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Abstract: Multirobot cooperation enhancing the efficiency of numerous applications such as main-
tenance, rescue, inspection in cluttered unknown environments is the interesting topic recently.
However, designing a formation strategy for multiple robots which enables the agents to follow
the predefined master robot during navigation actions without a prebuilt map is challenging due
to the uncertainties of self-localization and motion control. In this paper, we present a multirobot
system to form the symmetrical patterns effectively within the unknown environment deployed
randomly. To enable self-localization during group formatting, we propose the sensor fusion system
leveraging sensor fusion from the ultrawideband-based positioning system, Inertial Measurement
Unit orientation system, and wheel encoder to estimate robot locations precisely. Moreover, we
propose a global path planning algorithm considering the kinematic of the robot’s action inside
the workspace as a metric space. Experiments are conducted on a set of robots called Falcon with
a conventional four-wheel skid steering schematic as a case study to validate our proposed path
planning technique. The outcome of our trials shows that the proposed approach produces exact
robot locations after sensor fusion with the feasible formation tracking of multiple robots system on
the simulated and real-world experiments.

Keywords: swarm robotics; sensor fusion; robot localization; path planning; robots symmetry
formation

1. Introduction

Multirobot cooperation as the swarm system is one of the most discussed topics in
the field of Robotics. Multirobot symmetry pattern formation helps robots to implement
tasks together. The numerous applications can open up in terms of surveillance, inspection,
maintenance, and rescue. Multirobot systems (MRS) include a group of multiple robots with
the same characteristics operating in a shared, and symmetrically formed workspace [1].
This concept covers the examples of robotic arms, humanoid robots, ground and aerial
mobile systems, and autonomous vehicles. The MRS term can be defined as multiagent
systems, robotic swarms, or sensor networks in the literature.

Many robotic applications are focused on carrying out tasks in an unknown environ-
ment that would require different perception or sensing abilities. Even after the robot is
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equipped with multiple arrays of sensors, in these environments, there can be sensory
blind spots that might trigger a failure mode within the robot. If the robot does not have the
contingency to identify this sensory blind spot in time, there might be an accident involving
the robot causing injury to living things or structural damage to the surroundings and the
robot itself. One of the swarm robot methodologies is primarily used in situations where
the environment is unknown. Mapping an unknown environment is dangerous pertaining
to the losses or damages that can cause the system’s failure. To avoid this, the robots set
out to map the unknown area with precision by still considering the dangers lurking in
the forms of uneven terrains, glass walls, steep slopes, among others. The information
gathered by all the swarm robots will help in learning collectively about the characteristics
of the environment, thus preventing any damages to the robots or the environment. These
swarm robots can be expanded to applications such as surveillance as mentioned by the
authors in [2]. In the paper, a self-reconfigurable robot that can crawl, climb, and roll in any
terrain was presented. This kind of robot assists in opening up new doors in the field of
surveillance and inspection. Multiple robots of the same kind can be deployed into areas
with a high degree of uncertainty.

These swarm robots usually are inspired by nature. Swarms of insects can be observed
to understand swarming techniques, later adapted to different robotic scenarios. Some of
such famous algorithms are ant colony optimization (ACO) [3], the bees algorithm (BA) [4],
and glow-worm swarm optimization (GSO), among others. These swarm algorithms can
be used for many applications, as mentioned earlier. One such interesting application is
to search for a target object within a given unknown environment. The authors in the
paper [5] proposed a decentralized control algorithm that enables the swarm robots to
search for a given target. This method was inspired by bacteria chemotaxis. In order
to search for a target, the robots have to visit every place in a given area. This can be
rather termed as an area coverage problem. Numerous literature works addressed this
area coverage issue using single robots [6,7], self-reconfigurable robots [8–10], and swarm
robots [11]. Even with the area coverage problem, it is important to have a controller to
enable the swarm robots to localize themselves relatively and move in a shape.

Research is being carried out in certain aspects, such as shape formation within the
swarm structure. It will not be easy to enable all the swarming robots to form inside
complex shapes without proper algorithms. The authors in [12] utilized a bioinspired
morphology change approach that can be applied to the multirobot control algorithm
to achieve the complex shape. In another example, the authors [13] proposed a control
technique that enables a swarm of satellites to assemble in a hexagonal symmetrical lattice
shape. There are several such examples [14–16] that showcases the control strategies
that can be adapted to achieve different topology symmetrical shapes. Having different
topology shapes is necessary in some situations. Let us consider the surveillance situation,
where the intended application tracks a given object of interest in an unknown area. In this
scenario, instead of sending the robots randomly in different directions, it will be safe to
arrange the robots in a given defensive shape to perform the area coverage task. In this
way, the risk to the robots from external threats would be reduced, and any knowledge
gained through such collective learning can be easily applied to the whole group.

