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Abstract: Symmetry is one of the most important notions in the digital twins-driven manufacturing 
cyber–physical system (CPS). Real-time acquisition of production data and rapid response to 
changes in the external environment are the keys to ensuring the symmetry of the CPS. In the ser-
vice-oriented production process, in order to solve the problem of the service response delay of the 
production nodes in a smart job shop, a CPS based on mobile edge computing (MEC) middleware 
is proposed. First, the CPS and MEC for a service-oriented production process are analyzed. Sec-
ondly, based on MEC middleware, a CPS architecture model of a smart job shop is established. 
Then, the implementation of MEC middleware and application layer function modules are intro-
duced in detail. By designing an MEC middleware model and embedding function modules such 
as data cache management, redundant data filtering, and data preprocessing, the ability of data 
processing is sunk from the data center to the data source. Based on that, the network performances, 
such as network bandwidth, packet loss rate, and delay, are improved. Finally, an experiment plat-
form of the smart job shop is used to verify different data processing modes by comparing the net-
work performance data such as bandwidth, packet loss rate, and response delay. 

Keywords: service-oriented production; cyber–physical systems; mobile edge computing; network 
performance; real time 
 

1. Introduction 
Currently, international competition is becoming increasingly fierce. Improving the 

intelligence level and rapid response capability of the job shop is a key task to maintain 
the competitive advantage of manufacturing enterprises. The cyber–physical system 
(CPS) is an important carrier in the intelligent manufacturing of a smart job shop. It is a 
multidimensional and complex production system that integrates perception, calculation, 
and control [1]. It can improve systematic efficiency and the processing of manufacturing 
resources [2,3]. Fortunately, recent industrial digitalization supports the implementation 
of the cyber–physical system (CPS). 

Symmetry is one of the most important notions in the digital twins-driven manufac-
turing CPS [4]. Real-time acquisition of production data can not only enrich the cyber 
space of CPS, but the rapid response of the production system to changes in the external 
environment can ensure the symmetry of the physical space of CPS [5]. The CPS system 
obtains the dynamic and static information of the job shop software and hardware re-
sources through the perceptual function of the physical layer. Combined with related 
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application models, the CPS system relies on the powerful computing capabilities of the 
industrial cloud platform to perform calculation and analysis on a large amount of indus-
trial data. The analysis results are returned to the job shop, and the corresponding action 
instructions are issued through the control module. However, the CPS system architecture 
of the job shop based on the cloud platform is facing new requirements. More and more 
industrial production data need to be sensed, transmitted, and calculated, which creates 
a time delay for the system control and makes it difficult to control in real time. The intel-
ligent precise control requires rapid calculation and analysis of a large number of data, 
and the feedback results drive the corresponding operations, which puts forward the re-
quirements for the real-time performance of the production system [6]. In addition, as 
service-oriented production processes tend to be smaller batches and have shorter cycles, 
the real-time response to the service requests of each production node greatly affects the 
whole production cycle and the performance of CPS. Therefore, it is worth studying to 
improve the performance of CPS by enhancing the real-time response of production 
nodes. 

The CPS facing service-oriented production processes can integrate multilevel dis-
tributed manufacturing resources and realize a new manufacturing model for the collab-
orative production of various manufacturing resources [7,8]. The existing research about 
the CPS of a service-oriented production process focus on the integration and description 
of production resources. Most of them improve the performance of the CPS through the 
combination and scheduling of production service. However, there also are some limita-
tions in current research as follows: (1) poor real-time performance; (2) weak system scala-
bility; (3) lack of security (e.g., data security protection and device access security). 

