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Abstract: Local symmetries are primarily defined in the case of spacetime, but several authors have
defined them outside this context, sometimes with the help of groupoids. We show that, in many
cases, local symmetries can be defined as global symmetries. We also show that groups can be used,
rather than groupoids, to handle local symmetries. Examples are given for graphs and networks,
color symmetry and tilings. The definition of local symmetry in physics is also discussed.
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1. Introduction

This paper has two main purposes. The first one is to show that, in many cases, local
symmetries can be viewed as global symmetries. Examples are given in graph theory and
in the case of color symmetry and tilings (Sections 2 and 3). The second purpose is to show
that, on the basis of specific examples from the literature, groups rather than groupoids are
relevant when dealing with local symmetries. Examples are given for networks, and in the
case of color symmetry and tilings (Section 3). However, the concept of local symmetry
seems to originate in the physics literature, and the examples cited above are outside the
field of phyics. Indeed, there are situations where global symmetries are irrelevant: this is
the case of general relativity, presented in Section 4. We first consider some terminological
aspects of local symmetry.

In physics, symmetries can be global or local. The importance of local symmetry
in physics was outlined, and global symmetries were considered to be unnatural [1].
According to [2], if symmetry is accompanied with coordinate transformations of spacetime,
it is called spacetime symmetry; otherwise, it is internal symmetry.

A global symmetry is one that holds at all points of the spacetime, whereas a local
symmetry is one with a different symmetry transformation at different points of the
spacetime, that is, a local symmetry transformation is parametrised by the spacetime
coordinates [2–4]. While it seems that there is a consensus in the physics community
about the concept of local symmetry, the situation regarding the relationship between local
symmetry and gauge symmetry is unclear. In the next paragraph, we provide an overview
of several statements about these relations, which we found in the physics literature.

Local internal symmetry is called gauge invariance [2]. A gauge group is a Lie group
whose parameters are spacetime-dependent [5]. Theories with local symmetries may also
be called gauge theories [6], and some authors consider that a local symmetry is a gauge
symmetry [7,8]. It has been considered that a gauge symmetry reduces to the identity
on the observables and that gauge symmetries can be either local or global [9,10]. In this
sense, gauge symmetry appears to be a physical rather than a mathematical concept. In
fact, the symmetry terminology is not consensual in the physics literature (for an example,
see [11,12]).

The historical origin of the term gauge is attributed to Weyl (1918) [13–17]. In the
mathematical context of symmetry, we prefer the term gauge invariance to the term gauge
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symmetry. One reason for this choice comes from the often-cited example of the gauge
theory of Maxwell’s electrodynamics, where the vector potential is determined up to the
addition of the derivative of a scalar function [18]. This defines an equivalence class of
solutions, rather than a symmetry. Only local and global symmetries are considered in this
paper, not gauge invariances.

Local symmetries also appear outside the context of spacetime. They are encountered
in arts [19], and have been applied in graph theory [20–23]. In crystallography and in
the arts, symmetries are usually handled via subgroups of color groups [24–29], although
modern approaches to color symmetry involve groupoids [19]. Similarly, subgroups were
used to handle local graph symmetries [20,23], and groupoids were also used to handle
local symmetries in networks [21,22].

Handling local symmetries via groupoids is considered by some authors to be a
general approach [30–32]. Our purpose is not to deny the pertinence of local symmetry or
that of groupoids. We aim to illustrate, on the basis of several important examples, that,
in the case of groupoids, local symmetries can also be viewed as global symmetries and
groupoids are not needed to define them. These examples target topics in different areas of
science. All share a concept of local symmetry, while this concept has received different
definitions, depending on the authors.

2. Local Symmetry from Groups
2.1. Mathematical Framework

Symmetry is considered as a mathematical model of real physical situations. Therefore,
we retain the unified definition of symmetry given in [33], which works for geometric
figures (with or without coloring, as encountered in arts), and for functions, probability
distributions, graphs, matrices, strings, etc. We recall this below.

Definition 1 ([33]). An object is a function with its input argument in a metric space.

The space of the returned values varies depending on the considered application.

Definition 2 ([33]). An object is symmetric when it is invariant under an isometry that is not the
identity.