There is another important aspect of overcoming the challenge of control and coordi-
nation. In the cases of multirobot setups, the control and coordination strategies usually
boil down to four categories: virtual structure algorithms, leader–follower algorithms,
artificial potential field (APF) algorithms, and bioinspired algorithms. The virtual structure
algorithms are the primitive algorithms that regard the robot as a single structure and
establish all the algorithms that are originally developed for single robots [17–19]. In the
second category, leader–follower algorithms consist of a leader, and the other robots follow
the leader. Their locations are estimated relatively with each other. Here, most of the
intelligent operations are performed on a single robot, the leader robot, and the other
robots will follow it. There are several implementations done by various researchers for
various applications [20–22]. The current paper utilizes the leader–follower approach
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where the master robot runs the intelligent operations while the slave robots follow it.
In the third category, APF algorithms are implemented for real-time path planning of the
robots addressing the obstacle avoidance situations [23]. It is a distributed control model
where the goal is considered to attract while the obstacle tends to repel. There are certain
challenges with this as well, such as getting stuck in local minima. However, there are
various literature works addressing this issue [24].

In the last set of algorithms, bioinspired algorithms are inspired by the flocking
patterns of the insects. Many path planning strategies have been proposed based on
this concept. The authors in [25] presented a cooperative and a distributive navigation
strategy for a multirobot system. Even though with limited communication capabilities,
the robots could find and decide the paths to reach the goal points efficiently. An artificial
pheromone is utilized to mark the areas that are visited by the other robots. This is
done to prevent revisiting the areas in order to find the path. Another group of authors
in [26] mimicked biological neural systems to perform task assignments to swarm robots.
This approach can handle dynamic path planning in 3D environments that are prone to
uncertainty. The authors in [27] presented an algorithm that can produce an optimal path
for multirobot groups. As proposed in the algorithm, the scout ants searched for the grid
randomly without employing the pheromones. This algorithm utilizes two types of ants:
one searching from the home position to the destination, while the other searching from
the destination to the home position, thus, becoming into a bidirectional search. The grid
places visited by these ants will be stored to avoid future repetition. Another group of
authors in [28] proposed two extensions of the Particle Swarm Optimization (PSO) and
Darwinian Particle Swarm Optimization (DPSO) as Robotic PSO (RPSO) and Robotic
DPSO (RDPSO). These algorithms utilize bioinspired techniques while accounting for
obstacle avoidance. They utilize social inclusion and exclusion concepts, analogous to
reward–punish, to perform the estimation away from the local minima. The authors in
the [29] presented an implementation of the previously mentioned Robotic Darwinian
Particle Swarm Optimization (RDPSO) algorithm for a search and rescue application.
They reiterated that this approach helps solve the local minimum problem by adopting
a Darwinian approach suitable for search and rescue applications. There are also other
applications where the evolutionary algorithms can be used.

The authors of [30] used the differential evolution to update the control parameters,
without the need of a model, for multirotor applications. Their research was aimed to
address the problems aroused in the flight performance due to the possible reasons of
rotor hardware degradation and weight distribution due to extra payload among others.
The evolution of the controllers based on the given requirement can replace the traditional
approach of manually tuning the control parameters. The authors of another paper [31]
proposed Hyb-CCEA. It is a cooperative coevolutionary algorithm that is meant to handle
situations that involves heterogeneous multiagent systems. Their approach can also help
to converge suitable team compositions, in the case of homogeneous, heterogeneous or
hybrid teams. Their approach can be used in the domains where the possible outcomes
are unknown. In another work [32], the authors analyzes the performance of the Brain
Storm Optimization (BSO) and proposed an orthogonal learning framework to improve its
learning mechanism. In regard to this, the authors proposed two Orthogonal Design (OD)
engines that includes the exploration and exploitation. They are introduced to discover
and utilize the relevant search experiences for performance improvements. The authors
claim that the proposed approach can optimize complex functions.

With the increase in the complexity of the applications, the traditional algorithms
might not be able to solve the optimization problem. The authors in [33] proposed an
approach to solve the large-scale multiobjective and many-objective optimization problems.
The approach involves the optimization of decision variables using the adaptive strategy by
embedding the guidance of reference vectors in the control variable analysis. The authors
claimed to have validated the efficiency of the proposed approach on large-scale multiob-
jectives and many-objective optimization problems. Reinforcement learning approaches
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are also adopted to solve the optimization problems. The authors in the [34], took an
approach that leverages on the multiagent reinforcement learning approaches. The authors
proposed a dynamic correlation matrix based multiagent reinforcement learning approach.
The approach results in updating the metaparameters using the evolutionary algorithms.
They claim that this method not only enables the agents to learn from the local experiences
but also from the experiences gained by the other agents. In similar lines, the authors from
the paper [35] proposed an adaptive reference vector reinforcement learning approach
to decomposition-based algorithms. The reinforcement learning handles the reference
vector adaptation process, by leveraging on the environment feedback and choosing the
optimal actions for convergence. Along with it, the reference point sampling utilizes the
estimation-of-distribution learning models to sample new reference points.

