states. Thus, for a system of three qubits, the SU(2) × U(1) × SU(2)
× U(1) × SU(2) × U(1) × SU(2) group of 15 generators, a sub-group of the full SU(23 =8)
of 63 generators, is the sub-group symmetry of the relevant three-qubit X-states. This
corresponds to seven real diagonal and four complex anti-diagonal elements in an 8× 8
matrix. For any q, the full symmetry group is SU(2q) with an explosively large number
(22q − 1) of generators; however, the smaller 2q+1 − 1 set provides the X-states and their
operators. These q-qubit X-states constitute the finite projective geometry PG(q, 2) and,
for q = 3, can be geometrically represented by the same 3-simplex tetrahedron (in Figure 7)
that was used for all two-qubit generators. When compared to general mixed states, pure
states additionally form a subset with fewer parameters; that number coincides with the
X-state values above, so that, again, the same figures can be used to represent them.

X-states of a two-qubit system entail seven parameters, whereas those with three
qubits have fifteen; this latter value is also the number of generators or independent
parameters of a full two-qubit system, suggesting an interesting nesting of projective
geometries. PG(2, 2) of seven sits within PG(3, 2) of fifteen, with an additional eight
members that may be seen as the vertices of a cube (Figure 8). This triangle-plus-cube
provides an alternative to the tetrahedron in Figure 7, representing all fifteen operators and
35 triplet Lie–Clifford lines of the full SU(4), as discussed in Section 3.3. The Fano triangle’s
seven vertices and seven triplet lines are supplemented by the eight vertices and 28 triplet
lines (12 edges, 12 medians of faces, 4 body diagonals) of the Clifford cube, as shown in
Figure 8. Such a cube has been used by computer scientists to represent a three-color (RGB)
imaging scheme [72]. Generalizing to higher q, the PG(q, 2) of X-states has 2q+1 − 1 points
running through the sequence 3, 7, 15, 31, 63, . . ., each with the previous number of lines,
triangles, tetrahedrons, etc., as supplemented by the hypercube of (q + 1) dimensions
with 2q+1 vertices: 4, 8, 16, 32, . . .. On the other hand, the total number of parameters
for a density matrix of q qubits is the sequence 3, 15, 63, 255, . . . of PG(2q-1,2), which is
the number of all generators of SU(2q) [73,74]. A binary labelling in the next sub-section
provides another convenient addition to these algebraic and geometric perspectives of
such sequences; for example, see Equation (13). The identification of Clifford algebras
with PG(n, 2) over GF(2), the Galois field of order 2, for n = 2− 4 has also figured in the
mathematics literature, although from a different approach. This was found in [75,76], and
independently by another group [77,78], who have also investigated the connection of
these projective geometries to qubits.
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Figure 8. The Clifford Cube as a complement to the Fano Plane/Triangle of Figure 5. The x, y, and z axes are laid out along
the horizontal, vertical, and into the page directions, respectively. The 3-binary of Figure 5 is extended to the 4-binary (txyz)
by adding the 8 vertices/corners of the cube, starting with (1000) and corresponding new imaginary unit K, and placing
the (0xyz) as midpoints of edges, faces, and the body of the cube to complete it by binary addition or multiplication of
quaternions by K. Corresponding qubit generators are shown, as also in Table 2, for the same choice, made before, of ZZ as
center. Single arrows show a quaternionic multiplicative flow of a circuit connecting six of the vertices, leaving the corners
±K unvisited. Double arrows at those corners show the sense of multiplication of qubit operators for four “cyclic” lines
there, the other three being commutative, unarrowed lines. Dual ±(ijk) of opposite signs occur pairwise on midpoints of an
edge and its orthogonal face, with the same multiplied by K as opposite corners of the cube. Points left unlabelled, to avoid
clutter, carry the same labels as their corresponding geometric counterparts shown with labels. The 12 triplet lines of the
edges and face diagonals, together with 4 body diagonals for a total of 28, supplement the 7 in Figure 5 to give the full set of
35 for the qubit-qubit pair described in Figure 7. Adapted from [55].

3.5. A Binary Labelling for Multiple Qubits

The four generators of unity and the Pauli~σ of a single qubit have a natural 2-binary
labelling that is widely used in quantum information: I : 00, σz : 01, σy : 10, σx : 11 [1].
The extension to multiple qubits is immediate upon adding another such pair for each
new qubit. Thus τxσx or, alternatively, σ

(2)
x σ

(1)
x or XX, is assigned to [1111], and a three-

qubit register [000010] would represent I(3) I(2)σ(1)
y , while [110110] would be the operator

σ
(3)
x σ

(2)
z σ

(1)
y . Corresponding base-10 values of these binary strings, ranging from 1 to

22q − 1, and the sequence 3, 15, 63, 255, . . . noted in the last sub-section, would uniquely
label states or operators of q qubits [55,67].

An alternative extension is more economical for the smaller number of X-states
(also the number of pure states) noted in the previous paragraph. Note from the above
four labels for a single qubit, the rule that an initial 0 reads the subsequent entries as
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0 : I, 1 : Z, whereas an initial 1 reads instead 0 : Y, 1 : X, in what follows. In [73],
they were named Di and Ai, respectively. This interpretation also contains the natural
“duality” that is noted throughout this paper; that of I ↔ Z, X ↔ Y. Extending that
rule to larger strings, the seven qubit-qubit X-states are rendered as 3-binary strings:
000 : I, 001 : IZ, 010 : ZI, 011 : ZZ, 100 : YY, 101 : YX, 110 : XY, 111 : XX. Generalizing
to multiple (q) qubits, each step introduces an additional slot in the binary string, group-
ing all Z operators under Di and all (X, Y) under Ai; for example, the 3-qubit X-states
have (Z1, Z2, Z3, Z1Z2, Z2Z3, Z3Z1) in the first set and (X1X2X3, Y1X2X3, X1Y2X3, Y1Y2X3,
X1X2Y3, Y1X2Y3, X1Y2Y3, Y1Y2Y3) in the second set for the total set of 15 operators in-
volved [73]. A variant that is, aesthetically, a better fit to geometric pictures and to a
quaternionic rendering was presented in [55]; it will be discussed below in Section 3.6.

