
symmetryS S

Article

Smart Architectural Framework for Symmetrical Data
Offloading in IoT

Malvinder Singh Bali 1,*, Kamali Gupta 1, Deepika Koundal 2,* , Atef Zaguia 3 , Shubham Mahajan 4

and Amit Kant Pandit 4

����������
�������

Citation: Bali, M.S.; Gupta, K.;

Koundal, D.; Zaguia, A.; Mahajan, S.;

Pandit, A.K. Smart Architectural

Framework for Symmetrical Data

Offloading in IoT. Symmetry 2021, 13,

1889. https://doi.org/10.3390/

sym13101889

Academic Editor: Kuo-Hui Yeh

Received: 28 August 2021

Accepted: 2 October 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 141410, India;
kamali.singla@chitkara.edu.in

2 School of Computer Science, University of Petroleum & Energy Studies, Dehradun 248001, India
3 Department of Computer Science, College of Computers and Information Technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia; zaguia.atef@tu.edu.sa
4 School of Electronics & Communication, Shri Mata Vaishno Devi University, Katra 182320, India;

19dec001@smvdu.ac.in (S.M.); amit.pandit@smvdu.ac.in (A.K.P.)
* Correspondence: malvinder.singh@chitkara.edu.in (M.S.B.); dkoundal@ddn.upes.ac.in (D.K.);

Tel.: +91-9815327465 (D.K.)

Abstract: With new technologies coming to the market, the Internet of Things (IoT) is one of the tech-
nologies that has gained exponential rise by facilitating Machine to Machine (M2M) communication
and bringing smart devices closer to end users. By 2025, it is expected that IoT will bring together
78.4 billion of devices, thus improving the quality of life beyond our imagination; however, there
are multiple potential challenges, such as the exploitation of energy consumption and the huge data
traffic being generated by smart devices causing congestion and utilizing more bandwidth. Various
researchers have provided an alternative to this problem by performing offloading of data, the task
and computational requirements of an application at edge and fog nodes of IoT, thus helping to
overcome latency issues for critical applications. Despite the importance of an offloading approach in
IoT, there is need for a systematic, symmetric, comprehensive, and detailed survey in this field. This
paper provides a systematic literature review (SLR) on data offloading approaches in IoT network
at edge and fog nodes in the form of a classical taxonomy in order to recognize the state-of-the
art mechanism(s) associated with this important topic and provide open consideration of issues as
well. All of the research on classified offloading approaches done by researchers is compared with
each other according to important factors such as performance metrics, utilized techniques, and
evaluation tools, and their advantages and disadvantages are discussed. Finally, an efficient smart
architecture-based framework is proposed to handle the symmetric data offloading issues.

Keywords: data offloading; edge computing; smart framework; heuristics

1. Introduction

The Internet of Things (IoT) provides the interconnection of various heterogeneous
devices that can transfer data via the internet. Today, we have various people connected
with the internet via several type of communication devices. In the past two decades, the
internet has gained huge popularity in terms of making various devices work smartly.
The term ‘IoT’ was coined by Kevin Ashton [1] in 1999 to provide optimization support
to his company’s supply chain via RFID. He used RFID along with the internet to track
and count the supply of goods without human intervention. CompTIA, a vendor-neutral
IT certification company, has predicted that internet-connected IoT devices will reach
50 billion by 2020 [2] as shown in Figure 1. This will entirely change the computing and
network paradigm, affecting scalability of the network [3]. Additionally, heterogeneity of
devices will bring interoperability issues [4], and overcoming network congestion in IoT
will also be a big challenge [5].
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is one of the most important approaches for increasing the efficiency of low-power de-
vices’ resource utilization (e.g., CPU, battery, and storage). Offloading is the process of a 
device delegating the processing of a task to a more powerful unit. To evaluate whether 
offloading is advantageous, the device must measure the difficulty of running a program 
locally against the possible benefits of offloading it during runtime. Multiple system pa-
rameters [7], such as network latency, data exchange size, distant server abilities, and so 
on, are taken into account when calculating the cost of outsourcing the activity. The tech-
nique’s potential rests in its ability to assist low-power devices with processing [8]. Alt-
hough, an offloading approach in IoT has huge importance in terms of Quality of Service 
and Quality of Experience, there has been no thorough analysis or survey on the offload-
ing challenges associated with the IoT edge computing that may assist researchers with 
their investigations in the field. As a result, the goal of this work is to completely and 
methodically review and analyze the available symmetric offloading methodologies in 
edge computing. Offloading methodologies are divided into three categories in this paper: 
data offloading, computation offloading, and task offloading. The main contributions of 
this review are as follows: 
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• finally, a proposed smart architecture is presented for symmetric data offloading that 
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Figure 1. Exponential growth of the Internet of Things (IoT).