The current paper utilizes a swarm of robots to address the problem of robot formation
in unknown environments by low cost sensor fusion for robot self-localization and global
path planning. Specifically, by following the master, multifollowers form symmetrical
shapes as defined locations. The global path planning strategy enables the robots to reach
the desired goal point while avoiding obstacles in their path. The master robot defines the
path then leads the team of several robots to follow to desired locations. That framework
reduces the complexity of the swarm system since the advance decision is processed at
the master robot; the follower issues merely the midware commands from motor driver to
actuators. The system is also deployed as service bots where robots transport particular
payloads from one place to another as instructed by the operator.

The main contributions of the paper are summarized as follows:

• The sensor fusion from the UWB position system, IMU, and wheel encoders for
accurate localization in the unknown environment is validated on a low-cost and
lightweight platform called the Falcon platform through a built-in GUI.

• A control algorithm as global path planning incorporating the skid steering kinematic
based path tracking for multiple robots in the swarm system with a master and
followers. To this end, the integrator-based dynamic linearization decouples the
dynamics in the 2D coordinate, then given the designed controller for the leader robot,
the formation control problem boils down to choosing the desired trajectory for the
follower robots.

• Experiment results in both simulated and real-world experiments demonstrate that
formation strategy for multiple robots by the proposed global path planning combined
with the skid steering based control schematic.

The rest of the paper is organized as follows. Section 2 presents the context of ap-
plication. Section 3 describes the system architecture. Section 4 presents a sensor sys-
tem for autonomy navigation in the unknown environment. In Section 5, the proposed
technique of mathematical model for multiagents control mechanism is given in detail.
Section 6 presents the results and discussion on the proposed method’s performance. Fi-
nally, Section 7 is conclusions.

2. System Requirement of Context of Application

The multirobot system needs to be deployed in outdoor conditions without the knowl-
edge of workspace. The requirements of reliable and less expansive systems and easy
deployment are desirable. In an emergency, these robotic systems can be deployed in no
time with less intervention of humans at the target site to perform defined tasks such as
inspections and carrying the load together. The system also requires these robots to move
on uneven terrains while holding a payload of up to 1 kg and operate over 30 × 30 m2

with precise localization up to 10 cm accuracy. Different symmetrical formations can be
formed according to the user input to perform the task as desired. These kinds of systems
can also be used as service bots where robots can transport a certain payload from one
place to another as instructed by the operator.
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3. System Architecture

As the requirement as described in the context of application, we have designed the
swarm system. The swarm system consists of the operator control center installed in
the workstation and two classes of robots named Falcon stationary and Falcon mobile
platforms. The robot’s mechanisms, electronics, and sensor components are shown in
Figure 1. One is the stationary platform that carries a stationary beacon as shown in
Figure 1a, and the other is a mobile platform that carries a mobile beacon as shown in
Figure 1b. The system architecture with ROS [36] as the communication media for the main
components, including an operator Console Unit, ROS master, the stationary platform,
and the mobile platform, is shown in Figure 2. The stationery platforms provide the manual
control mode for the operator to navigate them remotely to the desired location in the
workspace to setup the workspace. The mobile platforms are set to form a group of up to
ten units with one master and the others as followers inside the workspace to conduct the
swarming tasks. ROS master is the central controller in which all information is received,
processed, and sent. The operator’s Console Unit is designed as a graphical user interface
for the operator to command platforms.

Figure 1. Falcon robots: (a) stationary platform, (b) mobile platform.

Figure 2. System architecture.