This more economical (q + 1)-binary, running from 1 to 2q+1 − 1, which applies both
to X-states of q qubits and to pure states of (q + 1) qubits, has a natural connection to the
geometric diagrams and finite projective geometry PG(q, 2) discussed in the previous sub-
section. Each successive step in q introduces an initial 0 before the previous string, along
with a new set having an initial 1. Thus, indeed, the sequence 3, 7, 15, . . . is the previous
number plus the number of vertices of a hypercube. Geometrically, to each previous line,
triangle, tetrahedron, etc., a new vertex is added in a new dimension, represented by the
initial 1 which is connected to all the previous vertices. The new vertex, and its introduction
of mid-points on the new connections to the ones of the previous q, matches the qubit-
generator prescription referred to in the previous sub-section, wherein we duplicated the
generators and added a single U(1) to move to the next step. The iteration can also be
compactly rendered as

PG(q, 2) = PG(q− 1, 2) + EG(q, 2), (13)

where iterating obviously results in PG(q, 2) = EG(q, 2) + EG(q− 1, 2) + . . .; a string of
hypercubes. This is in conformity with a more general expression for PG(n, m),

PG(n, m) =
mn − 1
m− 1

= mn + mn−1 + . . . = EG(n, m) + EG(n− 1, m) + . . . . (14)

3.6. A Quaternionic Correspondence

Hamilton’s quaternions, a four-dimensional division algebra, has long been regarded
as an alternative to Pauli matrices for describing a single qubit with quantum spin-1/2 [17].
Similar correspondences for multiple qubits also bring out group-theoretic links between
the discrete/finite groups of multiple quaternions and the continuous SU(2q) groups and
generators of the qubit systems. As noted in the Introduction, quaternions are natural
for geometric algebra, and Klein himself gives a nice description of three-dimensional
rotations in terms of them [79]—see [80] for a pedagogical treatment. Maxwell too had
advocated their use, although he himself wrote out his equations for electromagnetism
in component form. However, subsequent developments in physics went in a different
direction [59,64]. Vectors, and scalar and cross products of them, became the standard;
geometric algebra and quaternions would not have separated a single product in this
way. This would have had the merit of permitting division, which is not defined for two
vectors in arbitrary directions. Many advantages would have accrued [16,79]. Interestingly,
the consideration of SU symmetries in qubit systems, as discussed in this review, naturally
highlighted connections [59] to finite projective geometries and geometric algebra, along
with correspondences between continuous Lie groups and discrete finite groups. We will
now discuss this. In addition, in Section 4, we will consider their development from
the point of view of the purely geometric approach that is not motivated by quantum
information. We will bring both views together on a common platform.

A variant of the more-economical binary labelling at the end of Section 3.5, which fits
better with the geometric diagrams of simplexes and a consistent build-up of their labels,
is the one adopted for the Fano Plane in Figure 5, the Clifford cube in Figure 8, and the
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tetrahedron in Figure 7. Consistently using round brackets for this binary (to distinguish
from the earlier one with square brackets), start with the basic triplet of quaternions (i, j, k)
or the Pauli matrices (X, Y, Z). With the correspondence (i, j, k)→ −i(σx, σy, σz) of the two
triplets that obey the same cyclic multiplication rules, the 1-simplex of a single qubit or
quaternion is a line of three points. With all seven lines of Figure 5 completely equivalent,
including the inscribed circle, any of them can be the starting one. Choose the right
edge, labelling the three points with a 2-binary of (01), (10) and (11), as shown. Again,
for convenience of generalization, place −k as the mid point, in assonance with the spin
language convention that puts Z as the diagonal object in quantum physics. The minus
sign is for later consistent generalization of every further simplex; these are, again, obtained
by introducing a step into a new dimension, with a new k-like square root of minus 1 and
its partner (−k)-like generalization of the mid-point of a line to a facial, space/body, etc.,
center. They will always carry a string of 1’s in the round bracket binary label. For these
reasons, the correspondence to quaternions is (xyz)↔ (kij).

Next, the basic quaternion group Q8 [81,82] of the set ±(1, i, j, k), with its Cayley table
shown in Table 3, can be set in correspondence with the Fano sub-group of seven operators
and both placed on the Fano Plane’s equilateral triangle, as shown in Figure 5. This step
to the 2-simplex introduces a new vertex, which may be denoted k and connected to the
previous three points. It joins with the previous endpoints (i, j), to provide the vertices of
the Fano triangle. The center of the group, ±1, is the geometric center, and two new mid-
points, “conjugate” negatives of the previous vertices (i, j), arise at this step. Note the four
cyclic lines (three edges and circle), shown arrowed, and three commuting median lines.
As stated before, all lines are equivalent in a finite projective geometry. The circulation
of the arrows is counter-clockwise around the edges and clockwise in the inscribed circle.
Correspondingly, the extension from 2- to 3-binary labelling proceeds by adding an initial
0 to the points of the 1-simplex, and calling the new vertex (100). The other points then
acquire labels by binary addition, with the commuting center as (111). In this manner,
the Cayley table of Q8 is placed on the Fano Plane.

Table 3. Cayley multiplication table for quaternion group Q8 that can be characterized by two
parameters: a = k, b = i, a2 = b2 = −1, with ab = −ba = j. Note the natural 2 × 2 block
matrix structure with one of the C4 sub-groups in the diagonal blocks. With the mapping (i, j, k)→
(−iσx,−iσy,−iσz), the two triplets share the same multiplication rules and the same structure applies
to the SU(2) generators.