Definition 1 is the key to handling symmmetry in general, while Definition 2 is the
classical one, provided that the object is defined. Definitions 1 and 2, taken together, allow
for identification of which mathematical entities can be qualified as symmetric or not. They
give rise to a mathematical definition of chirality based on groups [34] (no need for the
orientation concept).

Definitions 1 and 2 are based on the assumption of the existence of a metric, but none
of the axioms defining a true metric were necessary to define isometries [33]. Therefore,
these definitions were retained in the case of the Minkowski spacetime [35], and, more
generally, in geometric algebra [36], for which intervals are preserved rather than distances.

2.2. Symmetry from Graph Automorphisms

Below, we show how the definitions given in Section 2.1 work in the case of graphs.
Through the abuse of notation, we do not use double parentheses to denote the values
taken by functions of several variables, although, in set theory, a function is expected
to have only one argument. For example, f ((x, y)) is denoted f (x, y), with the unique
argument of f being (x, y).

We consider two non-empty sets S′ and S′′ and we define E = S′ × S′′. A binary
relation G from S′ to S′′ is isomorphic to an indicator function φG with its input argument
z = (x′, x′′) ∈ E, x′ ∈ S′ and x′′ ∈ S′′, satisfying to φG(z) = 1 when x′′ is the image of x′

through G, and to φG(z) = 0 when x′′ is not the image of x′ through G.
We assume that S′′ = S′; we define S = S′ = S′′ and we assume that S is finite and

has n elements. The graph of the function φG is a directed graph, in the sense of graph
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theory: the elements of S are the nodes (or vertices), and the elements z of E = S2 such that
φG(z) = 1 are the edges.

We assume that the graph is unlabeled in the sense of vertex labeling (the unlabeled
graph can be viewed as the isomorphism class of the n! labeled graphs).

The n by n adjacency matrix AG, also called the connectivity matrix, has the general
element AG(i, j) = φG(xi, xj), 1 ≤ i ≤ n, 1 ≤ j ≤ n, which is the indicator function of an
edge from the node xi to the node xj. The adjacency matrix is defined up to an arbitrary
simultaneous permutation of its lines and columns. When a diagonal element AG(i, i) is
null, there is no loop on the node xi.

Warning: the case of graph symmetries should not be confused with the one where φG
ia a symmetric function, in the sense that φG(x′, x′′) = φG(x′′, x′) for any (x′, x′′) ∈ E (the
adjacency matrix is symmetric). This latter kind of symmetry can be recognized in the sense
of Definitions 1 and 2, but the object is defined differently from the ones considered in this
section [33]. This graph is isomorphic to an undirected graph, for which, in graph theory,
an existing edge between two nodes is usually considered to be unique and is not directed.

2.2.1. Case of Non-Colored Nodes and Non-Colored Edges

We denote by B the space of the values returned by φG. Here, B = {0; 1}. We endow
E = S2 with the metric δG, such that δG(zi, zj) = 1zi 6=zj for any (zi, zj) ∈ E2, where 1
denotes the indicator function. This metric, called the discrete metric [37,38], returns a
distance that is equal to 1 for all distinct edges zi and zj of E, and returns a null distance if
and only if zi = zj.

The edges zi = (x′i , x′′i ) and zj = (x′j, x′′j ) are distinct if either the starting nodes x′i and
x′j are distinct, or the ending nodes x′′i and x′′j are distinct. The distance between two edges
zi and zj may also be written as indicated in Equation (1) or, equivalently, in Equation (2).

δG(zi, zj) = 1x′i 6=x′j
+ 1x”i 6=x”j − 1x′i 6=x′j

1x”i 6=x”j (1)

δG(zi, zj) = 1− 1x′i=x′j
1x”i=x”j (2)

In other words, the metric δG in Equation (1) or in Equation (2) returns a null distance
between two edges zi = (x′i , x′′i ) and zj = (x′j, x′′j ) if and only if the two following conditions
are satisfied:

(a) The edges zi and zj have the same starting node: x′i = x′j.
(b) The edges zi and zj have the same ending node: x′′i = x′′j .
If one of these two conditions is not satisfied, the returned distance is 1.
There are (n2)! possible bijections of E onto E because E has n2 elements, but only

n! of them are isometries for δG. The matrix representation of these latter operate the
simultaneous permutations of the lines and columns of the adjacency matrix AG. The
automorphism group of the graph of φG is isomorphic to a subgroup of the group of these
n! permutations.

