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Abstract: We report the results of an in-depth study of 15 variants of five different Convolutional
Neural Network (CNN) architectures for the classification of seeds of seven different grass species
that possess symmetry properties. The performance metrics of the nets are investigated in relation to
the computational load and the number of parameters. The results indicate that the relation between
the accuracy performance and operation count or number of parameters is linear in the same family
of nets but that there is no relation between the two when comparing different CNN architectures.
Using default pre-trained weights of the CNNs was found to increase the classification accuracy by
≈3% compared with training from scratch. The best performing CNN was found to be DenseNet201
with a 99.42% test accuracy for the highest resolution image set.
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1. Introduction

From the tropical savannas to the arctic taiga, grasses have dispersed and adopted to
all ecosystems around the world. In addition to being an important livestock source for
animals, different grass species play crucial ecological and economic roles as habitats of
beneficial fauna. In land management, dense grass turf is utilized to prevent soil erosion
and land sliding. Grasses are also used in parks, gardens and yards for recreational and
ornamental functions [1].

Grasses have the majority of plant diversity in the world. There is no data set that
can be used for the classification of grass seeds. The application of deep learning in the
classification of plant seeds is one of the active research areas where a large image data
set is required. The current study provides a new data set consisting of 8654 images of
seeds of six different grass species acquired in a laboratory environment by preserving the
symmetry properties.

The automated classification of images has been one of the widely studied problems of
artificial intelligent research for more than four decades. Early studies employed methods,
such as support vector machines, decision trees and various neural networks, which are
broadly called traditional machine learning methodologies. One of the drawbacks of these
methods is the need for the manual extraction of features in the images to be used as
the input to the method. Feature extraction is time consuming and requires expertise.
Deep Learning provides great advances in solving problems in the field of image-based
recognition because the application of computer vision techniques is done with an artificial
neural network that contains a great deal of processing layers compared to traditional
artificial intelligence applications.

One of the advantages of deep learning is that it benefits from raw data without using
hand-made features. CNNs are more comfortable to use than machine learning algorithms
with manual feature extraction. CNNs are a subclass of deep learning and have many
successful applications in image classification and object recognition. CNN popularity
began with AlexNet [2], which used GPUs to accelerate the learning stage and won the
ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2012 with a 15.3% top 5
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error rate. In the following years, the error rate decreased steadily with the proposed new
network to approximately 2%.

The full training of deep CNNs requires a large amount of labeled training data and
extensive computational resources. In addition, they might exhibit various overfitting and
convergence problems, which makes deep learning from scratch a tedious and expensive
undertaking. Transfer learning has been proposed as one possible solution to this problem,
and this involves fine-tuning the deep CNNs pre-trained with a large dataset for the
relevant set instead of training from the scratch. Tajbakhsh et al. reported a comparison
of the performance of pre-trained and deep-trained from scratch CNNs in the medical
context and showed that pre-training would be beneficial in increasing the robustness of
the training to the size of the training set and improving performance [3]. The importance
of initialization for the convergence of training in CNNs is discussed in [4].

The automatic recognition of plant seeds is essential for biodiversity preservation as
well as for commercial activities [5]. The identification of grass seeds is different from the
identification of seeds of cultivated plants. Thus, cultivated plants must provide certain
characteristics to be approved as a variety. In contrast to cultivated plants, the intra-species
variation in weed species is high and the seeds of some close species can be very similar.
This makes the identification of weed seeds more difficult than the classification of seeds
of cultivated plants [6]. The classification of weed seeds from color images instead of
black and white images allowed the use of color-dependent features [7], and, in 1996,
Chtioui et al. [8] compared the artificial neural networks and linear discriminant analysis
results using the features obtained from the images of four different weed seeds.

Granitto et al. [6,9] classified weed seeds according to color, texture and morphological
features by using the Naive Bayesian approach and artificial neural networks. In the local
mean-based nonparametric classifier (LMC), which uses the image features of weed seeds
obtained from the principal component analysis network (PCANet), 91 different weed
seeds were reported as classified with a 64.8% average accuracy [10]. Eight different pepper
seeds were classified with 84.94% accuracy using the multilayer perceptron model [11]. A
CNN performed better than SVM and KNN in classifying hyperspectral images of four
rice species [12].