1 k −1 −k i j −i −j
k −1 −k 1 j −i −j i
−1 −k 1 k −i −j i j
−k 1 k −1 −j i j −i
i −j −i j −1 k 1 −k
j i −j −i −k −1 k 1
−i j i −j 1 −k −1 k
−j −i j i k 1 −k −1

Such a 3-binary (xyz) with round brackets labels the points in Figure 5 on purely
geometric grounds: x = 0 as the right edge, y = 0 as the left edge, and z = 0 as the base
edge. The ascribing of quaternion (i, j, k) to the points is, to some extent, arbitrary—all
points and lines are equivalent, and are related by simple geometric transformations, such
as rotations in the plane. However, it is natural to place ±1 and, equivalently (000)/(111),
as the center of the triangle. Pairs of opposite signs then stand on opposite ends of the me-
dians, which are conjugates under binary addition. As stated, it proves convenient for what
follows to standardize the new vertex as k-like when proceeding to generalize to higher
dimensions or a larger number of qubits. Another perspective, provided by geometric and
Clifford algebra, is that 1 is a scalar and (i, j, k) a vector, while (−i,−j,−k), formed out of



Symmetry 2021, 13, 1732 22 of 34

antisymmetric pairwise products, is a bi-vector, and ijk = −1 is a pseudoscalar. Together,
they are placed on the Fano Plane in Figure 5.

With the equivalence of multiplication rules between quaternions and Pauli ma-
trix generators of SU(2), a similar placement can be made of 1-qubit generators with
(I,−iσx,−iσy,−iσz) and (iσx, iσy, iσz,−I) labelling points in Figure 5. Such an assignment
also occurs in Figure 1 of [77]. However, a sign is irrelevant when dealing with generators
of a continuous group. Instead, 2-qubit generators of the Fano sub-group provide an ap-
propriate correspondence and natural identification with the 7-generator Fano sub-group
and X-states of Section 3.1. Again, since any Oi can serve as a center, the example shown in
Figure 5 is for ZZ as the center; the remaining six are commuting pairs at opposite ends of
the medians. However, this match to 2-qubit generators is not to Q8 as such, but to another
closely related order-8 “co-quaternion” group that is isomorphic to the dihedral group D4.
This will be discussed further at the end of this sub-section. Note that the change in sign of
a quaternion has, as its counterpart, the duality exchange I ↔ Z, X ↔ Y.

The same quaternion and spin generator labelling in Figure 5 is shown in Table 2,
and it must again be noted that it is for the specific example chosen—other centers and
choices of the seven generators yield other correspondences between quaternions and
generators. As noted, the example chosen corresponds to a physical set up of two spins in
a magnetic field along the z-axis, in addition to the four operators of magnetic interactions
in the orthogonal X−Y plane. Because any Oi can serve as a center (and is thus placed as
the geometric center), their square bracket and double spinor names cannot be universally
related 1:1 to the geometric round bracket labels [55]. Furthermore, both sets of 4-binary
can be rendered in base ten to run as a single number, so that points in Figures 7 and 8 may
be labelled from 1 to 15 as in [67], and the 2-qubit generators as in [55]; however, we have
retained the Oi names due to previous usage in [7,8,55].

The next step is to consider two independent quaternions (each commutes with all of
the other set), which can be denoted by lower and upper case (i, j, k) and (I, J, K), along
with the unit element and all bilinear products. Taking all sixteen with plus/minus signs
forms the 32-element finite group Q32. A half-way step is to include just one of the upper
case elements, say K, to acquire a group of order 16. This element could also be regarded as
an ordinary complex square root of unity, so that we might call this the complex quaternion
group. It has previously been referred to as a“bi-quaternion”, a term that Hamilton
himself seems to have introduced [81,82]. (Bi-quaternion could more properly have been
kept for the full order-32 group with all multiplicative combinations of two independent
quaternions.) Its Cayley table is shown in Table 4, and its 15 elements have been placed in
1:1 correspondence with the Clifford cube and tetrahedron of Figures 7 and 8. As a group,
it is C2⊗ Q8 or (I, Kk)⊗±(I, i, j, k). (The pair (1, K) would also provide all 16 elements,
but does not form a C2 group; the pair (1, Kk) achieves this.)

Table 4. Cayley multiplication table for the co-quaternion group or dihedral D4 that can be character-
ized by two parameters: a = k, b = Ki, b2 = 1, a2 = −1, with ab = −ba = Kj. Contrast with Table 3.

1 k −1 −k Ki Kj −Ki −Kj
k −1 −k 1 −Kj −Ki Kj Ki
−1 −k 1 k −Ki −Kj Ki Kj
−k 1 k −1 Kj Ki −Kj −Ki
Ki −Kj −Ki Kj 1 −k −1 k
Kj Ki −Kj −Ki k 1 −k −1
−Ki Kj Ki −Kj −1 k 1 −k
−Kj −Ki Kj Ki −k −1 k 1
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In terms of the extension from the seven point/line triangle/2-simplex to this 8-
vertex/28-line cube or 15-point/35-line tetrahedron/3-simplex, the previous 3-binary is
extended to a 4-binary (txyz) and, geometrically, a new vertex (1000) or K, in a new
dimension is introduced. In the cube, that vertex is connected to the previous seven (0xyz)
as mid-points and extended to vertices (1xyz) whereas in the tetrahedron, the seven lines
from vertex to the base Fano triangle introduce seven new midpoints—three of them
are face centers and one is a body center. Opposite vertices of the cube are of opposite
sign: ±(K, Ki, Kj, Kk) and the center is the ±1 of quaternions and the ZZ generator of the
example chosen. With the quaternions placed at midpoints of the edges at the lower corner,
their negatives stand at the midpoints of the orthogonal face in keeping with their bi-vector
nature noted earlier. In the tetrahedron, the new vertex K introduces edge midpoints
(Ki, Kj, Kk), face centers the same triplet with minus signs, and its conjugate−K is the body
center, with ±1 and ZZ the face center of the Fano triangle remaining in the base. Table 2
brings together all the alternative renderings of the 15 generators of the two-qubit system
in terms of Oi, Pauli matrices, Dirac gamma matrices, binary, and quaternionic labels. Note
the consistent pattern of each subsequent simplex having a (−k)-like center with a string
of 1’s as its binary representation.