In order to solve these problems, a CPS based on the edge computing is introduced 
[9–11]. Chen et al. used the edge computing technology to optimize the industrial robot 
system for thin-film wall welding. They proposed a resource-edge-cloud model that could 
save 883.38 Kbps bandwidth to meet the demand of industrial products [12]. Zhang et al. 
applied edge computing to optimize the pumping unit energy-saving control system and 
improved real-time performance by 80% [13]. Zhang et al. built an abnormal value detec-
tion algorithm model based on edge computing, which could effectively detect the data 
collected by sensors [14]. Sun et al. proposed a video usefulness detection system based 
on mobile edge computing, which could be used in a smart job shop to judge video con-
tent or detect camera faults in real time through edge devices near the video source [15]. 
Li et al. deployed the computing services of artificial intelligence (e.g., deep learning) to 
the edge computing devices for the expansion of computing power [16]. Mao et al. verified 
that edge computing could reduce the response delay on the server side [17]. Edge com-
puting has three advantages in the field of industrial manufacturing: (1) improving the 
performance of production systems; (2) protecting the data security and privacy; (3) re-
ducing the operation costs and terminal energy consumption. Although edge computing 
has been widely used in the field of industrial manufacturing, it is still a new computing 
model that adds computing units to the data source. 

The remainder of this article is organized as follows: Section 2 indicates three aspects 
of the background and motivation of this research. Section 3 describes the CPS architec-
ture for service-oriented production process and edge computing. A CPS model based on 
mobile edge computing middleware is designed and implemented in Section 4. In Section 
5, a smart job shop experiment platform is taken as an example to illustrate the utility of 
the proposed model. Discussions are presented in Section 6. Section 7 summarizes the 
principal conclusions of this work and suggests areas of future research. 

2. Background and Motivation 
2.1. CPS in Smart Job Shop 

The cyber–physical system is a core component of the smart job shop [18,19]. It mon-
itors the physical production processes and uses computations and communication 
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deeply embedded in and interacting with physical production processes to add new ca-
pabilities to physical systems [3]. Today, the CPS adopted in manufacturing is to increase 
the production system’s openness, autonomy, distributed control, adaptability, and de-
gree of integration. It is able to raise the level of autonomy of production components [20]. 
CPS is an interconnection of all components (machines and systems) along the value 
chain, forming a flexible and smart automation system expected to be effective, safe, and 
efficient for reorganization at run time [21]. The implementation of CPS will lead to sig-
nificant changes in the working environment, especially in manufacturing and production 
control systems [22]. It can realize the job shop environment monitoring, production pro-
cess optimization, product quality inspection, and other aspects of independent decision 
making and control, and it can also improve production efficiency [23]. Gong et al. de-
signed three types of nonlinear RF chain structures, which reduce the power consumption 
of massive MIMO systems, and massive multiple-input multiple-output (MIMO) wireless 
communication technology is an ideal channel to connect the industrial Internet of Things 
(IIoT) and the CPS [24]. Rathore et al. proposed Deep-Block-IoT Net, and a secure deep 
learning approach with blockchain for the IoT network is carried out among the edge 
nodes. The edge layer in a decentralized mode improved the accuracy and reduced the 
latency of the CPS [25]. Xu et al. studied the description and scheduling of service re-
sources and proposed a hybrid CPS service resource model based on OWL and XML. The 
task-virtual resource scheduling mechanism solved the problems of low throughput, high 
drop-out rate, and high delay caused by traditional scheduling strategy [26]. Li et al. built 
a complex time scheduling algorithm model with uncertain timestamps, which could im-
prove the performance of the production system through the scheduled read–write events 
in CPS [27]. 

2.2. Real-Time Information in CPS 
As one of the most important characteristics of CPS, real-time performance has also 

attracted extensive attention from many scholars. Hao et al. proposed an improved deep 
Q-network (DQN)-based service placement algorithm. The proposed algorithm could 
achieve an optimal resource allocation by means of convex optimization and reduce the 
average service response time of CPS by 8–10%. The service placement and workload 
scheduling decisions were assisted by means of DQN technology [28]. From the perspec-
tive of communication technology, Minglei et al. proposed a new communication strat-
egy, which not only improves the real-time performance of the smart grid CPS system but 
also increases the system throughput [29]. Wang et al. proposed the heterogeneous brain-
storming (HBS) method for object recognition tasks in real-world Internet of Things (IoT) 
scenarios, which enables flexible bidirectional federated learning of heterogeneous mod-
els trained on distributed datasets with a new “brain-storming” mechanism and optimi-
zable temperature parameters. It can lower the transmission cost of CPS [30]. In addition, 
from the perspective of CPS real-time task scheduling, Xu et al. devised a privacy-aware 
deployment method (PDM) for hosting the machine learning applications in the industrial 
CPS. The PDM ensured the implementation efficiency of CPS applications and avoided 
the privacy disclosure of the datasets due to data acquisition by different operators [31]. 
Zhou et al. proposed a few-shot learning model with Siamese Convolutional Neural Net-
work (FSL-SCNN), which could alleviate the over-fitting issue and enhance the accuracy 
for intelligent anomaly detection in industrial CPS [32]. 