When the symmetry group of φG for δG contains at least two elements, the function
φG from E to B is a symmetric object for δG in the sense of Definitions 1 and 2.

2.2.2. Case of Non-Colored Nodes and Colored Edges

When the edges of the graph are valued, we say that each edge receives a color. The
function φG returns the color of the edges. The space B of the colors of the edges varies,
but a special value in B must be returned by φG for nonexistant edges. The metric δG is the
one of Equations (1) and (2).

When all edges of a colored graph have the same color, this graph is isomorphic to a
graph without colored edges, with the set B = {0; 1}, and with φG as the indicator function
of the existence of the edges.

When the symmetry group of φG for δG contains at least two elements, the function
φG from E to B is a symmetric object for δG in the sense of Definitions 1 and 2.
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2.2.3. Case of Colored Nodes and Colored Edges

While the edges of the graph can be valued, the nodes of the graph can also be valued.
The values of the nodes, also called colors, can be of any type, but should not be confused
with the colors of the edges.

This means that the set of nodes S is a cartesian product NS × CS, where NS has n
elements and CS is the set of the colors taken by the elements of NS.

Thus, a node x of S is a couple: its first member is an element of NS and its second
member is an element of CS. We define the function ξNS from S to NS which returns the
first member of this couple, and we define the function ξCS from S to CS, which returns its
second member (its color).

The metric δG is still the one of Equations (1) and (2).
When the symmetry group of φG for δG contains at least two elements, the function

φG from E to B is a symmetric object for δG in the sense of Definitions 1 and 2.
A graph for which it does not exist two distinct nodes with the same color is isomor-

phic to a vertex labeled graph. It is a sufficient condition to have the symmetry group of
φG reduced to one element (the identity), and φG is not symmetric for δG.

2.2.4. Partial Graph; Subgraph; Creation and Deletion of Edges and Nodes

We consider the graph G of a binary relation G defined by a function φG from E to B,
with colored nodes and colored edges, as in Section 2.2.3. By convention, we denote by
0 the special element of B corresponding to an inexisting edge, while this value 0 is not
necessarily numerical (see Section 2.2.2).

Definition 3. Let E∗ be a subset of E, with k = card(E∗). A partial graph G∗ of G is a graph
defined by a function φ∗G from E to B, so that, for all z ∈ E∗, φ∗G(z) = 0 and φG(z) 6= 0, and for
all y ∈ E \ E∗, φ∗G(y) = φG(y). We say that k edges are deleted from the graph G.

When k = 0, no edge is deleted, E∗ = ∅, φ∗G = φG, and G∗ = G.

In the case of an undirected graph Gu, an edge deletion between two nodes xi and xj
means that both the edges from xi to xj and from xj to xi are deleted in the directed graph
G isomorphic to Gu.

The deletion of nodes in a graph G is also possible. This assumes that a special color
in CS is attributed to deleted nodes (see Section 2.2.3). By convention, we denote 0CS the
special element of CS corresponding to a deleted node.

Definition 4. Let S∗ be subset of S, with m = card(S∗), 0 ≤ m < n. A subgraph G∗∗ of G is a
graph defined by a function φ∗∗G from E to B, so that, for all x ∈ S∗ such that ξCS(x) 6= 0CS , all
edges from x and all edges to x are deleted from G. We say that m nodes are deleted from the graph
G. When m = 0, no node is deleted, and G∗∗ = G.

Definition 5. A partial subgraph of a graph G is a partial graph of a subgraph of G.

Some authors define the deletion of a node x without deletion of the edges from x
and to x. In this case, which mainly occurs in undirected graphs, such edges are called
pending edges [39]. We do not provide the related definitions in our framework, because
local symmetries do not seem to have been considered by authors in this context.

Operations on graphs can be performed on a computer. In our framework, creating or
deleting an edge in a graph is just a change of its color. Similarly, creating a node is a change
in its color from 0CS to another value, and deleting a node means that its incident edges are
deleted and then its color is set to 0CS . Other operations on graphs can be performed by
successive calls to the basic operations above.