The 4-binary has a natural language in terms of space-time (txyz) in physics, but
could equally be rendered as alternatives, including four colors [72] or four acoustic notes,
to describe similar constructs of 15 basic objects; it has even been used [55] in the context of
a well-known combinatorics problem to be described below. In Table 2, the association of
this round-bracket 4-binary with the bi-quaternions is fixed. That is, the latter read off the
former with the simple 1:1 association introduced in an above paragraph: (0xyz)↔ (kij),
i.e., (0100) ↔ k, etc. and conjugates such as (0011) ↔ −k. An initial 1 brings in ±K :
(1000)↔ K, (1111)↔ −K, (1010)↔ Ki, etc. Multiplication of quaternions corresponds to
binary addition. However, since any Oi denoted by its spinor and square bracket binary
can be chosen as the center, there is no one-to-one link of them, the correspondence shown
being for the specific choice of ZZ as center and ±1.

There are other order-8 sub-groups of the full order-16 complex quaternion group.
One is the set, ±(I, k, Ki, Kj), forming the co-quaternion group D4 with a Cayley table as
shown in Table 4. In a standard minimal notation [82] for D4, it can be rendered in terms
of two parameters as (a = k, b = Ki). With the same labelling as in Table 2, the set of
seven generators are (ZZ, XX, YY, IY, ZX, YI, XZ) with YY as center. Correspondingly,
the physical system is now of two spins in a magnetic field in the y-direction, with four
magnetic coupling operators in the orthogonal X − Z plane. Another is the set of eight
elements±(1, k, K, Kk) which is (1, Kk)⊗±(1, k) or C2⊗C4. It corresponds, for the example
in Table 2, to the set (ZZ, XX, YY, IX, ZY, XI, YZ) with XX as center; that is, two spins
in a magnetic field in the x-direction with coupling terms in the orthogonal Y− Z plane.
Differing only in a renaming of the magnetic field in terms of the x, y, z directions, they share
the same entanglement and other physics. All these sets show the same I ↔ Z, X ↔ Y
duality noted above. The full set of sixteen elements of a complex quaternion, or the
generators of SU(4) in Table 2, have a Cayley table shown in Table 5. They may be viewed
as direct products of C2 with the order-8 groups, whether Q8 or D4.
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Table 5. Cayley table for group of complex quaternions ±(1, i, j, k, K, Ki, Kj, Kk), an order-16 group isomorphic to C2⊗ Q8

and C2⊗ D4 with C2 = (1, Kk). An eight-element sub-group in the diagonal blocks is another alternative to Tables 3 and 4.

1 k −1 −k K −K Kk −Kk i j −i −j Ki −Ki Kj −Kj
k −1 −k 1 Kk −Kk −K K j −i −j i Kj −Kj −Ki Ki
−1 −k 1 k −K K −Kk Kk −i −j i j −Ki Ki −Kj Kj
−k 1 k −1 −Kk Kk K −K −j i j −i −Kj Kj Ki −Ki
K Kk −K −Kk −1 1 −k k Ki Kj −Ki −Kj −i i −j j
−K −Kk K Kk 1 −1 k −k −Ki −Kj Ki Kj i −i j −j
Kk −K −Kk K −k k 1 −1 Kj −Ki −Kj Ki −j j i −i
−Kk K Kk −K k −k −1 1 −Kj Ki Kj −Ki j −j −i i

i −j −i j Ki −Ki −Kj Kj −1 k 1 −k −K K Kk −Kk
j i −j −i Kj −Kj Ki −Ki −k −1 k 1 −Kk Kk −K K
−i j i −j −Ki Ki Kj −Kj 1 −k −1 k K −K −Kk Kk
−j −i j i −Kj Kj −Ki Ki k 1 −k −1 Kk −Kk K −K
Ki −Kj −Ki Kj −i i j −j −K Kk K −Kk 1 −1 −k k
−Ki Kj Ki −Kj i −i −j j K −Kk −K Kk −1 1 k −k
Kj Ki −Kj −Ki −j j −i i −Kk −K Kk K k −k 1 −1
−Kj −Ki Kj Ki j −j i −i Kk K −Kk −K −k k −1 1

As noted, the quaternion labels placed on the vertices in Figure 5 are arbitrary, given
the natural geometric symmetries of the triangle such as rotations through multiples of
π/3. The independent placement of the qubit generators is also arbitrary, as is their
correspondence to the quaternions. Given that any of the 15 Oi can serve as a center
and define the X-states of the Fano sub-group, there are as many choices. However,
entanglement properties differ; only the nine τiσj involving both qubits accommodate
quantum entanglement. Their set of seven generators has two single spin generators,
the τi and σj, and five two-spin operators. All square to unity. For the six single-spin
centers, a similar set is composed of the three single operators of the other spin and the
three products of them with the center. With these generators, a multiplicative sign or
constant, such as ±i, is irrelevant and, as observed, the −i~σ satisfy all the multiplication
rules of quaternions—including that they square to −1. Turning to the order-8 groups,
the quaternion group Q8 has six −1 along the diagonal in its Cayley Table 3. Meanwhile,
the co-quaternion group in Table 4, that is isomorphic to the dihedral D4, has two, and the
C2× C4 has four (the upper left 8 × 8 block of Table 5). Thus, while all three of them can be
associated with X-states, it is the co-quaternion which best matches the entangled class in
having two of the seven square to −1. Those could be set to match in the set with center
τiσj; then, the two τi and σj, with −i factors, would square to −1.