In the classification of ten types of soybean seeds, the test accuracy of six known CNN
models was shown to range from 90.6% to 97.2% [13]. Researchers concluded that CNN
models containing a large number of layers produced better results in classifying corn
seeds as haploid or diploid [14]. Seven pre-trained CNN models were used for haploid
and diploid classification in maize seeds, and VGG19 gave the best accuracy of 94.22% [15].
Gulzar et al. considered an updated version of a deep convolutional neural network
(VGG16) for the classification of 14 different seeds from the RGB images of around 200
samples for each seed species in a transfer learning context and reported 99% training and
test accuracy [16].

Ramcharan et al. reported encouraging results for using transfer learning to develop
solutions for the digital plant disease detection problem for cassava plants [17]. Similarly,
Rangarajan and Purushothaman demonstrated that the pre-trained CNN VGG16 could be
utilized to detect eggplant diseases [18]. Comparing the performance of VGG16, ResNets
with 50, 101 and 152 layers, Inception V4 and DenseNet with 121 layers in the identification
of plant diseases from leaf pictures, Too et al. reported a maximum of 99.75% test accuracy
for the DenseNet [19]. Recently, Loddo, Loddo and di Roberto reported a novel CNN
based deep net called SeedNet [5], which was used to classify two sets of plant seeds with
accuracy of 97.47%.

To the best of the authors’ knowledge, there exists no publicly available image data
set for grass seeds. The main objective of the present study is three-fold: first, we would
like to provide a large set of grass seed images to the public. The second aim of the present
study is to investigate the effectiveness of various widely successful convolutional neural
networks in the classification of grass species from seed images. The considered CNNs
have widely differing numbers of parameters, running times and flops. As the third aim of



Symmetry 2021, 13, 1892 3 of 12

the study, we investigate the possible relations between the test accuracy of the networks
and their size or running time.

2. Methods

Six species of grass seeds, tall fescue (Festuca arundinacea), sheep fescue (Festuca ovina),
red fescue (Festuca rubra), perennial ryegrass (Lolium perenne, annual ryegrass (Lolium multi-
form) and Kentucky bluegrass (Poa prantesis), used in this study were obtained from the
General Directorate of Seed Registration of the Ministry of Agriculture and Forestry of
Turkey. These species are used most commonly as ornamental plants in gardens, but some,
such as Poa prantesis, Lolium perenne and Festuca arundinacea, are also used in pastures
and planted as cover crops. Seed images were obtained at a resolution of 100 pixels per
millimeter at 1600 × 1200 pixels in daylight using a digital microscope (Celestron). Exam-
ple images of the seeds are presented in Figure 1. The number of images for different seed
species are shown in Table 1.

Figure 1. Sample images of Festuca ovina, Festuca arundinacea, Festuca rubra, Lolium multiform, Lolium
perenne and Poa pratensis seeds.

Table 1. Grass species and the number of images used in the study.

Grass Specie No. of Images

Festuca rubra 1515
Festuca arundinacea 1599

Festuca ovina 1595
Lolium multiform 1000
Lolium perenne 1411
Poa pratensis 1534

2.1. Deep Learning Models

Deep learning approaches have many processing layers that process images and au-
tomatically predict properties for classification. There are four main groups of learning
algorithms: Convolutional neural networks (CNN), autocoders, limited Boltzmann ma-
chines and sparse coding techniques [20]. A CNN network consists of input, convolution,
pooling, fully connected, softmax and output layers, which extract complex features of
images, and the network uses them for classification purposes. Many densely connected
convolutional neural network architectures have been developed for speech and image
recognition tasks in recent years. Recent trends in CNN use are increasing, and promising
results have been reported in many studies.

Training CNN-based deep learning models from scratch is a time-consuming process
and requires a large data set. In some studies, models trained on a larger data set in the
area of the problem are used in classification. This approach is known as transfer learning.
Transfer learning can be used if the existing data set has a small number of samples for
each class. In transfer learning, it is usually fine-tuned by training fully connected layers.
In this study, by using the weights of CNN models trained on the Imagenet data set, all
model layers for which our data amount was sufficient were trained. In the case where the
last few layers were trained, the accuracy was smaller than when all layers of the system
were trained.