IoT [6] is a computer paradigm that predicts a future in which any low-power device
connects to the Internet, such as a smartphone, wearables, sensors, and so on. The devices’
heterogeneity, particularly in terms of computational power and battery life, presents sub-
stantial issues in terms of how to efficiently utilize and execute apps on them. Offloading
is one of the most important approaches for increasing the efficiency of low-power devices’
resource utilization (e.g., CPU, battery, and storage). Offloading is the process of a device
delegating the processing of a task to a more powerful unit. To evaluate whether offloading
is advantageous, the device must measure the difficulty of running a program locally
against the possible benefits of offloading it during runtime. Multiple system parame-
ters [7], such as network latency, data exchange size, distant server abilities, and so on, are
taken into account when calculating the cost of outsourcing the activity. The technique’s
potential rests in its ability to assist low-power devices with processing [8]. Although, an
offloading approach in IoT has huge importance in terms of Quality of Service and Quality
of Experience, there has been no thorough analysis or survey on the offloading challenges
associated with the IoT edge computing that may assist researchers with their investiga-
tions in the field. As a result, the goal of this work is to completely and methodically
review and analyze the available symmetric offloading methodologies in edge computing.
Offloading methodologies are divided into three categories in this paper: data offloading,
computation offloading, and task offloading. The main contributions of this review are
as follows:

• the major concerns and challenges associated with IoT edge computing symmetric
offloading techniques are outlined;

• a thorough examination of existing data offloading techniques employed in IoT
is conducted;

• finally, a proposed smart architecture is presented for symmetric data offloading that
addresses issues like data traffic, bandwidth utilization, and offloading issues.

This paper is organized as follows: Section 2 elucidates the concept of offloading,
issues in data offloading, and various approaches of data offloading, and provides a sum-
mary of the findings. Section 3 illustrates the research methodology used to select papers
from various databases and the process adopted to select the best quality papers. Section 4
outlines important aspects that address various considerations for data offloading in IoT.
Section 5 proposes a smart architecture for data offloading and proposes a data offloading
workflow for industrial IoT. Subsequently, in Section 6, conclusions and recommendations
for future research are presented.
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2. Literature Review

This section introduces basic definitions, fundamental concepts relevant to the area of
data offloading in IoT networks, and related work.

2.1. A Brief Overview of Offloading in IoT Architecture

This sub-section presents a generic offloading done at a three-tier level architecture
of IoT (see Figure 2). Offloading is a technique that allows a low-power device, such as a
smartphone or a wearable, to delegate the processing of a task, such as a code, service, or job,
to a device with more skills and resources [6–8]. When a device can reach the server with
low latency rates of transfer in the presence of network connectivity, it is opportunistically
outsourced. Offloading all the time is not very effective or practical when the processing
needs are very low in comparison with the expenses incurred during communication
(particularly latency), so the devices must not unload if the advantage of offloading does
not outweigh the cost of doing the operation at the device. The technique’s ultimate goal is
to minimize the device’s overall processing load in order to extend battery life.
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Figure 2. Offloading in IoT [2].

One of the notable studies of offloading was performed by Kumar et al. [9], who con-
ducted a survey to provide readers with explanations of the architecture of the offloading
system, areas of research, technologies used to offload, and motivations for carrying out
the computation offloading with the goal of allowing readers to become more familiar
and adaptive to the use of these technologies in mobile systems. In [10–14], the authors
conducted their analysis by adopting computation offloading to eliminate resource con-
straints in mobile cloud computing, and performed some research on challenges, such as
collective optimization efforts among devices, rating offloading services that had not been
previously defined and studied. In [15–18], the authors reviewed the primary approaches
used in compute offloading techniques, including communication with the client and
server, the virtualization process, and the use of mobile agents, as well as the benefits and
drawbacks. Wang et al. [19] provided a survey overview on compute offloading efforts
related to the following research areas like systems pertaining to single users’ multi-user
systems, offloading on edge servers with different users, offloading to some other edge
devices, and mobility awareness.