2.3. Edge Computing in Manufacturing 
At present, it is very urgent in time-sensitive application scenarios to figure out how 

to avoid massive data flow taking up a large amount of bandwidth resources, relieve the 
pressure of cloud computing center and link, and improve the real-time performance of 
the system. Current research studies are focused on edge computing unloading technol-
ogy and data transmission optimization technology based on edge computing architec-
ture. Tang et al. analyzed the fairness of resource allocation in the cloud environment. 
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They proposed a Yarn-based edge computing resource management platform and a long-
term resource fair allocation strategy (LTRF) with an effective data-forwarding vehicle 
terminal to avoid a large amount of data going to the cloud. However, the data-processing 
time constraints were not considered in their platform [33]. In the scenario of Internet of 
Vehicles based on edge computing, Ning et al. proposed an optimization strategy based 
on reinforcement learning for a three-layer unloading framework. The framework could 
satisfy the time-delay constraints of users and minimize power consumption. However, 
the study only focused on reducing power consumption. It did not take into account the 
data-intensive application scenarios [34]. Sun et al. gave full consideration to the system 
energy consumption and delay. They proposed a side-edge calculated unloading cloud 
architecture model. The optimization of the model was solved by a low-complexity heu-
ristic algorithm. However, the model essentially ignored the cloud computing ability, and 
it did not distinguish between equipment side, edge, and cloud computing [35]. Li et al. 
studied a four-layer scheduling model of edge computing. The resource scheduling of the 
edge layer was mainly realized by a greedy strategy and time-delay constrained threshold 
strategy. The artificial intelligence task operation was realized from the perspective of the 
network. The real-time performance of the system can be effectively ensured [36]. Com-
bining blockchain technology and edge computing, Xu et al. proposed a new unloading 
method. The integrity of task data transmission in the process of task unloading was 
solved by a non-dominated sorting genetic algorithm [37]. However, its solution proce-
dure is relatively not efficient. It is not suitable for computation-intensive scenarios. 

3. The Mobile Edge Computing Architecture in Job Shop 
3.1. CPS for Service-Oriented Production Process 

The CPS for the service-oriented production process is based on the Internet environ-
ment, which encapsulates all kinds of manufacturing resources (e.g., hardware and soft-
ware resources) in the job shop into a series of services. The unified CPS service manage-
ment platform can realize reusability and interoperability among heterogeneous manu-
facturing nodes, systems, and development platforms. Compared with the existing em-
bedded real-time system and network control system, the CPS pays more attention to the 
real-time perception and dynamic supervision of information resources and physical re-
sources in the production process. It also provides more flexible, real-time, and efficient 
services and management for each production node. The specific production process can 
be abstractly described, as Figure 1 shows. 

As shown in Figure 1, CPS is abstracted into a black box model, in which the hetero-
geneity of production nodes, systems, and development platforms is shielded by some 
new features (e.g., reusability, loosely couple, abstraction, transparency). When each pro-
duction node sends a resource service request to the CPS data center, every intermediate 
link is hidden, and it only needs to care about whether it responds in a timely manner. 

 
Figure 1. The black box model for service-oriented production process. 
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3.2. The Mobile Edge Computing 
The mobile edge computing (MEC) is a new computing architecture model, unlike 

the cloud computing architecture. As shown in Figure 2, the MEC middleware is added 
between the cloud computing center and the mobile terminal devices to provide the end 
users with resource services (e.g., converged computing, storage, and network). It is 
equivalent to moving some functions of the cloud computing center to the edge. First of 
all, the user equipment (UE) submits resource service requests to the nearest MEC mid-
dleware through the evolved Node-B (eNB). Then, the MEC middleware replaces the data 
center to process resource service requests. Meanwhile, edge computing is also an ena-
bling technology. It can provide resources on the edge of the network to meet some key 
requirements such as agile connections, real-time services, data optimization, application 
intelligence, security, and privacy protection. 