Thus, the choice made in Figures 5, 7 and 8, and Table 2 puts ±i as the two IZ and ZI,
with a corresponding co-quaternion ±(1, i, Kj, Kk). This set is trivially different from the
one displayed in Table 4. For this choice, all rows of Table 2 can be retained unchanged,
especially the binary and qubit generators; however, in the last row we must multiply
entries involving (j, k) by K with K2 = −1. In Figures 5, 7 and 8, we similarly have to
multiply (j, k) by K, and leave the other points unchanged. On the other hand, had we
chosen the quaternion±(1, k, Ki, Kj), the entries in Table 2 could be left unchanged, but this
would correspond to the X-state set (ZZ, XX, YY, IY, ZX, YI, XZ) with YY as center. This
would be at a slight conflict with the convention in physics of choosing z as the magnetic
field direction or quantization axis. As stated, with no unique correspondence between the
three labelling systems, binary, quaternion, and qubit generators, it is partly convention
and partly aesthetics dictating the choice made in Table 2 and in our figures. The choice
made in Table 2 is to tie the square-bracket 4-binary to qubit generators and the round
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bracket to bi-quaternions, with ZZ as the center of the former matched to the ±1 center
of quaternions.

An interesting connection can also be established with octonions, the only other
division algebra besides reals, complex numbers, and quaternions [64]. With seven inde-
pendent square roots of −1, they can also be laid on the seven points of Figure 5 but with
crucial differences. With a cyclic triplet (pqr) replacing (−i,−j,−k) in order, and the sev-
enth square root s placed at the center, these seven independent imaginaries (i, j, k, p, q, r, s)
have seven cyclic lines on the triangle (irj), (jpk), (kqi), (psi), (qsj), (rsk), (pqr). All lines
are now arrowed with the same circulation sense for the edges and the circle, unlike in
Figure 5 which has them opposite, and medians are now also arrowed from midpoint to
vertex. This turns out to be crucial, since octonionic multiplication is no longer associative,
which was the case with the previous three division algebra. This means that opposite
circulation is a necessary feature of the quaternions in Figure 5, in contrast to octonions.
Interestingly, the seven quaternionic triplets can also be depicted on the cube in Figure 8,
with the unit element at the lower left corner, (ijk) on the three connected vertices to it,
(pqr) at their opposite corners, and s at the body center. An alternative placement of the
seven at the seven corners of the cube is in [64].

This process of counting how many −1 occur along the diagonal of a Cayley table,
that arises naturally in our discussion with qubit generators, also has a bearing on further
extension. There are no more division algebras beyond octonions to place on all points after
the 2-simplex of Figure 5. In the 3-simplex tetrahedron of Figure 7, ±(i, j, k, K, Ki, Kj, Kk),
eight of them square to −1. Fifteen square roots of −1, placed at each of the points,
represent what are called “sedenions” [83]. Products of pairs of them as 35 triplets can be
specified and, as with octonions, the products are not commutative or associative. That
loss of associativity in multiplication precludes, of course, matrix representation. Physics
has seen little use of octonions or sedenions. (See, however, [84,85]. In addition, octonions
do allow what is termed “limited associativity” [64]). However, from the 35 triplets we
have discussed for the tetrahedron in either quaternionic or spinor language and a Cayley
table such as Table 5, one can build a Cayley table for sedenions as in [83]. Indeed, a more
symmetric arrangement than in [83] is to group the 35 triplets into seven columns of 5 rows
each, with all 15 elements occurring once and only once in each column for the Kirkman
arrangement of schoolgirls, as discussed below in Section 4. Note that a proper Cayley
table requires the 15 square roots with both plus/minus signs, along with ±1, and is a
group of order 32. As an alternative to the Cayley–Dickson construction in [83], the higher
q-qubit simplexes provide another route to constructing these hypercomplex numbers,
including sedenions and beyond, and associating them with finite projective geometries.

The correspondence to quaternions and higher string binaries for more than two
qubits proceeds naturally. Each further qubit in a q-qubit sequence introduces a new
initial entry of 1 in the string with a new independent K-like entry and new vertex in the
next simplex—the previous simplex’s points are assigned an initial 0. −K appears with
(111 . . .) as the new simplex’s body center, just as the mid-point, face center, tetrahedron’s
body center, did for 1-, 2-, 3-simplex of 1-, 2-, 3-qubit systems, respectively. This gives a
geometric realization in simplexes of X-states of q-qubits. A somewhat different approach
was adopted in [86], which followed the Cayley-Dickson 2N-dimensional algebra with
imaginary units ea, 1 ≤ a ≤ 2N − 1 encoded in PG(N − 1, 2), and triads of points with
eaeb = ±ec as lines. Binomial configurations CN are then identified with octonions for
N = 3, sedenions for N = 4, and higher 2N–nions. Again, the PG(N − 1, 2) is a (N − 1)-
dimensional projective space over Galois field GF(2), as noted at the end of Section 3.4,
and the CN are isomorphic to Grassmannian G2(N + 1). While [78] noted that there is
no “neat picture” for these higher 2N-nions, the N-binary string and simplex schemes
discussed above provide a unified picture of all of them and associate with the X-states
(or, equivalently, pure states) of N-qubits. Additionally, in correspondence to quaternions,
one new independent K-like imaginary unit is added at each step, in order to acquire the
simplex of the next-highest dimension.
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4. Geometric View

In the last twenty years, two lines of exploration, with very different starting points
and motivations, have come together in studying symmetries of systems with a finite
number of quantum spins. One that we have discussed already, in Section 3, started with a
concrete physical problem relevant to NMR; that of two coupled spins [7]. The observation
that sub-group symmetries in such a system simplify the construction of the evolution
operator has led, in subsequent work, to generalization and systematic analysis of SU(2)
× U(1) × SU(2) and other sub-groups of SU(4) [8,37,55]. These studies of continuous
Lie groups and Lie algebras were later connected to quaternions and their discrete group
symmetries, as well as to projective geometries (PG) that utilize pleasing geometric figures—
triangles, tetrahedrons, and higher simplexes—to describe quantum states and operators,
along with geometric manifolds that generalize the Bloch Sphere of a single spin [55,59].
At the same time and in the same period, geometers have investigated objects entirely
within the field of geometric algebra, and have arrived at a similar picture [58,61,62,65].
This section will deal with this latter approach.