Briefly, the previous review papers suffer from some weaknesses, as follows:

• The papers do not contain a systematic heuristic technique on data offloading in IoT,
especially between the years 2017 and 2020.

• Some papers [10–13] did not present any reasonable categorization of offloading
approaches in IoT.

• Many papers [14] did not study the entire scope of data offloading in IoT.
• Some papers [16–18,20–22] did not provide future directions for offloading approaches

in IoT.
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• The existing works did not have a systematic format for selecting papers.
• The aforementioned reasons motivated us to prepare a survey paper on offloading

approaches in IoT to overcome all of these existing deficiencies.

2.2. Data Offloading Issues

The bandwidth usage from 4G’s rich data services is not expected to decrease. As
a result, the expense of maintaining the expected exponential growth in traffic created
by mobile data services using current 4G network topologies is unsustainable. As a
result of the expected surge in data traffic on 4G networks, carriers must immediately
consider alternate solutions in order to ensure that both voice and data services run
properly. In [20–22], the unanticipated data explosion is also due to the rapid uptake of
smartphones by mobile phone subscribers, as well as the significantly greater usage profile
of smartphones compared to basic handsets. Therefore, with the exponential rise in data
traffic due to smart devices, offloading data every time at fog and edge is not the solution,
as it will create a scalability issue in the near future and we will have to come up with some
other new technique(s). In consideration of the above, an efficient framework should be
readily prepared to tackle this increasing data in order to handle this scalability issue.

2.3. Overview of Data Offloading Approaches

In [23], the authors devised a novel offloading approach for edge computing by
optimizing the efficiency in order to improve the performance of deep learning in IoT-based
applications. Furthermore, in [24], the authors developed a fog computing-based system to
handle mobile data in real time. In the edge context, the authors in [25] used in-memory
storage and processing to reduce long-term energy use while maintaining acceptable
latency. In [26], the authors presented one of the first efforts in opportunistic-based mobile
data offloading. The authors addressed the subject of target set selection and proposed
three techniques for selecting a set of targets: greedy, heuristic, and random. In [27], the
authors suggested a method for offloading by direct connectivity or intermediate nodes,
with data from mobile devices to infrastructure. The review looked into the relationship
between data amount and the probability of a failed delivery for a particular path and
time limitation.

In [28], the authors proposed an incentive-based strategy for incentivizing users who
give data offloading space for requesters. In [29], the authors developed an offloading
technique based on Wi-Fi. Before the deadline, every user of the new system was required
to get some particular data using a Wi-Fi access point. The authors in [30] investigated a
dataset of video requests obtained from real-world cellular traffic over a one-month period
in a big metropolitan region to come up with a viable offloading approach.

The authors in [31] developed an operator-assisted offloading system in which a
central controller determines which nodes the material must be transported across the
cellular network dynamically over time, based on the current state of dissemination. The
proposed approach is based on centralized control rather than being entirely opportunistic.
In [32], the authors suggested a cooperative data offloading based on Wi-Fi architecture to
ensure that dependable data is stored using smart phones.

In [33], the authors investigated the effects of self-contention on data storage of mobile
devices and offered a strategy for maximizing offloading throughput’s upper limits. At
the edge, multi-device collaborative data offloading is more appropriate. As a result,
some research has attempted to address the challenge of collaborative data dumping. The
authors in [34] introduced optimization models and presented energy-aware collaborative
data offloading, as shown in Figure 3. In [35], the random forests approach and Apache
Hadoop were used to build a machine learning method incorporated within a big data
analytics platform to estimate highway travel time based on data collected from highway
electronic toll collection in Taiwan.
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2.4. Summary

The majority of the offloading strategies that were reviewed utilized techniques that
are model-based, such as queueing theory, game theory, and Lyapunov optimization,
although heuristic-based techniques were used to a lesser extent. In terms of case studies, it
was discovered that the majority of researchers evaluated offloading solutions for compute-
intensive mobile apps, including video surveillance, face detection, and AR/VR, but less
work was done on traffic intensive applications. From the standpoint of performance
metrics, it was observed that practically all research looked into metrics related to energy
consumption because the offloading of duties represents an energy-intensive operation.
In terms of assessment tools, it was discovered that the majority of strategies related to
offloading were tested with the help of iFogSim, despite the fact that benchmarks should
be used to verify the efficiency with which mobile applications work.