 
Figure 2. MEC architecture model. 

For the service-oriented production process, the MEC architecture has at least the 
following three outstanding advantages. 

(1) Real time. The computing tasks in the cloud computing center are partially or 
totally unloaded to the network edge (such as nearby terminal device and data source) 
without transmitting a large number of unprocessed data. It can effectively reduce the 
computing load of the cloud computing center and optimize the CPS network perfor-
mance to ensure the real-time processing of data. 

(2) Security. Under the MEC architecture, a large number of data are not only pro-
cessed at the terminal device or data source but also backed up by multiple nodes. It 
avoids the data loss caused by a large amount of data transmission or cloud computing 
center fault. 

(3) Scalability. The MEC architecture can provide a scalable and cheaper method, 
which allows functional expansion through embedded technology. It expands its capabil-
ities of data computing and processing through a combination of edge devices. 

4. Smart Job Shop CPS Based on MEC Middleware 
In this article, the smart job shop CPS is defined as a multiple job shops production 

system. Each job shop includes different types of production nodes (such as workpieces, 
AGV, industrial robot, fixtures tools, cutting tools, measuring tools, sensors, operator, 
etc.). All data transmission, for example production monitoring data, resources request 
data, etc., is also defined as a service in the production process. 
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4.1. Smart Job Shop CPS Architecture Model 
According to the characteristics of the MEC architecture model, MEC middleware is 

added to the traditional CPS model, and the performance of the CPS network is optimized 
to ensure the real-time response to the service requests of each production node. The CPS 
architecture model based on MEC middleware is described in Figure 3. 

 
Figure 3. CPS architecture model based on MEC middleware. 

In the service-oriented production process, CPS provides various functions to end 
users (i.e., production nodes) in the form of services. Each production node is both a ser-
vice requester and a service receiver. As shown in Figure 3, the CPS architecture of the 
service-oriented production process can be divided into four layers from bottom to top, 
namely node layer, network transmission layer, data processing layer, and application 
service layer. 

(1) CPS node layer. The CPS node layer is a real physical production entity in the 
physical job shop; it includes all manufacturing resources such as the CNC lathe, indus-
trial robot, AGV, cutting tool, fixture tool, measuring tool, sensors, PLC, operator, etc. This 
layer is the most important layer in the CPS architecture because it realizes the interaction 
between the production system and the physical world, and it reflects the collaboration of 
the informational process and physical process. 

(2) Network transmission layer. This layer connects various remote resources 
through Ethernet access and provides resource services for the entire production system. 
Therefore, it is the basis of resource sharing in the whole production system of the smart 
job shop. It can provide some basic functions such as data access control, network link, 
routing selection, task publishing and subscribing, data transmission, etc. 
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(3) Data processing layer. This layer is the core part of the CPS model, which realizes 
the transfer of data processing power through MEC middleware. The MEC middleware 
can expand its functions through an application programming interface (API) to complete 
data cache management, redundant data filtering, data preprocessing, etc. The implemen-
tation of MEC middleware is detailed as described in the following sections. 

(4) Application service layer. The resource capabilities of CPS, such as perception, 
execution, calculation, communication etc., are abstracted into a series of services at this 
layer. The managers of the smart job shop can monitor the interaction between production 
nodes and CPS through the interactive platform, including interactive content such as ser-
vice description, service request, service query, service response, service evaluation, etc. 

4.2. The Implementation of MEC Middleware 
The MEC middleware includes three logical entities: the MEC infrastructure layer, 

MEC platform layer, and MEC application layer, as Figure 4 shows. Furthermore, it also 
contains an API that can extend other functions. 

(1) Infrastructure layer. The MEC infrastructure layer is based on hardware resources 
such as the server, microprocessor, software-defined network (SDN) controller, etc. At the 
same time, these are also carriers of middleware implementation. The layer uses virtual 
technology to provide a virtualized data computing function, caching, virtual exchange 
function, and other virtual functions under the resource management system. It is an im-
portant support to realize the sinking of data computing and processing functions from 
the cloud data center to the data source. 