Falcon, a skid steering robot, carries lidar (only mobile beacon robot for obstacle
avoidance) and IMU and UWB beacon to enable autonomous navigation with obstacle
avoidance feature in the workspace. The dimensions of each robot are 10 × 40 × 40 cm,
which weighs about 1.2 kg. The robots are 3D printed with a nylon material. They are
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four-wheel mobile skid steering robots. All wheels are made of rubber of the same size
with a diameter of 10 cm. A microprocessor is placed on each robot, which is responsible
for the actions performed by the robot. The microprocessor used is the raspberry pi 4
model to which all the electronic sensors and motors are connected. 12 V DC motors are
used to drive the wheels. RoboClaw 2 × 7 A motor controllers are used. The feedback loop
is implemented in the control unit using motor encoders to robot wheel odometry. Pololu
MinIMU-9 v5 9-degree-of-freedom absolute IMU is used for calculating the heading angle
during its navigation. IMU is interfaced with raspberry pi over the I2C bus. A Low-cost
RPLidar A1 sensor is mounted on the top of the front side of the robot. By using laser scan
and project on a local costmap, the Lidar aids in the process of obstacle avoidance during
the robot traversal toward the goal location. This lidar is efficient and has the capability to
measure obstacles up to 12 m range. The robots see each other as an obstacle and try to
avoid collision while reaching its goal. A Marvelmind UWB with stationary and mobile
versions are shown in Figure 1 in which the beacons on top of the robots are connected
to Raspberry Pi through a USB cable, which will enable the positioning of swarm robots
in the 2D map. Among the mobile robots, the master robot is equipped with the Intel®
Compute Stick, the advanced and lightweight CPU to program the planning tasks during
the swarm actions.

4. Sensor System for Autonomy Navigation in the Unknown Environment
4.1. Workspace Setup with the UWB Positioning System

This section illustrates the system behavior on how the robots are localized. Note
that localization consists of the location and yaw orientation. Generally, without the built
2D or 3D map, the robots use special modules like GPS and Inertial measurement units
to facilitate localization during navigation. However, GPS modules such as real-time
kinematic (RTK)-based technology are expensive, bulky, and require an open space to get
the accuracy. Therefore, precise localization is only possible with the high-performance GPS
modules, which is a menial task to integrate on every robot in our proposed swarm system.

The robots of the swarm system get the 3D position (x, y, z) inside the deployed
unknown-workspace using the UWB localization technique. UWB localization uses mod-
ules called static and mobile beacons to estimate the beacons mounted on the robots.
The UWB beacon-based system provided a high precision of approximately ±2 cm inside
the workspace defined by stationary beacons within the diameter of 50 m. To guarantee
precise localization, the mobile beacons are mounted on top of the robots to assume a line
of sight condition with at least three stationary beacons.

A workspace for the robot to operate is formed by deploying manually stationary
robots to corners of the workspace, which is defined according to the user’s demands.
At least three stationary beacons (generally with four beacons to ensure the redundancy
backup in case of hardware failure as shown in the Figure 3) are needed in this method.
They can be far away from each other up to 30 m to form a triangle with the line of sight
condition. After setting up the workspace as the boundary of stationary beacons, each
robot in this workspace carrying a mobile beacon facilitates finding the accurate position
concerning the map formed by the previous beacons workspace setup.

Moreover, it is critical that the coordinate axis in which the robot is localized should
have reference to the orientation system provided by the IMU coordinate axis so that
both can be related in the robot operation. In the next section, we discuss a sensor fusion
method to localize, orient, and navigate a robot in an unknown map formed by a precision
positioning ultrawideband (UWB) beacon-based system incorporating orientation system
IMU and wheel odometry encoders. All of the robots are operated using the ROS (robotic
operating system) framework over WiFi or a 4G communication network. The position
topics sent by the stationary robot are available for all the robots in the system.
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Figure 3. Workspace setup within 4 stationary beacons. Green icons are the stationary beacons;
the blue icons are the mobile beacons in the workspace.

4.2. Initial Orientation Estimation

Since the UWB beacon system only provides the position (x, y, z) in the 3D coordinate
and relative orientation by IMU, we developed the method to estimate the transformation
between frames to find the robot’s orientation in the beacon frame. The IMU data is not
directly fused with the beacon data as their sensor values are in different reference frames.
There is a need to find the transformation between frames to find the robot’s orientation in
the beacon frame. In order to localize the robot, a novel method called Initial Orientation
Estimation is proposed. This method finds the initial orientation angle of the robot in the
beacon frame, and then the real-time orientation in the global frame is updated depending
on the robot’s movement. This initial orientation estimation is the critical step for each
Falcon in the robot workspace to localize itself properly.

The beacon coordinates axes’ orientation with respect to the ground frame depends
on how the stationary beacons are deployed in the open space. As the deployment of the
stationary beacons is arbitrary, there is no reference to the ground frame formed by the
absolute IMU cardinal directions. A relation between these coordinate axes should exist for
localization and navigation. To find this, a method to find the initial docking orientation
of robots in beacon coordinate axes had been developed purely based on the coordinates
generated by the beacon system.

4.2.1. Finding the Initial Orientation Angle

When deployed in the unknown environment, the stationary beacons are set randomly
by the operator, i.e., Figure 3, the initial orientation angle is found solely using beacon
generated coordinates with the help of primary slope and linear equations. After the
system finishes booting up, the robot is initially moved forward for 3 s. During this process,
the location as coordinate points, namely A and B generated by beacons, are recorded
before and after robot forward motion. These two coordinate points are used in finding the
robot heading in the beacon frame using the slope formed by two points A and B.