3. Research Methodology

In this section, we present a systematic literature review (SLR) method for categorizing
the offloading approaches in IoT used in recent research [26–41]. The following studied
string words were used to determine important synonyms and keywords of the approaches:

• (“Off” OR “Data Offloading” OR “Allocation” OR “Task Offloading” OR “Offloading”
OR “Edge computing”). We created some technical questions (TQs) based on the
scope of the data offloading technique in IoT network using the SLR method:

• TQ1: What are the primary considerations for data offloading in IoT?
• TQ2: What evaluation tools are used to assess data offloading strategies?
• TQ3: What are the most common criteria used to assess data offloading approaches?
• TQ4: Which techniques are used for data offloading approaches?

Various heuristic-based techniques proposed by different researchers are highlighted
in Table 1. The table contains a literature survey related to techniques utilized, parameters
used, case studies adopted, and simulators used.

In order to refine the key research, addition and removal techniques were employed
for the screening of the final paper selection. Due to the tremendous potential of Web of
Science journals, research articles that index in the Web of Science and ISI proceedings with
the peer-reviewed process were considered for offloading challenges in IoT. Some of the
papers’ drawbacks were as follows: (1) non-English research articles are not considered
in the SLR method; and (2) low-quality conferences with less than four pages are not
considered in the SLR method. Finally, we chose 100 papers to respond to our technical
queries. Scientific publishers such as Google Scholar, IEEE, Elsevier, Springer, ACM, and
Wiley publish a wide range of research studies each year, as seen in Figure 4. Figure 5
depicts the addition and rejection flowchart for the final selection of papers.
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Table 1. Comparison of heuristic-based techniques in data offloading.

Ref. Utilized Technique Parameter Evaluation Tool Advantage Weakness

[42]
Low time complexity
heuristic offloading

algorithm

Throughput, energy
consumption, and
average Latency

Simulation
developed in

Python 2.7

Simulation study shows that
algorithm has comparable

performance

HA is theoretically not
proven to be optimal

[43]

Threshold-based rate
control algorithm and
dynamic-based rate
control algorithm

Data rates and traffic load Trace-driven
simulation

Algorithm is useful to reduce
the computation

Communication
overhead is not

addressed

[44] Attractor selection
algorithm Throughput Simulation

(N/A)

Proposed system provides
better throughput and

scalability compared with
Wi-Fi and on spot offloading

Scalability issue not
addressed

[45]
TPM offloading

algorithm for single
smart device

Average channel gain Simulation
(N/A)

Algorithm is useful to
minimize the total power

consumption of SDS

Algorithm only
applicable for NB-IoT

system

[46] Genetic algorithm
(greedy first fit heuristic)

Response time & service
execution delays iFogSim

Fog service placement
problem (FPSS) is solved

using GA

Proposed algorithm has
not been evaluated in a

real-world scenario

[47] Greedy algorithm and
two-step algorithm (TSA)

Downloading ratio and
average delay

Simulation
(N/A)

Algorithm is effective in
reducing the bandwidth and

decreasing the cost of the
cellular network

Not able to address
scalability issue overhead

[48]
SGCO (stabilized green
cross haul orchestration)

algorithm
Average CPU utilization Simulation

(N/A)

Program algorithm provides
energy efficient workload

execution

Scalability issue not
addressed

[49]
AELAO (anchoring effect

and loss aversion on
offloading)

Amount of data
offloading, actual reward

of APs
Repast

Algorithm can increase the
amount of data offloading

while improving
participation rate

Proposed approach not
evaluated in real-world

scenario

[50]
Offline heuristic

algorithm and online
data offloading algorithm

Data size, average
deadline, cost, and

offloading
DieselNet

Proposed algorithm
outperforms another
compared algorithm

Overhead of the
proposed approach has
not been investigated

[51]
HIF algorithm (highest

water level interval
first policy)