(2) Platform layer. The MEC platform layer regards the functions provided by the 
infrastructure layer as a series of services under the platform management system. In ad-
dition, this layer also provides the upper system with a flexible and efficient platform 
environment that includes some basic function modules such as data packet compression 
and analysis, content routing, wireless data interaction, application registration manage-
ment, service registration management, transmission protocol optimization, etc. 

(3) Application layer. Based on the application management system, the basic func-
tions of the MEC application layer provided by the MEC platform are further encapsu-
lated as some virtual applications. More application modules that depend on different 
MEC platforms (e.g., data cache management, redundant data filtering, data prepro-
cessing, etc.) can be embedded through standard API. This can ensure that the middle-
ware has very convenient scalability. 

 
Figure 4. The functions of MEC middleware model. 

The scenario configuration of MEC middleware in a smart job shop CPS is shown in 
Figure 5. Each job shop is equipped with an MEC server to form a two-level interactive 
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architecture of an enterprise data center and job shop MEC. Through embedded develop-
ment technology, the algorithm modules such as the data cache management module 
(e.g., Least Frequently Used algorithm), redundant data-filtering module (e.g., Bloom 
Filer algorithm), and data preprocessing module (e.g., machine learning algorithms) are 
embedded to realize the data preprocessing function. Furthermore, resource sharing can 
be implemented in different job shops through the job shop MEC, and production nodes 
in different job shops are interconnected. 

 
Figure 5. The Scenario configuration of MEC middleware. 

4.3. The Realization of the Application Layer Function Module 
(1) Data cache management 

The function module of data cache management is embedded in the job shop MEC 
server. The Least Frequently Used (LFU) algorithm is used to evaluate the value of the 
data to realize the cache management. Assumption: the size of the cache is defined as N, 
and the cached data are d1, d2, ……, dn. The worth of the data can be calculated as fol-
lows. 

𝑅𝑅(𝑑𝑑𝑛𝑛) = 𝐿𝐿 + 𝑓𝑓(𝑑𝑑𝑛𝑛) × 𝑐𝑐 (0 < 𝑐𝑐 < 1) (1) 

where 𝑅𝑅(𝑑𝑑𝑛𝑛) is used to evaluate the worth of the data, 𝑓𝑓(𝑑𝑑𝑛𝑛) represents the data access 
frequency, L is an expansion factor, and 𝑓𝑓(𝑑𝑑𝑛𝑛) × 𝑐𝑐  makes the access data at different 
times with different weights. 

The MEC server of the job shop calculates the worth value (also called as the hot 
degree) of the job shop production data captured by sensors including the layout infor-
mation of job shop machine tools, product quality information, manufacturing resource 
allocation information, etc., as Figure 6 shows. Then, the data with larger hot degree val-
ues are cached into the MEC server in advance to replace the data with the lower hot 
degree value in storage. When each production node sends a production resource service 
request, the data cache management prioritizes data association and matching from the 
cache of the MEC server. This function module achieves the timely response of resource 
service requests at the local job shop. 
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Figure 6. The implementation of data cache management. 

(2) Redundant data filtering 
When data association and matching fail from the cache list of the MEC server, a 

large amount of redundant service request data would be sent to the enterprise data cen-
ter. This would occupy a large amount of bandwidth resources and easily cause greater 
access pressure to the data center. As a result, the service request response is not timely. 
Therefore, the redundant data filtering of the function module is very important for the 
MEC server of the job shop. 