Three such early works [15,62,87] approached the “geometry of entanglement” for two
qubits by considering a six-dimensional real metric vector space V with a non-degenerate
quadratic form Q: V→ R. Whereas earlier sections identifying SO(6) pointed to a corre-
sponding six-dimensional space of real rotations, these geometers used a generalization of
vector algebra to metric vector spaces in geometric algebra. An antisymmetric product in
V is called an r-blade, and in the exterior algebra ΛV, a geometric product of a vector and
an r-blade is defined. The number of vectors, r, in an r-blade is called its grade. Spinors
are defined as left-ideals in a three-dimensional vector space G(3), its even parity elements
being the quaternions denoted G+(3). Similarly, for two qubits, a space G(6) is defined
with an orthonormal basis in R6 of two triplets (ei, fi) [15]. The bilinear combinations, i.e.,
bivectors of ΛV are

G10 = e2e3, G01 = f2 f3, Gij = ei f j(−1)δij , (15)

with other similar cyclic combinations. These 15 G’s can be placed in 1:1 correspondence
with the Oi introduced earlier, and are also shown in Table 2. They can also be conveniently
depicted as a hexagon in Figure 9 [15]. When one of the subscripts of G is zero, they
correspond to single-qubit operators within ei and fi, and they stand on the left and right
of the hexagon. Only the nine Gij with i, j = 1− 3–that is, the two-spin operators linking
left and right–support entanglement when selected as centers, as per earlier remarks. It is
these G’s that are the Dirac (γi, Ai, αi).

Pure states of two qubits, characterized by seven real parameters, are described in
S7. The three-dimensional projective space P(V) = PG(3, 2) has an underlying vector space
of dimension four. These are referred to as the boundary and bulk, respectively. Going
back to the work of Plücker, Klein, and Grassmann, lines of the projective space can be
parametrized in terms of points in four dimensions. There are 35 lines and 15 points of
PG(3, 2), as described earlier in the tetrahedron of Figure 7. It is useful to fiber S7 over
a one-dimensional quaternionic projective space HP1 ∼ S4 by a second Hopf fibration
π : S7 → S4 with an SU(2) ∼ S3 fiber. A natural metric, the Mannoury–Fubini–Study
metric, is induced; this is the standard metric on S4 expressed in stereographically projected
coordinates. The geodesic distance with respect to this metric provides a natural object for
quantifying entanglement of the qubits, according to the prescription that entanglement is
the geodesic distance to the nearest separable state [87,88]. Entanglement resides, therefore,
in the twisting of the bundle between the base S4 and fiber S3. (This usage of S4 should
not be confused with the one in Figure 6 for the Desargues sub-group in Section 3.2) Using
this, geometric meaning is given to the standard Schmidt decomposition that is familiar in
quantum information. The Schmidt states are the nearest and the furthest separable states
lying on, or the ones obtained by parallel transport along, the geodesic passing through the
entangled state [87]. That geodesic distance is expressible [87] in terms of the “concurrence”
which quantifies entanglement in quantum information [89]. Another natural way of
seeing this is through a connection on the bundle. Section IV of [87] identifies it as the
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instanton connection, familiar from quantum field theory, where it describes tunneling
between different continua. Further, a Sp(1)∼ SU(2) gauge degree of freedom of the second
Hopf fibration gives an important geometric interpretation of local transformation in the
second subsystem, and the fact that it does not change the entanglement properties of the
whole. Those can only be affected by a global unitary U(4).

Figure 9. Geometric algebra of six-dimensional space of two vectors ei, fi for each qubit and bivectors Gij and their
correspondence to the Oi generators of the qubit-qubit system. Only the nine Gij links admit quantum entanglement, not
the G0i and Gi0 associated with the individual qubits. Adapted from [15].

Other geometric objects are a generalized Klein quadratic, denoted as W3(2). It is a
hyperbolic quadric in W(3, 2), the symplectic polar space of rank 2 and order 2, and the
space of totally isotropic subspaces of PG(3, 2) with respect to a symplectic form. In PG(3, 2)
with 15 points and 35 lines, 7 lines are incident on each point, three of them isotropic and
4 non-isotropic (commuting and cyclic, respectively, as referred to in the Lie-algebraic
terminology of Section 3). W(3, 2) is a self-dual object of 15 points and 15 lines, called a
“doily” or a Cremona–Richmond configuration [58,90] (Figure 1 of [61]). It is the smallest
generalized quadrangle. A decomposition into a 10-point/line Petersen graph and five
leftover points, none of them collinear, called an ovoid, is also shown. Furthermore, two
distinct points of W(3, 2) are said to be orthogonal if joined by a line; this was what
was termed “commuting” in our earlier Lie-algebra language. W(3, 2) has three kinds of
hyperplanes: (1) called perp-set, which is a set of points collinear with a given point—there
are 15 of these, and each has a Fano Plane (also called a pencil); (2) a grid of 9 points on
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6 lines called a Pappus configuration, or a Mermin square in applications to quantum
information theory, such as proofs of the Kochen–Specter theorem [91]—there are 10 of
these; and (3) an ovoid, which is a set of 5 points with exactly one point in common with
every line—there are six of these. The dual of an ovoid is called a “spread” [62]. A so-called
Veldkamp space of the doily V(W(3, 2))—which is a parabolic quadric and isomorphic to
PG(4, 2) with 31 points (and 155 lines), of which 15 are generated by single-point perp-sets,
10 by grids, and 6 by ovoids—has also been discussed [90]. Finally, a Mermin pentagram
has been discussed in [92].