Energy consumption,
average delay

Simulation
(N/A)

Emphasis on energy
consumption

Lack of an appropriate
simulation

[52]
DEED (dynamic energy
efficient data offloading
scheduling algorithm)

Task completion ratio,
task acceptance ratio,
ratio of runtime over

host time

Simulation
(N/A)

Reduced energy consumption
while ensuring the task

reliability

Lack of appropriate
simulation

[53] Prediction offloading
algorithm

Number of requests,
running time, and
operational cost

Simulation
(N/A)

Proposed algorithm is
efficient in terms of delay

reduction; cost and execution
time is also reduced

Accuracy of the proposed
solution has not been

investigated

[54] Collaborative data
offloading protocol

Data drop rate, time, and
number of sensors

Custom Python
simulator

Significantly reduces the data
drop off rates in IoT

Energy consumption has
not been evaluated

[55] HOM (heuristic
offloading method)

Running time, number of
tasks, and data volume

Simulation
(N/A)

Reduces transmission delay
of deep learning tasks

There is no guarantee of
components

[56]
FAR, HSM, UBS, and

prediction-based
offloading scheme

Delivery ratio, latency,
and overhead One Simulator

The three proposed schemes
show significant
improvements in

performance

High computational
complexity

[57] Graph theory and
heuristic method

Data transmission rate,
maximum time

constraints

Simulation
(N/A)

Offloading strategy can
greatly reduce the vehicular

cellular traffic

Confined only to one
application

[58] TEO (time efficient
offloading method)

Transmission time,
calculation time, and time

consumption

Simulation
(N/A)

Proposed method is reliable,
time consumption is

minimized, and privacy
is maximized

Scalability issue
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Table 1. Cont.

Ref. Utilized Technique Parameter Evaluation Tool Advantage Weakness

[59] PDO (privacy aware data
offloading) and SPEA2

Time of data transmission
and privacy entropy

Simulation
(N/A)

Evaluations verify the
reliability of the privacy

entropy and transmission
efficiency

Overheads have not been
investigated

[60] BRD (best response
dynamics)

AVG offload data,
number of UAVs, and

average utility

Simulation
(N/A)

Overall framework achieves
efficiency and effectiveness
under different scenarios

Energy consumption has
not been evaluated

[61]

TDO (task-driven data
offloading)

GTDO (greedy TDO)
RG-TDO

(Reorganize Task)

Successful ratio, average
task cost, average task

completion ratio

Simulation
(N/A)

The performance of the
proposed algorithms is

evaluated using real-world
datasets

The accuracy of the
proposed solution has not

been investigated

[62] Smart ranking-based task
offloading for SBS Residual energy OMNET++

Proposed algorithm helps to
balance the load between SBS

and improves the data
communication delay

Lack of weighting of
different parameters

[63] Heuristic algorithm

Number of active
processors, energy

capacity, completion
failure probability

Simulation
(N/A)

Paper investigated the
behavior of an integrated

clou-fog-edge infrastructure

Practical approach of the
proposed algorithm is not

presented

[64] DRL-based offloading
algorithm

Energy efficiency, time
latency, and price

Simulation
(N/A)

Proposed algorithm can
achieve better system

performance

Energy consumption and
delay not evaluated

[65] DCP algorithm
Satisfaction utility, total

offloaded data, and
energy consumption

Simulation
(N/A)

A novel approach to
determine user optimal data

offloading strategy

Certain factors such as
coverage area and overall
energy availability UAVs

are not considered

[66] CoSMOS Time sensitivity and
energy efficiency

Simulation
(N/A)

Existing frameworks are well
discussed and analyzed

Comparison is based on a
theoretical analysis

[67] LCBOD
Average offload latency

and data offload
success ratio

iFogSim Results confirm the
effectiveness of the algorithm

Practical approach of the
proposed algorithm is not

presented

[68] PCOS
Service loss %, false
alarm, and trusted

device %

Contiki Cooja
Simulator

Proposed scheme achieves
less service loss ratio and

false alarms

Overheads have not been
investigated

[69] Heuristic policies Energy savings and
network usage

Simulation
(N/A)

Paper presents an approach
to help govern data
offloading policies

Not evaluated practically

[70] EHRS Reduced time latency and
energy consumption

Lambda edge
service with

Amazon EC2
Service

Proposed scheme is better in
terms of time latency and

energy consumption

Overhead issues not
addressedSymmetry 2021, 13, 1889 8 of 15 
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4. Discussion and Comparison

This section shows an analytical examination and discussion of existing data offloading
studies in IoT. The analytical examination and reports are based on the existing TQs in
Section 3:

• TQ1: What are the primary considerations for data offloading in IoT?