In Figure 4a the X, Y coordinate axes and cardinal directions represent the beacon
frame and the IMU frame, respectively. However, these two frames may not be oriented
in the same way, and let us consider that the beacon frame is θo f f set times rotated about
geographical axes.

Initially, considering the robot is moved forward from point A to B, let A is (x1, y1)
and B is (x2, y2), then slope of AB is given by Equation (1). The initial orientation angle
θini of the robot with respect to the beacon frame can be derived as in Equation (2).

tan(θini) = (y2− y1)/(x2− x1) (1)

θini = arctan((y2− y1)/(x2− x1)) (2)
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Figure 4. Orientation estimation by beacon positioning system and IMU system: (a) initial orientation
angle, (b) heading angle of robot in beacon frame.

4.2.2. Calculate the Offset Angle

Using the initial orientation angle and the yaw generated from the absolute IMU,
the relation between the beacon frame and the IMU frame is calculated by finding the
rotation angle between the frames. As denoted in the Figure 4a, from the the value of
θimu_yaw_int given by the IMU sensors real-time value, θo f f set can be calculated by the
Equation (3).

θo f f set = θimu_yaw_int − θini (3)

4.2.3. Heading Angle of Robot in Beacon Frame

After estimating the offset angle of the localization system, the robot’s heading while
the moving arbitrarily is calculated in the UWB beacon frame. Specifically, considering the
arrow with robot index represents the orientation of the robot in the Figure 4b, the heading
angle, θrobot is calculated as in Equation (4) by using the θo f f set from the previous step.
Where θrobot is the robot heading angle in the beacon frame, θimu_yaw is the robot heading
angle given by the IMU sensor’s real-time value.

θrobot = θimu_yaw − θo f f set (4)

4.3. Sensor Fusion for Precise Localization

The IMU data is not directly fused with the beacon data as their sensor values are
in different reference frames. There is a need to find the transformation between frames
to find the robot’s orientation in the beacon frame. To enhance the self-localization in the
unknown environment we use the sensor fusion technique.

The swarm robots are randomly deployed in the unknown environment and do not
use the sensor such as lidar to build the map. To enable autonomous navigation and
swarm, the individual agent of this robot system should continuously be updated with
the information of both its and the team members’ locations consisting of the absolute
orientation and position with respect to the reference global map.

The wheel odometry is fused with the yaw value of IMU to further refine the orienta-
tion of the robot odometry. The IMU data is not directly fused with the beacon data as their
sensor values are in different reference frames. There is a need to find the transformation
between frames to find the robot’s orientation in the beacon frame. The raw IMU values
as raw pitch yaw fields is added to robot localization package which uses EKF [37] to
eliminate the sensor noise. To compensate for errors in the relative velocities between
wheels which can affect robot trajectory, the feedback control is used to derive the left and
right wheel velocities. The robot location, filtered by EKF , including the current position
and heading in the global frame is the input for the control loop. The ROS based sensor
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fusion flow is shown in Figure 5. This filtered odometry is then passed to the global and
local path generators to execute the navigation in the UWB workspace.

Figure 5. Robot localization by EKF sensor fusion.

5. Mathematical Model for Multiagents Control Mechanism

Using the proposed UWB and IMU-based self-localization system, the location of the
developed robot in the global frame is well-defined. Based on the ROS network, the robot
locations can be comprehended by the other members. To simplify the navigation task
for multiple agents, we develop the master following in which all the slave robots will
follow the one master path defined by the ROS move base package to maintain the required
formation symmetrically. We consider a group of skid-steering four-wheel for our purpose
to generate the appropriate motion command for robot.

Figure 6 represents the schematic of a conventional four wheel skid steering robot.
The robot dynamics can be described by the robot coordinates p = [xr, yr, β]T (planar
position and steering). The variable α denotes the angle between the COG (xo, yo) and the
wheels, L1 and L2 are the width and length of the robot. The relative position of the wheels
are derived as in Equation (5):

W f i(x, y) = xo + Lcos(α + β), yo + Lsin(α + β)

W f o(x, y) = xo + Lcos(−α + β), yo + Lsin(−α + β)

Wri(x, y) = xo + Lcos(π − α + β), yo + Lsin(π − α + β)

Wro(x, y) = xo + Lcos(π + α + β), yo + Lsin(π + α + β)

(5)

Figure 6. Schematic of the robot.
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The robot is driven through reverse differential methodology, where the control inputs
for the two inner and outer wheels are kept as same, i.e., as in Equation (6),

vin = v(1− 2L2

L1
tan(β))

vout = v(1 +
2L2

L1
tan(β))