The Bloom filter is adopted into the implementation of the redundant data filtering. 
Assumption: the misjudgment rate is p. It consists of an m-bit array initialized to 0 and k 
independent hash functions, ℎ1，ℎ2 ，ℎ3 … … ℎ𝑘𝑘. A data flow set, 𝑆𝑆 = 𝑑𝑑1,𝑑𝑑2,𝑑𝑑3 … …𝑑𝑑𝑛𝑛, is 
firstly set. All new data elements of the data set are mapped to different positions in the 
array through each hash function. If the corresponding position is 0, it is set to 1. Finally, 
if all positions of the array are 1, it means that this data element is already in the data set 
S and the data are redundant. The Bloom filter can be described as following: 

⎩
⎪
⎨

⎪
⎧𝑝𝑝 = �1− 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑚𝑚�

𝑘𝑘

𝑘𝑘 = ln 2 × 𝑚𝑚
𝑛𝑛

𝑚𝑚 = −𝑛𝑛×ln𝑝𝑝
(ln2)2

. (2) 

In a Bloom filter with a misjudgment rate p, the position of all hash values of data 
elements in the array is 0 or 1, which determines whether they are redundant data. There-
fore, according to the position, the redundant data can be filtered and processed. 

(3) Data preprocessing 
On the data source side, the function module of data preprocessing is embedded in 

the MEC server to process a large amount of production data at the local job shop. In the 
data preprocessing module, some machine learning algorithms embedded in the MEC 
server can realize data intelligent processing so that a large amount of unprocessed pro-
duction data can be processed at the data source without occupying a large amount of 
bandwidth resources for unnecessary data transmission. 

5. Case Study 
In order to verify the proposed CPS model, a smart manufacturing platform for a job 

shop for a turbine blade is taken as an example. The network performance of the job shop 
(such as network bandwidth, packet loss rate, and server access delay) is tested under two 
different data processing modes, namely data center processing and MEC processing. 
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5.1. Experimental Environment 
The layout of the smart manufacturing platform of job shop is depicted in Figure 7, 

which mainly consists of the following hardware and software: a GL8-V five-axis machin-
ing center (VMC850 CNC), machining center (FT-20 CNC lathe), industrial robot, AGV, 
multi-station silo, RFID devices, MES, materiel storage management system, etc. A GL8-
V five-axis machining center is a machining center for complex surfaces, which is 
equipped with a wheel-disc automatic and rotatable tool library. A VMC850 CNC ma-
chining center is a CNC milling machine equipped with a wheel-disc automatic tool li-
brary, which can finish milling and drilling processes. An FT-20 CNC lathe is an automatic 
milling equipment with a cutter head based on a pre-programmed program. All produc-
tion equipment is equipped with an RFID reader near its tool library, which is used to 
output the tool information of different tool locations. 

Figure 7 illustrates the prerequisites of the testbed, which involves a data center, MEC 
server deployed at the edge, manufacturing cell, and client. As for the building blocks of 
the manufacturing cell, it consists of two industrial robots, a robot electric cabinet, two 
silos, a five-axis machining center, a CNC machining center, a CNC lathe, an AGV, and a 
Kanban system. In addition, IoT devices are used to perceive the real-time status of the 
manufacturing cell. For example, sensors deployed on the industrial robots and machine 
tools such as temperature sensors, speed sensors, and liquid level sensors perceive the 
linear displacement, angular displacement, temperature, pressure, and velocity of these 
devices. 

 
Figure 7. The layout of the experimental environment. 

In addition, the server with the STM32F407 development board is configured as the 
job shop MEC server. The LFU algorithm, Bloom filter algorithm, and machine learning 
algorithm are used as the data cache management module, redundant data filtering mod-
ule, and data preprocessing module, respectively. The network server of the job shop is 
regarded as the enterprise data center. A notebook computer is configured with a 2.4 GHz 
Intel Core i5, memory 16 GB 2133 MHz LPDDR3, and MACOS10.14.6 as the agent client 
of the job shop, which is used to connect the MEC server and data center. 
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5.2. Experimental Verification and Results 
In the process of turbine blade machining, tool monitoring data are output as the test 

data by RFID embedded in a five-axis machining center. 
The experiment is divided into several steps. Firstly, the test data are encapsulated 

into a large number of UDP data packets, and then, they are transmitted to simulate the 
service requests of different orders of magnitude by setting the parameters of Iperf soft-
ware. Then, the Wireshark package capture software is used to monitor and capture UDP 
data packets and analyze the three key network performances such as bandwidth, packet 
loss rate, and delay. 