Figure 6 represents a statistical comparison of various issues related with data offload-
ing. In this figure, we consider four different issues, namely traffic congestion, allocation
of resources, load balancing, and scheduling approach. Traffic congestion is featured
most prominently in the selected papers due to the scalability of the devices followed by
scheduling (in 27% of papers), load balancing (in 24% of papers), and allocation (in 17%
of papers).

Symmetry 2021, 13, 1889 9 of 15 
 

 

 
Figure 6. Percentage of presented issues in data offloading. 

• TQ2: What evaluation tools are used to assess data offloading strategies? 
As per Figure 7, 36% of the research papers implemented iFogSim in their proposed 

approach. In addition to this, MATLAB tool was used in 26% of research papers, followed 
by CloudSim (in 22% of papers). A few of the research papers did not specify a simulation 
tool for evaluating their methods. 

 
Figure 7. Evaluation tools used in the papers of the literature study. 

• TQ3: What are the most common criteria used to assess data offloading approaches? 
In Figure 8, the analytical report on QoS depicts that response time parameter was 

used in 29% of the papers on data offloading, followed by energy (20% of papers), band-
width utilization (19% of papers), and latency (18% of papers). 

Traffic 
Congestion

32%

Scheduling
27%

Load Balancing
24%

Allocation
17%

Traffic Congestion

Scheduling

Load Balancing

Allocation

Matlab
26%

iFogSim
36%

Cloudsim
22%

Omnet
5%

One simulator
2%

Jav JMT
9%

Matlab iFogSim Cloudsim Omnet One simulator Jav JMT

Figure 6. Percentage of presented issues in data offloading.



Symmetry 2021, 13, 1889 9 of 14

• TQ2: What evaluation tools are used to assess data offloading strategies?

As per Figure 7, 36% of the research papers implemented iFogSim in their proposed
approach. In addition to this, MATLAB tool was used in 26% of research papers, followed
by CloudSim (in 22% of papers). A few of the research papers did not specify a simulation
tool for evaluating their methods.
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• TQ3: What are the most common criteria used to assess data offloading approaches?

In Figure 8, the analytical report on QoS depicts that response time parameter was used
in 29% of the papers on data offloading, followed by energy (20% of papers), bandwidth
utilization (19% of papers), and latency (18% of papers).
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• TQ4: Which techniques are used for data offloading approaches?

In Figure 9, the analytical report depicts that most of the papers utilized heuristic-
based techniques, followed by meta-heuristics-based approaches. Model-based approaches,
such game theory and queueing theory were used less.
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5. Proposed Smart Architectures for Symmetric Data Offloading

The proposed IoT-based system for symmetric data offloading (the architecture is
shown in Figure 10) consists of ESP32 with integrated Wi-Fi and Bluetooth, GSM module,
a sensor device, and a cloud data repository (for storing offloaded data).The sensor device
senses the signal (such as temperature, smog percentage, humidity) and then sends the
data to the ESP32 module, which acts as a gateway through an NRF module embedded
in sensor devices. Low data rate transmission is preferred using one of the IoT protocols
such as Zigbee, LoRa WAN, Bluetooth, etc., depending on the use case. The gateway in the
system ESP32 acting as an edge node allows data to come from sensor devices and then
offloads data to cloud either via GSM module or via local Wi-Fi using a heuristic-based
offloading algorithm. Offloaded data requiring a quick response will be sent to the user
via GSM for quick action, and attached actuators will respond as per the response of the
user. With limited storage facility at the edge node, data resides here for a certain period of
time and is then replaced by new data. A cloud server equipped with offloaded data can
be utilized for data analytics in order to make effective decisions using pattern-matching
techniques of machine learning.
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Proposed Workflow for IIoT