It is recalled that a color is not necessarily a single value, such as an integer or a real;
it can be implemented through a sophisticated data structure. Then, all operations on
graphs can be performed on computers using any programming language, whether it is



Symmetry 2021, 13, 1905 5 of 10

object-oriented or not. For specific applications, when the set of rules defining a class of
permitted operations is too large, this set of rules can be generated by a computer, too.
How to do this generation is out of the scope of this paper.

Remark 1. We consider a graph G, with colored nodes and colored edges, defined by an object φG
on the space of edges E, and an induced partial subgraph G† defined by an object φ†

G on E. The
symmetries of φ†

G and those of φG are all in the isometry group of the space E. The n! members of
this isometry group apply to the whole space E. Neither the symmetries of φG nor the symmetries
of φ†

G depend on which element of E they apply. Thus, these symmetries can be considered global
symmetries rather than local symmetries, discarding the fact that E is not the spacetime, in which
the concepts of local and global symmetries usually makes sense.

2.3. Local Symmetry from Graph Automorphisms
2.3.1. Application to Molecular Graphs

In chemistry, it is customary to consider molecular graphs. A molecular graph is a
simple, undirected graph, which is not necessarily connected. Its nodes correspond to
the atoms and its edges correspond to the bonds. There are colors on the nodes and there
are colors and the edges. The color of a node is the atom type in the periodic table of
Mendeleev, and the color of an edge is the type of chemical bond.

For example, the molecular graph of the water molecule H-O-H has three nodes and
two undirected edges, the color of the nodes are H for hydrogen and O for oxygen, and the
color of the two edges are both a simple chemical bond (other kind of bonds exist, such as
double, triple, aromatic, etc.).

According to [23], there are local symmetries, called subsymmetries by the authors,
which are related to the automorphisms of specific hierarchies of subgraphs of a molecular
graph. Following Remark 1, these local symmetries can also be called global symmetries.

2.3.2. Application to Other Undirected Graphs

According to [20], an endomorphism ψ of a connected undirected graph G is a local
symmetry, if there is a partial subgraph G∗∗ψ separating G into two components G1 and G2

(not necessarily connected) such that ψ is the identity on G2 ∪ G∗∗ψ , and ψ(G1) is isomorphic
to a subgraph of G2.

In our graph symmetries framework, this local symmetry can also be called a global
symmetry (see Remark 1).

3. Local Symmetry from Groupoids
3.1. Groupoids and Networks

Groupoids were used to handle local symmetries in networks [21,22] (see [40] for
generalities about groupoids). In this context, a network is a directed graph with colored
nodes and colored edges (see Section 2.2.3). An edge represents an interaction from a node
to an other node. Some examples of the dynamical character of the network, given in [21],
are: a choice of move (games), a transition probability (Markov chains), discrete states in
time and space (cellular automata), or continuous states (coupled ODEs).

As stated in [21], the architecture of the network is not considered to evolve over
time, while the local nature of groupoid symmetries implies changes, such as the addition
or removal of a node or an edge, and these changes occur along the time. Thus, the
global architecture of the network is said to be preserved, which makes sense for quotient
networks [41]. According to [21], the difference between group symmetries and groupoid
symmetries is that the former are transformations of the network preserving its global
architecture, whereas the latter relate local regions of the network to other regions.

The transformations of the network along the time and the rules defining the classes
of permitted transformations can be programmed from graph operations, as shown in
Section 2.2.4. It follows that local symmetries in networks can be handled with groups, and
called global symmetries (see Section 2.2.3).
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3.2. Groupoids and Tilings
3.2.1. An Example of a Planar Tiling Found in the Literature

The need for groupoids in the context of local symmetry was outlined in [42]. The
motivation for this need was based on the example of a tiling X of R2 by rectangles,
where four rectangles meet at each corner point, with the origin being in the set of these
corner points. Comparing groups to groupoids, the authors emitted the criticisms below
about groups.

1. The same symmetry group Γ applies both to X and to its grid of corner points, while
the grid differs from X.

2. The group Γ contains no information about the local structure of the tiled plane, which
exists when the tiles are colored with a design.