Besides entanglement, the quadric W(3, 2), as well as the correspondence between two-
qubit observables on the boundary and three-qubit ones in the bulk, have been discussed
for other purposes in quantum information, including the generation of error-correcting
and stabilizer codes. The ovoid of five points represents five codewords encoding messages
on the boundary [61]. It also provides a way of attaining the maximum number of MUBs
(mutually unbiased bases) in a finite-dimensional Hilbert space, an otherwise-difficult
problem that is, however, important in quantum information theory [65]. A group- and
graph- theoretic approach to MUBs has also been considered in terms of Cayley graphs [93].
The basis group of a set of MUBs of a d-dimensional Hilbert space is defined by a sub-
group of U(d), which is generated by unitary matrices associated with the bases. The edges
of the Cayley graph that capture this structure form a completely connected subgraph
called a “clique” [94]. This links the search for MUBs to the representation theory of finite
groups [93].

The geometric literature has also extended beyond two qubits to q qubits. This
discussion has again concerned pure states, rather than more general mixed states that
are of greater interest in the field of quantum information. The starting manifold of q
qubits is S2q+1−1 and Hopf fibration π : S2q+1−1 → S2q

, with fiber S2q−1 [95]. The projective
geometry is now PG(2q− 1, 2) with Klein quadric W(2q− 1, 2). The role of W(5, 2) for
three qubits and W(7, 2) for four has also been recently discussed [96]. There are now
22q−1 points not orthogonal to a given point, instead of the eight non-zeroes in Table 1 of
qubit commutators. Thus, PG(2q− 1, 2) is cut into 2q + 1 disjoint fibers, each containing
2q − 1 points. For three qubits, this amounts to 63 = 9 × 7, in place of 15 = 5 × 3 for a
qubit-qubit system. An interesting connection to an old mathematical problem, called
Kirkman’s Schoolgirls problem, which is associated with the latter decomposition, is worth
noting [60], since it influenced several developments in finite projective geometries [97–99]
and design theory [20,22,100–102].

This problem initiated another branch of mathematics within its area of combinatorics.
Originating from a recreational problem from over 175 years ago [97], that has since
been known as Kirkman’s Schoolgirls problem, mathematicians have studied it as “triple
systems” within “design theory.” In particular, “balanced incomplete block (BIB)” designs
and “Steiner triple systems” were related to finite projective geometries by mathematical
statisticians, notably R. A. Fisher [20,22,60,101,103]. A number v of “varieties” are assigned
to “blocks” b with incidence relations to provide (v, b, r, k, λ) designs. The symbols v are
assigned to blocks b with k in each, and each symbol is to occur in r different blocks, with
every pair of symbols to occur together in λ blocks. The case of k = 3 is designated a triple
system and λ = 1 (with no repeats) is designated a Steiner system. The two conditions
together define Steiner triple systems, which have been extensively studied and exist for all
v = 1, or 3 mod 6. Since BIBs must satisfy vr = bk, λ(v− 1) = r(k− 1), such a Steiner triple
is fixed by the single parameter v and denoted 2-(v, 3, 1). Apart from the trivial v = 3, b = 1,
the next is v = 7, b = 7, an example of what is dubbed a “symmetric” design. The binomial
configuration C3, associated with octonions, that was discussed earlier has been recognized
as isomorphic to a so-called “Pasch” configuration and used for classifying Steiner triple
systems [85].

With v taken as points and b as lines, the incidence relation of projective geometry—
that three points lie on every line—provides a connection to finite projective geometry.
This recognition by Fisher and collaborators was very fruitful for the field of design theory,
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which was born from these origins [60,103]. Apart from the trivial single-line design 2-(3, 3,
1) of v = 3 points and PG(1, 2), the next-simplest example of 2-(7, 3, 1) design is isomorphic
to PG(2, 2) of the Fano Plane. Another design 2-(15, 3, 1) with v = 15, b = 35 is PG(3, 2), and
it is this connection through the numbers 7 and 15 that led researchers to map two-qubit
problems onto finite projective geometry and design theory [55,59,60]. With 7 points on 7
lines, we acquire the Fano triangle, and with 15 points on 35 lines, the tetrahedron—these
are discussed in earlier sections. Kirkman’s schoolgirls problem was to have 15 schoolgirls
march in a row of 3 to school for every day of a 7-day week, with no pairs of girls repeated
in a row—the 35 required rows can be drawn from the tetrahedron to provide such a
marching order [55,104].

The choice of three-in-a-row in the above recreational problem was a prescient and
pleasing anticipation of three being the number of operators involved at a vertex (diagrams
of Feynman, angular momentum coupling, many-body perturbation theory, etc.) and
in a Lie commutator in quantum physics applications a century later. This ubiquitous
appearance of three entities at a vertex in physics has been suggestive of connections to
other areas of mathematics. Thus, quaternionic and octonionic symmetries for braids
on three strands, their group structure, and triplets of half-odd integer labels have been
discussed for the standard model of particle physics [105] and quantum gravity [106],
as also the closely related study of knots [107]; see also [108]. A book on division algebras
in particle physics is additionally helpful [109].