ωin = ω(
L1

L1 − L2tan(β)
)

ωout = ω(
L1

L1 + L2tan(β)
)

(6)

where v, ω are the velocity and steering inputs for the COG. The kinematics for the COG
can be expressed as the unicycle model, described as in Equation (7):

ṗ =

ẋ
ẏ
β̇

 =

cos(β) 0
sin(β) 0

0 1

[ v
ω

]
(7)

The kinematics for the x, y coordinate of the robot becomes as in Equation (8) :[
ẋ
ẏ

]
=

[
cos(β) 0
sin(β) 0

][
v
ω

]
(8)

which is singular and not controllable. This singularity problem can be avoided by exploit-
ing an integrator ζ and modeled as in Equation (9):

ζ̇ = f , v = ζ (9)

where f is the linear acceleration. By differentiating again as in Equation (10), one obtains[
ẍ
ÿ

]
=

[
cos(β) −ζsin(β)
sin(β) ζcos(β)

][
f
ω

]
= ΘU (10)

where the new input and the input matrix are given by U = [ f , ω] ∈ R2 and Θ respectively.
By using a control law as in Equation (11)

U = Θ−1(ξ) (11)

(10) is converted into a decoupled linear system as in Equation (12)[
ẍ
ÿ

]
= ξ (12)

where ξ = [ξ1, ξ2]
T can be chosen as the control input, and separate PID like feedback for

ξ1, ξ2 can be chosen for tracking any desired trajectory (xd, yd).
The above control law assumes that the measurements for x, y, β are available and

accurate. As this is not the case in many practical applications, the control law should deal
with it.

5.1. Robust Control Law

Sometimes, different uncertainties such as inaccuracies in the measurement of Θ
or external disturbances creep into the mathematical model. The control law should be
chosen to mitigate such issues. For (10), a control law can be chosen as in Equation (13):

U = Θ̂−1(ξ + ξr) (13)
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where ξ = [ξ1, ξ2]
T can be selected as two separate PD feedback, whereas ξr = [ξr1, ξr2]

T

represents the robust part. The uncertain linearized system can be expressed as in Equation (14):[
ẍ
ÿ

]
=

[
ξ1 + dx + ξr1
ξ2 + dy + ξr2

]
(14)

where the uncertainties are lumped in the terms dx and dy. For the design, assume the
existence of two constants d1, d2 > 0, which satisfies conditions as in Equation (15)

||dx|| ≤ d1, ||dy|| ≤ d2. (15)

we select two sliding surfaces designed as in Equation (16):

sx = ėx + k1ex, sy = ėy + k2ey (16)

where ex = x− xd, ey = y− yd, and k1, k2 ∈ R+. The velocity and acceleration are defined
as in Equation (18), and Equation (17), respectively

Vx =
1
2

s2
x, (17)

V̇x = sx ṡx = sx(ẍ− ẍd + k1 ėx)

= sx(ξ1 + ξr1 + dx − ẍd + k1 ėx).
(18)

For ξ1 = ẍd − k1 ėx − k3sx (k3 is a positive scalar), the acceleration as in Equation (19),

V̇x = sx(−k2sx + ξr1 + dx). (19)

If ξr1 = −(1 + d1)tanh(sx), then the acceleration as as in Equation (20)

V̇x ≤ −k3s2
x − (1 + d1)sxtanh(sx) + d1||sx||

⇒ V̇x ≤ −k3s2
x − (1 + d1)||sx||+ d1||sx|| < 0.

(20)

From Lyapunov [38] direct method, it can be concluded that sx → 0, and can be
presented as in Equation (21)

sx → 0⇒ ėx = −k1ex ⇒ x → xd. (21)

The convergence of sy can be inferred similarly. The overall control law for the robot
is given by Equation (22)

ξ1 = ẍd − k1 ėx − k3sx, ξr1 = −(1 + d1)tanh(sx)

ξ2 = ÿd − k2 ėx − k4sx, ξr2 = −(1 + d2)tanh(sy)[
f
ω

]
= Θ̂−1

[
ξ1 + ξr1
ξ2 + ξr2

]
v = ζ.

(22)

To avoid singularity, one can pick ξ1(o) =
√

x(0)2 + y(0)2, which prohibits v from
crossing zero.