These models can be used for transfer learning. Transfer learning can be used to train
data in a similar problem using a pre-trained model and weights, as well as certain layers
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of the model can be trained in the new dataset by fine tuning. The CNN models used were
trained on the Imagenet dataset and the weights of the models were used in this study.
For the present study, we chose the CNN architectures that were successful in Imagenet
competitions between the years 2012 and 2018. Here, we present a short overview of those
used in the present study:

• VGG [21]: was developed to study the performance implications of increased con-
volutional network depth, has up to 144 million parameters for Nc convolutional
layers with ReLU activation with 3 × 3 receptive layers, five 2 × 2 max-pooling layers,
three fully connected layers with dropout regularization and a Softmax activation
layer in the output. It has been used in many transfer learning tasks but suffers
from a large parameter set, which makes it computationally expensive to train. We
investigated two versions of it with Nc = 13 and 16, which are called VGG16 and
VGG19, respectively.

• ResNet [22]: was introduced as an exotic network architecture that relies on so-
called “network-in-network architectures” and was instrumental in showing that very
deep CNNs can be trained by using the SGD algorithm in conjunction with proper
initialization and residual modules due to improvements in the gradient flow. In the
present study, we investigate Resnet50, Resnet101 and Resnet152 variants, which have
50, 101 and 152 layers.

• DenseNet [23]: have the properties of all previous layers transferred to the current
layer, thus, reducing the number of parameters required while strengthening the
feature propagation and feature reuse. We studied two versions of it with 121 and
201 layers.

• EfficientNet [24]: aims to increase both the computational performance and accu-
racy by scaling to balance the network depth, width and resolution. We considered
EfficientNets 0–5 in the present study.

• MobileNet [25]: proposed by Howard et al. In 2017, was designed for image recogni-
tion and classification in embedded and mobile devices.

2.2. Datasets and Computational Details

One of the aims of the current study is to investigate the resolution dependence of the
test accuracy. Toward that aim, four datasets at (32 × 32, 64 × 64, 128 × 128 and 256 × 256)
pixel resolution were created from the acquired images. Furthermore, the images in these
sets were converted to gray scale to obtain a total of eight datasets to be investigated. For
each set, the data were randomly divided into 70% training, validation and 30% test data.
A total of 30% of the training data was used for validation. In place data augmentation
(rotation and zoom) was performed in order for the network to see different data variances
in each epoch of the training process.

In the optimization of pre-trained CNN models, Stochastic Gradient Descent (SGD)
with a parameter initial learning rate of 0.01 reduced by 10x every three epochs, a mo-
mentum (0.0) and Nesterov (True) was used. The Stochastic Gradient Descent (SGD)
optimization algorithm has become dominant due to the trade-off between accuracy and
efficiency [26]. The average accuracy values presented in the study over the last 30 epochs
were calculated by training 50 epochs for each data set.

2.3. Evaluation Metrics

Various metrics have been used to characterize the performance of neural networks
over the years, ranging from the most commonly used classification accuracy to the mean
relative error between the predicted and actual values [27]. We used a set of six metrics
(training, validation and testing accuracy, precision (P), recall (R) and F-1 score (F)) to
evaluate the performance of the nets investigated in the present study. These metrics can
be defined in terms of true positive (TP: class A predicted to be class A), false positive (FP:
any class in the set that is not A classified as A), true negative (TN: any class in the set that
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is not A classified as not A) and false negative (FN: class A predicted to be any class other
than A in the set) numbers in the testing phase as:

R =
∑i TPi

∑i TPi + FNi

P =
∑i TPi

∑i TPi + FPi

F = 2
P R

P + R

where the sum is over all the classes in the problem.

3. Results and Discussion
3.1. Training and Validation Accuracy Statistics

The resolution of the images used in the training of nets has two important implica-
tions for the classification problem; it determines the amount of available information as
well as the number of floating point operations required for the training of the CNN. First,
we present the statistics of the training and the validation statistics of the considered CNNs
in Figures 2 and 3, respectively.

Here, all of the nets were trained for 50 epochs by using the same initial parameters as
the pre-trained weights supplied in the keras framework, and the statistics were calculated
over the last 30 epochs of the set of data. It can be observed from Figure 2a–d, that the
training accuracy for all investigated CNNs approached 1 as the image resolution increased
from 128 × 128 pixels to 256 × 256 pixels as expected. Although it is difficult to generalize
at lower resolutions (32 and 64), the DenseNet and EfficientNet variants displayed higher
training accuracy. It is surprising that both VGG16 and VGG19 had relatively low average
training accuracy at 128 × 128 resolution compared to their value at 64 × 64 pixel resolution.