The connections apply to higher number (q) of qubits as well, with

v = 22q − 1, b = (22q − 1)(22q−1 − 1)/3, r = 22q−1 − 1, (16)

and the geometry PG(2q − 1, 2) as illustrated in Table 6. While k = 3 triplets are directly
related to projective geometries, as we have discussed, and to quantum commutators when
two operators uniquely fix the third (physics abounds with triplets, such as vertices in
angular momentum coupling or Feynman diagrams), the Kirkman problem can itself be
generalized for other values and described in terms of PG(n, m) with m = k− 1, n = 2q− 1,
and

vn = mvn−1 + 1 =
mn+1 − 1

m− 1
, b =

(mn − 1)(mn+1 − 1)
(m− 1)2(m + 1)

, r =
mn − 1
m− 1

. (17)

Such generalizations have found application in recreational examples of golfers in
rounds of four or more, which have followed Kirkman’s schoolgirl triplets [104]. The
dimension of PG(n, m) is shown in Table 7 for place values of m beyond the m = k− 1 = 2
that has occurred throughout this paper as relevant to physics. For m = 1, all entries
being powers of 1, the column is simply n + 1, and corresponds to pairs (k = 2) instead
of triplets. The m = 2, k = 3 column has the entries 1, 3, 7, . . . for the triplets discussed so
far for PG(n, 2). The next column, for m = 3, are quartet arrangements with dimension
(3n+1 − 1)/2. Along rows at fixed n are the sequences 1, 11, 111, etc., with place value m,
and thus, 1, m + 1, m2 + m + 1, . . . , [mn+1 − 1]/(m− 1), . . ..

Table 6. Triple system designs with v(arieties), b(locks), r(anks) and corresponding projective geome-
try PG. Integer values of q represent number of qubits in correspondence.

q n = 2q− 1 v b r -
1/2 0 1 0 0 PG(0, 2)

1 1 3 1 1 PG(1, 2)
3/2 2 7 7 3 PG(2, 2)

2 3 15 35 7 PG(3, 2)
5/2 4 31 155 15 PG(4, 2)

3 5 63 641 31 PG(5, 2)
7/2 6 127 2667 63 PG(6, 2)
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Table 7. Dimension of PG(n, m. )

n/m 1 2 3 4
- Pairs Triplets Quartets Quintets
0 1 1 1 1
1 2 3 4 5
2 3 7 13 21
3 4 15 40 85
4 5 31 121 341

5. Higher Dimensional Spins

Increasingly, spins larger than 1/2 are being explored for applications in quantum
information [110–119]. As is well known, entanglement measures, such as concurrence [89]
and negativity of the partial transpose [120], fail when both d and D in a qudit-quDit system
are larger than 2 [121]. A qutrit, with symmetry group SU(3) and symmetry algebra su(3),
is characterized by 8 parameters, a general qudit of d-dimensions by su(d) with (d2 − 1)
parameters. While various geometric extensions of the qubit Bloch sphere [122] have been
advanced, with corresponding Bloch vectors for a qubit [123–125], it is still difficult to
visualize a single qutrit [119,126], and there is no satisfactory way to view higher-d state
space. A recent work put forward for this purpose projects state space onto measurements
of observables, with illustrations for photonic qutrits that use three spatial modes of the
electromagnetic field [119]. Another recent picture of qutrits is in [127]; see also [122,128].
In earlier quantum physics literature, a description of higher spin j in terms of observables
can be found in [129,130]. One can also find a generalization of the Bloch equation, as in
Equation (10) and Equation (12), in terms of multipoles for spin-j in Equation (7.37) of [2].

The 3 × 3 density matrix of a qutrit has two real parameters on the diagonal and three
complex off-diagonal entries. An X-state of a qutrit, which may be denoted SU(X)(3), has
only one off-diagonal for a total of four parameters. A central, real one-dimensional space is
decoupled from the two-dimensional space surrounding it, thus making SU(X)(3) of SU(2)
× U(1) symmetry. In extending to multiple qutrits, the symmetry structure generalizes
the case of multiple qubits. The 9 × 9 matrix of a qutrit-qutrit system has, in general,
80 parameters which characterize it; this is discussed by [85] in terms of a two-qutrit
Pauli group. However, X-states again involve a smaller number of parameters, only 16,
consisting of 8 real diagonal entries and four off-diagonal complex elements. It can be
seen in relation to the SU(X)(3) group of a single qutrit as three repeating copies (instead of
two copies noted earlier for the similar qubit extension), with U(1)s in between and at the
ends [74]. The 9-dimensional space has a central real one by itself, and is surrounded by
four decoupled two-dimensional spaces. This structure of X-states says that, in any even
dimension, the system’s density matrix may be viewed as d/2 independent U(2)s with
one overall trace condition—whereas, in odd dimensions, there are (d− 1)/2 such U(2)s
and a central U(1), again with the trace condition. Similar and straightforward extensions
to general qudit-quDit systems have been discussed in [74], with an enumeration of the
parameter space involved. There remain many more connections to projective geometries
and Clifford algebra to be explored.

6. Summary

The study of symmetries, Lie groups, and Lie algebras has a vast and rich history
in physics. In the field of quantum information, SU(2q)—for q qubits—and SU(dq)—for
higher-dimensional qudits—are of particular interest; as are their geometrical structures,
which go beyond the single qubit’s Bloch sphere. To study evolution operators for their
states, Hamiltonians, and logic gates, a compact procedure is given in Section 2.2 and
capsuled by Figure 4. Furthermore, smaller sub-groups prove, often, very useful. We
have discussed some of the important examples, such as SU(2) × U(1) × SU(2) for X-states
of two-qubits. We have considered the frequently used Pauli spin operators for qubits,
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quaternions (and, to a lesser extent, octonions) and their groups, aspects of geometric
algebra, finite projective geometries, and combinatorial designs; all of these can provide
rich links and insights, as discussed in Section 3. This section includes a convenient binary
labelling for states and operators, a rendering in terms of Dirac matrices and algebra, and a
unified picture of these varied aspects. A parallel mathematical treatment is discussed
in Section 4, and an immediate generalization to higher-dimensional qubits is indicated
in Section 5—all of which are presented in terms accessible to a physics student. It is
hoped that this paper may point towards further extensions and applications in the field of
quantum information.
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