Different fixed-size UDP data packets, such as 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 
60, 65, 70, 75, 80, 85, 90, and 100, are sent to the MEC server and data center by setting the 
parameters of Iperf in agent client, which simulate the data transmission of different or-
ders of magnitude service requests in turn. The results are shown in Figure 8. 

  
(a)  (b)  

  
(c)  (d)  

Figure 8. The experiment results of different fixed size UDP data packets. (a) the relationship of data packets and bandwidth; (b) 
the relationship of data packets and packet loss rate; (c) the relationship of data packets and response delay; (d) the relationship of 

data packets and transmission time. 

6. Discussion 
6.1. Result Analysis 

(1) The impact of data packet transmission on network bandwidth 
As Figure 8a shows, the bandwidth is reduced to 63.3% with the increase in the num-

ber of data packets transmission under the traditional data center processing mode. How-
ever, under the MEC processing mode, the bandwidth is only reduced by 10%. The reduc-
tion of bandwidth would directly affect the network performance of the job shop and re-
duce the stability and speed of data transmission in CPS. 

(2) The impact of data packet transmission on packet loss rate 



Symmetry 2021, 13, 1839 12 of 14 
 

 

With the increase in the number of data packets transmission, the packet loss rate 
rises in a fold line under the traditional data center processing mode. As Figure 8b shows, 
in the three stages (20–25, 50–55, 75–80), the packet loss rate rises sharply due to the sig-
nificant decrease in bandwidth, and it finally reaches 7.56%. Under the MEC processing 
mode, the packet loss rate is always within 1%, showing good network stability, which 
can guarantee the stability of data transmission in the CPS. 

(3) The impact of data packets transmission on delay 
Figure 8c shows that when the MEC server performs data preprocessing, the re-

sponse delay of the data center server is as high as 11 milliseconds, and the response speed 
is very fast. However, the traditional CPS does not have the data preprocessing capability, 
and the response delay reaches 168 milliseconds. The server response delay directly de-
termines whether CPS can respond to the service request of each production node in real 
time. 

(4) The impact of network environment on data transmission time 
In different network environments, the MEC server can preprocess 3 GB-sized data 

and transmit the resulting data to the data center within 1 s. Compared with the traditional 
data transmission method, the time is greatly reduced. Therefore, CPS based on the MEC 
server can not only avoid bandwidth resources occupied by a large amount of data trans-
mission but also improve the efficiency of data processing. 

6.2. Challenges 
Although the model guarantees the real-time response of each production node by 

optimizing the CPS network performance, there are still some problems as follows: (1) 
The data transmission distance and data processing time of the MEC server are ignored 
during the experiment; (2) During the experiment, the service requests of each production 
node are simulated through fixed-size UDP data packets. While in the actual production 
process, the size of service request data packets is dynamic and unstable; (3) Compared 
with the real production job shop, the experimental environment is more stable and sim-
pler. Therefore, verifying the universality of the CPS model in the complex production job 
shop environment is the next research direction. 

7. Conclusions 
In order to solve the response lag problem of a service-oriented production process, 

this article proposes a job shop CPS model based on MEC middleware. After the in-depth 
analysis of the current job shop CPS system, the edge cloud collaborative computing is 
innovatively introduced. The job shop CPS system architecture includes a CPS node layer, 
network transmission layer, data processing layer, and application service layer. The data 
processing layer and application service layer reshape the theory of the job shop CPS sys-
tem through the combination of edge computing technology and cloud computing tech-
nology. Furthermore, the functions of the MEC middleware model are analyzed from the 
infrastructure layer, platform layer, and application layer. Then, the realization of the ap-
plication layer function module is divided into data cache management, redundant data 
filtering, and data preprocessing. 

By comparing the data processing mode of the new CPS model with the traditional 
CPS, the results show that the bandwidth decreases by 63.3%, the packet loss rate keeps 
within 1%, and the response delay of the data center lasts within 11 milliseconds. It can 
be seen that it is feasible to optimize the network performance of CPS by data prepro-
cessing from the data source, so as to improve the real-time response of CPS. 

In future work, how to implement edge decision making based on the CPS model 
and how to improve the real-time response and performance of CPS through edge intelli-
gent decision making need to be deeply studied. 
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