3. If, as for bathroom floors, the tiling is restricted to a finite rectangular domain of the
plane ∆ = [0; 2m]× [0; n], the symmetry group is shrinked, that is, the subgroup of Γ
leaving X ∩ ∆ invariant contains just 4 elements, even though a repetitive pattern on
the bathroom floor is visible.

We address the following remarks to these three respective criticisms:

1. The two objects have the same symmetries. There is no reason why this fact should
induce a preference for groupoids rather than groups.

2. The non-colored tiling and the colored tiling define distinct objects, which can be
considered separately. Therefore, there is no reason to prefer groupoids to groups.

3. The symmetry group of X ∩ ∆ is a subgroup of the symmetry group of X. There is no
reason why this fact should induce a preference for groupoids rather than groups.

In Section 3.2.2, we show how to handle the above tiling without groupoids.

3.2.2. Our Approach of Tiling

To illustrate our approach, we consider the example of a colored tiling of the Euclidean
plane E2, where the base pattern is located in a rectangle of vertices x0 = (0, 0), x1 = (2, 0),
x2 = (2, 1) and x3 = (0, 1). This tiling is similar to the one shown in Section 3.2.1.

The closed domain defined by this rectangle, including the sides and vertices, is the
set RT of all convex linear combinations of x0, x1, x2 and x3. The set of the sides (vertices
included) of all the rectangles of the tiling is denoted TS, and the set of all the vertices of
the tiling is denoted TV .

T= = {x ∈ E2 : x = x0 + λ(x1 − x0) + µ(x3 − x0), λ ∈ R, µ ∈ Z}
T‖ = {x ∈ E2 : x = x0 + λ(x1 − x0) + µ(x3 − x0), λ ∈ Z, µ ∈ R}
TS = T= ∪ T‖
TV = T= ∩ T‖
The interior of RT is painted as follows: red in the domain ]0; 2/3[×]0; 1[, green in

[2/3; 4/3]×]0; 1[, and blue in ]4/3; 2[×]0; 1[ (see Figure 1). The color white is attributed to
TS \ TV , and the color black is attributed to TV .

Figure 1. Three neighboring units of the base pattern of the tiling. Vertices are in black.

The usual Euclidean metric is retained. The colored tiling is defined by a function φ
from E2 to B = {0; 1}5. As mentioned after Definition 1, the space of the values returned
by φ can be decided by the user. Therefore, this choice of B is an example; there are other
possible ones. The value of φ at a point x of E2 has five components, which are the values
of the respective indicator functions of each color at x. It follows that, at any point x, four
of these five values are equal to 0 and one is equal to 1.
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The grid of the corner points alone can be defined by an object φV where a common
color, say, white, is attributed to all points of E2 \ TV , while the color black is attributed to
the points of TV .

Considering the non-colored tiling means that a common color is attributed to the
points of E2 \ TS. This tiling is defined by an object φS.

An object φBS defining a restriction of the tiling to a bounded subset of E2 can be
handled with the help of the indicator function at appropriate places in the expression
of φBS.

Each of the objects φ, φV , φS and φBS has its own symmetries.
An alternate choice for the object defining the fully colored tiling could have been a

function φC from E2 to {1, 2, 3, 4, 5}, or to {red, green, blue, white, black}, which returns the
color at the point x. Many objects can be defined for a given tiling. Suitable choices depend
on the targeted applications.

Permutation of colors and, more generally, operations on colors, can be performed
through adequate transformations of objects. If needed, a graph structure can be attributed
to the base pattern. In our example, the graph contains three nodes (their colors are,
respectively, red, green and blue), and two edges, indicating their neighboring relationships.
This could be useful for computer applications (see the end of Section 2.2.4), including
applications to dynamical systems (see the example in Section 3.1).

3.2.3. Color Symmetry

Color symmetry is encountered in the arts and crystallography [24–29]. In a recent
paper [19], groupoids were used to exchange or move a number of colors without leav-
ing any fixed color. While the groupoid approach is relevant for color symmetry, these
color changes can also be achieved without groupoids, through suitable object choices, as
exemplified in Section 3.2.2.