(a) 32 × 32 pixels (b) 64 × 64 pixels

(c) 128 × 128 pixels (d) 256 × 256 pixels

Figure 2. Training accuracy statistics of the studied nets at different image sizes. (a) 32 × 32,
(b) 64 × 64, (c) 128 × 128 and (d) 256 × 256.
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Similar statistics presented in Figure 3 for the validation accuracy indicates that the
EfficientNets had the highest average validation accuracy, which was almost independent
of the image resolution. At the highest resolution, the average validation accuracy of all
nets except those of VGGs and ResNet50 approaches 1. Again, both DenseNet and ResNet
displayed a larger resolution dependence compared to the EfficientNets and ResNets.

(a) 32 × 32 pixels (b) 64 × 64 pixels

(c) 128 × 128 pixels (d) 256 × 256 pixels

Figure 3. Validation accuracy statistics of the studied nets at different image sizes (a) 32 × 32,
(b) 64 × 64, (c) 128 × 128 and (d) 256 × 256.

3.2. Performance Metrics

We present the performance metrics results for all image sizes for the considered
CNNs in Figures 4 and 5 for the raw and the gray scale images, respectively. The results are
summarized as star plots in the performance metrics of the F-1 score, recall, precision and
accuracy in training, validation and test phase dimensions. A general observation from
these figures is that the CNNs trained on higher resolution images had better performance,
as expected [28]. It can be seen from these figures that, except for the MobileNet results for
the segmented 32 × 32 pixel images, the training accuracy is in the range [0.95, 0.99] for all
of the investigated CNNs.

The plots of the results for both the raw (Figure 5) and the gray scale images indicate
that as the image resolution increased, all six performance metrics improved considerably
for all of the considered CNNs. While the improvement was linear for the segmented
images, surprisingly, the metrics of 32× 32 pixel images were found to be better, on average,
than those for the 64 × 64 pixel images for the gray scale images.

Another interesting finding is that, as the image resolution increased, the overall
best performer CNN changed; for instance, while the MobileNet was the best overall
performer for the raw image study at 64 × 64 pixel resolution, it became the worst at
256 × 256 pixel resolution for the same set. Furthermore, the same MobileNet architecture
had dismal performance for the 32 × 32, 64 × 64 and 128 × 128 pixel segmented images
but its performance was on par with the other considered networks at 256 × 256 pixel
segmented images. At the highest resolution, Densenet201 was found to perform the best
for both image sets.



Symmetry 2021, 13, 1892 7 of 12

(a) (b)

(c) (d)

Figure 4. Hexagon plots of training accuracy (TA), validation accuracy (VA), F-1 score, recall,
precision and test accuracy of the 15 investigated nets in the present study for all four image sizes for
raw images (a) 32 × 32, (b) 64 × 64, (c) 128 × 128 and (d) 256 × 256.

(a) (b)

(c) (d)

Figure 5. Hexagon plots of training accuracy (TA), validation accuracy (VA), F-1 score, recall,
precision and test accuracy of the 15 investigated nets in the present study for all four image sizes for
gray scale images (a) 32 × 32, (b) 64 × 64, (c) 128 × 128 and (d) 256 × 256.
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A confusion matrix is one of the measures that can be used to display how the
classification model confuses its predictions. In Figure 6, we display confusion matrices
for the worst and the best classifiers for the lowest and the highest resolution images. The
relatively low accuracy of the MobileNet framework for the low resolution images appears
to stem from its failure to distinguish two of the grass seeds (Fa and Fr) from the other ones.
Even the best performer E5 for the 32 × 32 pixels set had difficulty distinguishing Fr seeds
from Fa (Figure 6a) and Fo from Lm. At high resolution, MobileNet still had difficulty
deciding on the Fa seeds (Figure 6c), while the ResNet101 confusion matrix indicates very
few mis-identifications (Figure 6d).

(a) MobileNetV2 (b) EfficientNetV5

(c) MobileNetV2 (d) ResNet101

Figure 6. Confusion matrices for the worst (a) MobileNetV2 and the best performer (b) EfficientNetV5
for the 32 × 32 pixel images. Similarly, (c) MobileNetV2 and (d) ResNet101 were the worst and the
best performers for the 256 × 256 pixel images, respectively.

Two of the important considerations in choosing a deep CNN for practical applications
are the number of weights that need to be determined in training and the number of floating
point operations that is required for the determination. In Figure 7, we display the flops as
a function of the number of parameters for all nets examined in the current study. As stated
before, the MobileNet, which was developed to be run on mobile devices had the lowest
number of parameters and the lowest computational requirements. Due to the differences
in the architectures, scaling of the flops with the number of parameters was not uniform;
for instance, although EfficientNetB4 and VGG19 had the same number of parameters, one
needed an order of magnitude more operations to determine the weights of VGG19.