5.2. Leader Follower Formation Control

The integrator-based dynamic linearization decouples the dynamics in the x- and
y-directions. Given that the controller for the leader robot is designed according to the
method given in the previous section, and the formation control problem boils down to
choosing the desired trajectory for the follower robots. Let us represent the leader position
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at any instance as xl(t), yl(t). For the follower robots, the desired trajectories (xd f i, yd f i) can
be chosen as in Equation (23)

xd f i = xl + cx f i, yd f i = yl + cy f i (23)

where cx f i, cy f i are constant representing the desired separation in the respective coordinate.
These constants can also be chosen as time varying quantities, which can assure time
varying formation tracking. we define the error variables and the sliding surfaces for
followers as in Equation (24):

ex f i = x f i − xd f i, ey f i = y f i − yd f is f xi = ėx f i + k f 1iex f i, s f yi = ėy f i + k f 2iey f i (24)

The control law for the followers can be selected as as in Equation (25):

ξ f 1i = ẍd f i − k f 1i ėx f i − k f 3is f xi, ξr1 f i = −(1 + d1 f i)tanh(s f xi)

ξ f 2i = ÿd f i − k f 2i ėx f i − k f 4is f yi, ξr2 f i = −(1 + d2 f i)tanh(s f yi)[
f f i

ω f i

]
= Θ−1

f i

[
ξ f 1i + ξr1 f i
ξ f 2i + ξr2 f i

]
v f i = ζ f i.

(25)

6. Experimental Results and Discussion

In this work, the sensor fusion for precise localization and the path tracking algorithms
implemented to solve the navigation of multirobots path planning on the minimization of
position tracking are validated. Furthermore, we evaluate the Falcons robot’s performance
in MATLAB and ROS simulation and validate the proposed method in real environment
scenarios with group of Falcon robots as part of this research work.

6.1. Sensor Fusion for Localization Result

We design an operator’s console unit (OCU) as a graphical interface as in Figure 7 to
observe the robot location after fusing the sensor information the system, built using Unity
2019.4, a cross-platform engine for developing graphical programs. The OCU is required
to be run on a workstation connected to the same network as the ROS master. On the first
startup, the OCU will attempt to connect to the ROS master automatically. Upon connection
failure, it will prompt the operator to enter the IP address of the ROS master and reconnect.
Once connected, the system will enter the initialization phase and display red icons on
the screen while connecting to stationary and mobile platforms is being established. Once
connected, the system will enter the initialization phase where mobile platforms conduct
the orientation estimation as described in Section 4.2 and present as blue icons with an
arrow as in Figure 7. This allows the system to self-deploy payload platforms without
further intervention from the operator from a single operator’s command. As we can see,
the robot icons show the stable location and orientations accuracy map to the setup of 8
robots with the straight line in the workspace.

Since the system relies on the accuracy of UWB outdoor localization, the localization
can slightly be off in a short period. The location can jump back to the right location
when the mobile robot carrying the mobile UWB beacon in the light of sight with at least 3
static UWB becomes fixed on the stationary robot. We have added this phenomenon in
the discussion section. We have tested our system with current hardware configuration,
the system can integrate 10 units and work simultaneously together. For stabilizing the
working condition and preventing the lag of communication between robots, we realize
that the system up to 8 robots is recommended.
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Figure 7. Robot location after sensor fusion in the OCU. Blue color icons are the real time robot
locations. The gray color icons are the desired locations after formation.

The function of multirobot formation is achieved by a planner mode that allows the
operator to preplan platform positions as shown in the gray icons and then execute the
movement order when desired. The planner mode can be accessed by the button under
Global Commands in the OCU or automatically from the load formation button if there is
already a saved formation plan. When planner mode is active, planner units (shown in
green) represent the objective of self-location as shown in Figure 7. The mean error of all
robots after 5 deployments of the system is 0.114 m in location and 0.13 rad in orientation.

6.2. Simulation Results for Multirobot Path Tracking

To evaluate the controller in a multirobot model with one robot as master and other
robots as followers, we deploy 5 Falcon robots to follow a predetermined circular and
sinusoidal symmetry path. The master and follower controllers are programmed and
embedded in the move-base function of the ROS operating system as a global path planner
to generate velocity commands for the transmission systems added to the respective robot
wheels. The simulation results are shown in Figure 8 for the circular symmetrical formation
and Figure 9 for the sinusoidal symmetrical formation. We can see that the trajectories of
the robots are displayed as expected.

Figure 8. Circular formation.
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Figure 9. Sinusoidal formation.