In this situation, it suffices to apply suitable transformations to the object, such as
changing a color (see example in Section 3.2.2). Suppressing a color in a pattern is just
a change of color, since, in our approach, a non-colored pattern is just a pattern painted
with a dummy color. Similarly, reintroducing a color in a pattern is also a change of color.
Therefore, exchanges or moves of a number of colors without leaving fixed any color can
be readily performed without the help of groupoids. In the case of bounded subsets of
the Euclidean space, a probabilistic variant of our approach to color symmetry was used
to define a measure of deviation from direct symmetry [43], and to define a measure of
deviation from achirality [43,44]. This was applied to molecular solids [45] and probability
distributions [46,47].

4. Local Symmetries in Physics

As mentioned in Section 2.1, Definition 1 extends to the case where the metric is not a
true one. Thus, Definition 1 is relevant in the case of a field: this latter receives a value at
each point of the spacetime [35,36]. This value may be a scalar, a vector, a tensor, or else.

In special relativity, the observers (coordinate systems) move at constant relative veloc-
ity with respect to each other, and the symmetries are global [6]. The spacetime is viewed as
a four-dimensional real vector space, equipped with a diagonal metric of signature (1, 3, 0),
called the Minkowski metric [17]. The Poincaré group is the full symmetry group of special
relativity [17].

In Einstein’s general relativity, symmetries are local whenever acceleration or gravita-
tion are present [6], and the spacetime is viewed as a smooth, four-dimensional, pseudo-
Riemannian manifoldM. Its diffeomorphism group is the symmetry group of general
relativity [48–51]. The metric is determined by Einstein’s equations [51,52]. This metric
depends on the spacetime coordinates (for example, see the Schwarzschild metric [52]),
whence the name of local symmetry. The empty space of the special relativity is a solu-
tion of Einstein’s equations [53,54], and, in the neighborhood of a point ofM, the metric
can be diagonalized to give the Minkowski metric of special relativity, with signature
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(3, 1, 0) [55,56] (the difference between the signatures (3, 1, 0) and (1, 3, 0) of the metric is
meaningless in relativity).

As for a Riemannian manifold, to each point p ∈ M is associated a tangent space
TpM [57]. Here, this tangent space TpM is a four-dimensional vector space. Then we
define the set TM = {(p, v) : p ∈ M, v ∈ TpM. The function π from TM toM returns
the base point p ofM, that is, π(p, v) = p, where (p, v) ∈ TM (the function π projects an
element of TM onto its base point p). The triple (TM, π,M) is the tangent bundle ofM,
and TM is the total space of the tangent bundle ofM [57].

In Sections 2 and 3, we were able to identify groups of global isometries. In the
case of the pseudo-Riemannian manifoldM considered in relativity, no global isometry
is generally known forM, because the metric of general relativity varies with the base
point ofM. It was pointed out that the invariance under arbitrary curvilinear coordinate
transformations is about physical laws rather than about an object [14,15]. Therefore,
looking for potential classes of metrics constant onM or on TM is irrelevant in the context
of general relativity, and the physicists were right when they introduced the concept of
local symmetries in this context.

Some examples of local transformations were proposed in the literature to explain
local symmetry in physics, such as the points of a sphere rotating independently of one
another by different angles [9], or a long circular cylinder sliced into very thin disks, where
every ring rotates through a different angle [14,15]. These examples are useful for providing
an idea of what is local symmetry, but they do not involve any metric.

5. Concluding Remarks

Several concepts of local symmetry appeared in the literature, but they were restricted
to specific situations, and can hardly be generalized to a unified mathematical definition of
local symmetry.

Generally, one part of an object may have more or less symmetries that its parent
object. Examples are a partial subgraph induced by a graph, a molecule within its crystal
lattice, or a base motif of a tiling. These examples have in common that the symmetry
group of the object and the symmetry group of the part of the object are both subgroups of
the group of the space isometries.

We have shown that, in the examples presented in this work, local symmetries can be
called global symmetries in the framework of our unified definition of symmetry.

We have also shown, through several examples, that the use of groupoids to handle
local symmetries was unnecessary. This does not mean that handling local symmetries
with groupoids is never pertinent.
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