It can be seen from the figures that the flops-number of parameters relation for the
same CNNs with different numbers of layers (R, D and VGG) or scaling (E) was linear.
A study on the comparative performance of various well-known CNNs on the rice seed
classification problem found that the accuracy depended on the number of parameters
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of the network [29]. Hoai et al., who studied the rice seed classification problem with
standard machine learning algorithms and CNNs, reported ResNet50 and DenseNet121 as
the two highest accuracy nets, which is similar to the findings of the current study [30].

(a) 128 × 128 pixels (b) 256 × 256 pixels

Figure 7. Flops versus number of parameters for all the considered convnets for (a) 128×128 pixels and (b) 256×256 pixels
images.

One of the important parameters to consider in the evaluation of various CNNs
in the classification problem is the required computing resources for the training phase.
In Figure 8, we display the dependence of the test accuracy on the number of required
operations at all four image resolutions. As expected, flops increase with increasing image
resolution, but the accuracy-resolution dependence is not linear for all the net families. For
instance, the accuracy is at the maximum for the 64 pixel resolution for MobileNet, but it
decreases as the resolution is increased.

It is obvious from the figure that, at the same image resolution flops of different nets
might differ by two orders of magnitude (MobileNet and VGG19 at 32 × 32 pixel resolution).
Overall, the accuracy/flops ratio for the EfficientNet appear to be the best as indicated by
the high accuracy of E1 net already at 128 × 128 pixel resolution (blue filled triangles in
Figure 8). It is also interesting to note that VGG19, which has more convolutional layers
than VGG16, performed consistently worse when compared with VGG16.

Figure 8. Accuracy versus flops for all four image resolutions. Triangles, squares, diamond, circles
and hexagons denote EfficientNetn, ResNet, DenseNet, VGG and MobileNet, respectively. Red,
green, blue and black colors of the markers indicate image resolutions as 32, 64, 128 and 256 pixels,
respectively. Straight lines connecting the markers are for guidance.
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The success of deep nets is thought to stem partly from the large number of layers
and large number of parameters, which makes it natural to ask the question of whether the
accuracy of the predictions depends in any way on the number of parameters for the given
net. Figure 9a,b displays the accuracy as a function of the number of model parameters for
the 128 × 128 and 256 × 256 pixel images, respectively. Although there is an increase in
accuracy for increasing parameter numbers at the lowest parameter region for both image
sets, further increases have no effect on the prediction accuracy.

Furthermore, for the raw image set, the model with the highest number of parameters
was not among the best performing nets, which is contrary to the case observed for the
segmented image set. This finding is in line with the results reported in [31,32], which
demonstrated that deeper nets might not be better for all convolutional networks especially
in the small data settings, and the optimum network mostly depends on the data. The
training accuracies for both resolutions for EfficientNetn (E0–E5) showed that increasing
the scaling parameter beyond 1 did not increase the accuracy. For the VGG, ResNet and
DenseNet deep nets, the accuracy decreased with the increasing number of layers for the
highest resolution dataset.

(a) 128 × 128 pixels (b) 256 × 256 pixels

Figure 9. Accuracy versus the number of network parameters for all the considered convnets for (a) 128×128 pixels and (b)
256×256 pixels images.

4. Conclusions

We conducted an in-depth study of the classification problem for six grass seed species
by using 15 different convolutional neural network architectures. DenseNet201 was found
to be the best CNN with 99.42% test accuracy for the 256 × 256 pixel image set, which is
comparable to the accuracy of the best plant-related classification studies. Our aim was to
elucidate the main factors that determine the success rate of the CNN. We found that, as
expected, the size of the image used in the training and test was the single-most important
factor that determined the accuracy of the classification.

We found appreciable differences (up to ≈100%) in the performance of the considered
nets among the same image size samples. Network characteristics, such as the number of
parameters, flops and epoch time were investigated as determinants of the accuracy. We
did not detect any statistically significant correlation between any of those parameters and
the accuracy except for the gray scale images. Investigating the same metrics with higher
resolution images to better understand the main determinants of the performance of the
CNNs would be beneficial not only for the grass seed classification problem but also for
the general effectiveness of deep nets along the lines of [33].
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