6.3. Real Multi Robots Navigation in Real Environment

After setting up the numbers of a robot swarm in the system, based on the velocity
value derived by the control mechanism for the multirobots, the control commands as
the local planner of ROS move base are issued for motor drivers with the internal tuned
PID values. Each robot advertises its location and identifies the other members inside
the defined workspace of UWB stationary beacons by getting the locations of fusing
multiple sensors with an initial orientation angle estimated when the system is booted up.
The GUI assists the operator ensuring the Falcons understand the location of hardware
uncertainty circumstances and sensor noise. The operator monitors the overall system by
the GUI installed on the workstation. In the experiment, the best parameter values of path
following are found using the experimental approach by trials. The robots are equipped
with the main battery of 5 V 1000 mAh, and the maximum speed of the motor sets at
80 rpm with a gear ratio of 150. While robot navigating within the predefined time for
completing the task, the real-time localization of robots are updated to the OCU, if the
robot operation time exceeds this predefined time or the location offset of the robots are
lower than the predefined value of 0.5 m, the system will declare robot in the complete
task status. The robot in the complete task status will try to reduce the offset error if its
navigation time does not exceed the time limit.

After setting up the workspace in an outdoor space with 4 stationary robot locations
as shown in Figure 10, we deploy 5 robots marked as blue icons from 5 to 9. The robot
locations in the straight line to circle in the symmetrical forms are observed in the GUI as
presented in the testbed workspace of Figure 10a,b, respectively. We can observe that all
the agents have arrived at the defined formation locations marked as yellow icons in the
figure. There are slight misalignments of location for agents 7 and 8 since they are set near
the boundary of UWB-workspace marked as the red line where the localization is not as
stable as in the center of the center workspace.

Figure 10. 5 units execute the line to circle formation: (a) before formation, (b) after formation.

The master robot is set to perform the navigation in the circular trajectory as repre-
sented as blue in the simulated result of Figure 8. As shown in the obtained results of
Figure 11, the other robots perform path tracking of the master robot along the path to
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form the symmetrical circles. We can see that the trajectories of the robots are displayed as
expected. The multiple robot path tracking trials are validated to derive the possible error
in 2D real environments.

Figure 11. Robots follow the master in a real testbed: (a) environment setup, (b) trajectories of robots.

The deviation and offset with goals in the x and y directions during 5 trials of the
swarm robot system to follow the master robot with the symmetrical circular trajectory
in the real workspace of Figure 11 is presented in Table 1. The average offset with the
value of real tests and the value of simulation is about 10%. The error in the x direction
is more significant than in the y direction. The derivation and the offset with the goal
in the x direction are also more than the deviation and the offset with the goals in the y
direction about 7% and 15%, respectively. The results are the causes of the skeet steering
control where each motion of the robot agent in the x direction is affected by the slippage.
We can observe that the leader can track the circular trajectory in blue precisely. On the
other hand, the other followers create minor vibrations while following the defined path
to track the leader robot, but they still close the loop of circular trajectories represented
in other colors. The errors are caused by the localization and the delay of instance linear
velocity and angular velocity and motors PID driver of each robot. The result in Table 1
shows that the proposed solution can deliver comparable performance using only position
feedback with error shown in Table 1. The results proved that the path follower controller
with localization implemented in each robot in unknown workspaces is able to handle the
sensor fusion errors.

Table 1. Numerical data of robots path following.

Trials Deviation in X (m) Deviation in Y (m) Offset with Goal X (m) Offset with Goal Y (m)

1 0.568 0.512 0.225 0.191
2 0.552 0.502 0.214 0.185
3 0.546 0.521 0.256 0.219
4 0.552 0.529 0.242 0.201
5 0.561 0.518 0.251 0.215

Average 0.554 0.516 0.238 0.202

The performance of the proposed output feedback controlleris also compared with
the performance of the same controller structure with full state measurement. We compare
between our controller with the A* global planner integrated with ROS for the skid steering
multirobot to derive the efficiency in terms of time and energy the robot spent while robots
follow the global path planner. To do it, the current sensor is attached serially to the robot
battery and recorded during robot navigation. Table 2 presents the average energy and
navigation time after 5 trials output for in real environment experiments. Despite better
performance than following the route selected by random path, the A* method consumes
more time and energy than the proposed method about 11.12% and 5.31%, respectively.
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Since more effort is needed to integrate the other advanced methods to our swam systems,
we added the discussion about validating the proposed method with these methods as a
potential part of future work.

Table 2. Energy and time comparison.

Planners Path Generation Time (s) Execution Time (s) Energy Spent (ws)

A* 0.58 181.38 38.20

Proposed method 0.51 161.21 36.17

7. Conclusions

A sensor fusion and output feedback controller were proposed for a swarm system
with skid steering kinematic-based mobile robots. The proposed swarm system demon-
strates the effective performance of the symmetrical pattern formations of path following
within the unknown environment without a prebuilt map. The sensor fusion leveraging
the UWB based positioning system, IMU, and wheel encoder enable the robots to navigate
smoothly with the defined path tracking-based objectives. The experimental results with
Falcon robots show the effectiveness of the proposed design in various tested environments
with the feasible optimization path planning. In the present study, the proposed method
considers only a swarm robot with unknown static environments.
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