The proposed workflow in Figure 11 is specifically designed for the above architecture,
where data sensed by the sensors is sent to the edge node, which will filter out the data
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based on the threshold value. If the data is above the threshold value, the flag value will be
set to one and thread one will be activated, which will send the data further to the cloud
end. Thread 2 will allocate the server to the offloaded data based on the response received
from Thread 1. This workflow curtails the bogus data that is sent every time to the cloud,
which causes congestion due to data traffic, and will minimize the load on the server in
comparison to existing techniques; thus, it is anticipated to help improve issues related to
network congestion, reduced bandwidth, and green computing. Allocation of task will
depend upon the server with the smaller ping value and will be AI-based. This proposed
workflow for the above architecture will be implemented in traffic-generating applications
like industrial IoT.

Symmetry 2021, 13, 1889 12 of 15 
 

 

 

 

Figure 11. Data offloading Workflow for IIoT. 

The novelty of the proposed approach is in its curtailing of data outreaching to cloud 
environments; additionally, algorithms will be implemented at edge node as per changing 
scenarios. 

6. Conclusions and Future Research 
In this paper, a systematic literature review on data offloading approaches used in 

IoT networks was conducted, and some important issues were highlighted. This paper 
provides a brief overview of primary considerations for data offloading, evaluation tools, 
and common criteria used to assess various data offloading strategies. It also highlights 
various parameters used to evaluate data offloading algorithms. As per the literature re-
view analysis, we observed that traffic congestion has been identified as the main issue 
even after offloading data at edge and fog nodes. Additionally, we observed that mobile 
applications have been used most (with 15 studies), followed by vehicular networks (with 
8 case studies). Regarding the tools used for implementation, 36% of the papers used iFog-
Sim, followed by 26% of the papers using MATLAB. Pertaining to the QoS parameters 
used to evaluate the performance of the proposed model, response time was the parame-
ter that was used the most in the selected data offloading papers. From an analysis of the 
utilized techniques, it was observed that heuristic techniques were used in 35 studies. Fi-
nally, based on the statistical analysis conducted, a smart architecture framework for data 
offloading in IoT networks was presented along with a proposed workflow for an indus-
trial IoT-specific application that will be used to implement traffic-intensive applications 
in the future. The authors hope that this paper will help researchers to gain a better un-
derstanding of current data offloading approaches and will help support future research 
in this field. 

Author Contributions: Study conception and design, M.S.B. and K.G.; data collection, A.Z. and 
S.M.; analysis and interpretation of results, M.S.B. and D.K.; draft manuscript preparation, K.G., 
M.S.B., and A.K.P. All authors have read and agreed to the published version of the manuscript. 

Thread 2 (Task Allocation to the cloud) 

SENSOR 
Data sent to the edge node 

EDGE NODE 

Is sensed data above 

threshold?

Do not send data 
to the cloud 

No 

Yes 

Thread 1 (Flag ON): Data will be gathered at edge 
node 

Figure 11. Data offloading Workflow for IIoT.

The novelty of the proposed approach is in its curtailing of data outreaching to
cloud environments; additionally, algorithms will be implemented at edge node as per
changing scenarios.

6. Conclusions and Future Research

In this paper, a systematic literature review on data offloading approaches used in
IoT networks was conducted, and some important issues were highlighted. This paper
provides a brief overview of primary considerations for data offloading, evaluation tools,
and common criteria used to assess various data offloading strategies. It also highlights
various parameters used to evaluate data offloading algorithms. As per the literature
review analysis, we observed that traffic congestion has been identified as the main issue
even after offloading data at edge and fog nodes. Additionally, we observed that mobile
applications have been used most (with 15 studies), followed by vehicular networks (with
8 case studies). Regarding the tools used for implementation, 36% of the papers used
iFogSim, followed by 26% of the papers using MATLAB. Pertaining to the QoS parameters
used to evaluate the performance of the proposed model, response time was the parameter
that was used the most in the selected data offloading papers. From an analysis of the
utilized techniques, it was observed that heuristic techniques were used in 35 studies.
Finally, based on the statistical analysis conducted, a smart architecture framework for data
offloading in IoT networks was presented along with a proposed workflow for an industrial
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IoT-specific application that will be used to implement traffic-intensive applications in the
future. The authors hope that this paper will help researchers to gain a better understanding
of current data offloading approaches and will help support future research in this field.
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