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Abstract: Data pre-processing is a major difficulty in the knowledge discovery process, especially
feature selection on a large amount of data. In literature, various approaches have been suggested
to overcome this difficulty. Unlike most approaches, Rough Set Theory (RST) can discover data de-
pendency and reduce the attributes without the need for further information. In RST, the discernibility
matrix is the mathematical foundation for computing such reducts. Although it proved its efficiency in
feature selection, unfortunately it is computationally expensive on high dimensional data. Algorithm
complexity is related to the search of the minimal subset of attributes, which requires computing
an exponential number of possible subsets. To overcome this limitation, many RST enhancements
have been proposed. Contrary to recent methods, this paper implements RST concepts in an iterated
manner using R language. First, the dataset was partitioned into a smaller number of subsets and
each subset processed independently to generate its own minimal attribute set. Within the iterations,
only minimal elements in the discernibility matrix were considered. Finally, the iterated outputs
were compared, and those common among all reducts formed the minimal one (Core attributes).
A comparison with another novel proposed algorithm using three benchmark datasets was performed.
The proposed approach showed its efficiency in calculating the same minimal attribute sets with less
execution time.

Keywords: rough set theory; R language; discernibility matrix

1. Introduction

Information system security has been achieved using several security solutions such as
IDS, IPS, anti-viruses and firewalls, etc.. Each device will work independently to guarantee
appropriate access to network resources [1–4], and will generate its own alert logs, bearing
in mind that these logs are growing too rapidly to be covered under the terminology big
data. High repetitions and false alerts are common in such logs. As a result, this may
mislead the process of identifying real threats. This poses a difficulty in analyzing large
logs and detecting serious security issues and intrusions, as well as reacting at the right
time [5,6].

To address these issues, several event correlation approaches have been proposed.
Some approaches depend on similarity in records, others depend on machine learning and
some depend on pattern recognition, etc. All approaches use predefined rules to gather
and examine logs from different devices [7–9]. Fortunately, many of these approaches are
implemented in real security systems, such as IBM SIEM, OSSIM, McAfee/Intel [10,11].
However, a commonality of all approaches is the large computation required due to
multidimensional attributes of security logs, which prevents some of them from being
employed in actual systems [11]. However, if a minimal log set can be created, under
the condition of remaining consistent to decision attribute(s), the problem of repetition
and real-time detection can be solved [12,13]. Luckily, RST can discover dependency
within datasets and reduce the number of attributes using the data itself, without need for
supplementary information.
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The authors of [11] proposed a method to remove unnecessary attributes from network
security logs using a rough set reduction algorithm. Moreover, the paper created a rule
database using the algorithm of pattern mining, which depended on the timestamp of
events. The work of this paper was very important for our research. It is similar to using
rough set algorithms in general, but in our research, we performed attribute reduction to
create a minimal optimal set.

The study performed by Y. Yao, et al. [12] was similar in the general use of the con-
cepts of RST, but had a different purpose, as well as a different methodology. To identify
security semantics, the researchers employed RST to analyze alert data collected from
multiple sources. This was performed by collecting security data from several resources,
then applying RST concepts. Weight was calculated for classifications of alerts, then alert
aggregation was performed to eliminate repetitive and false alerts. Finally, a reliability met-
ric was introduced according to background information to measure credibility. Therefore,
our research would be a complement to this work as an extra stage to enhance both the
classification of alerts and credibility measuring.

In ref. [14], the author explained the power of RST in knowledge discovery based
on real world big datasets. These datasets can be uncertain, imprecise, and incomplete,
which may misguide data analysis. Rough set feature selection algorithms can handle such
problems by selecting the most relevant features to provide better results with less proba-
bility of information loss. The paper discussed the quickreduct algorithm, relative reduct
algorithm, and entropy-based reduct algorithm. Lastly, output comparison was discussed.

In ref. [15], the authors proposed an effective and scalable rough set theory-based
approach for pre-processing large scale datasets to perform feature selection. The idea of
the approach was to use distributed parallel algorithms to enhance the execution time of
data analysis. As a result, this made it possible to adapt the approach to pre-processing
big data.

M.R. Gauthama Raman et al. [16] presented a selection method to determine the
optimal attribute subset of the Intrusion Detection System (IDS). This technique used RST
and some properties of the hypergraph to enhance the accuracy of classification and time
complexity of IDS.

Dutta, S., Ghatak, S., Dey, R. et al. [17] proposed an attribute selection methodology
that improved spam classification for Online Social Network (OSN). RST concepts were
applied to develop an attribute selection algorithm to identify a smaller group of features
that led to improving classification performance.

Anitha, A., and D. P. Acharjya [18] proposed a feature selection technique based on
novel filter stands on the RST approach and Hyper-Clique based Binary Whale Optimization
Algorithm (RST-HCBWoA). The technique identified informative features. This was nec-
essary for an effective feature selection algorithm used in supervisory control and data
acquisition IDS to protect critical infrastructure from cyber-attacks.

Nanda, N.B. and Parikh, A. [19] used RST to propose a hybrid technique that worked
on identified risks of the network-attached intrusion detection system to determine the
minimum rules set that could represent the knowledge offered by the data set under
consideration. The two models used in this procedure were random forest classifier, to
select attributes, and RST, to generate rules.

Hence, based on the work in [16–19], our study proposes more relevant research,
providing a novel algorithm by using rough set package in R language to find the optimal
minimal subset of attributes, rather than a smaller one without sacrificing performance.

In this paper, a new technique is proposed to create a minimal data log in addition
to recent reduction approaches, particularly those mentioned in [20,21]. This minimal log
will be used to create a minimal decision rule database. The motivation for proposing this
methodology is to overcome the prohibitive complexity of RST concepts when searching for
an optimal attribute subset, especially with big data. Offering such solutions will enhance
the efficiency of real-time analysis of security algorithms, i.e., real-time IPS. The research
contributions are:
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• Developing a new algorithm using RST basic concepts to create minimal re-ducts;
• Offering a feasible feature selection methodology scalable to huge datasets, without

sacrificing performance;
• Creating a minimal rule decision database that retains information content;
• Using three benchmark UCI datasets to evaluate the performance of the methodology;
• Comparing the result of the proposed model to recent works.

The rest of the paper is organized as follows: Section 2 discusses the related works.
Section 3 gives a theoretical background about the rough set and R language. Section 4
discusses the methodology, motivation, datasets used, the proposed algorithm, and shows
the experimental comparison results. Section 5 concludes the paper.

2. Related Works

As feature selection denotes the operation of selecting a subset of attributes from the
original large set of attributes, the selected subset should be of the most important and
relevant attributes among all. For example, in biomedical problems [22], it is the process
of locating key genes, given a huge number of options; in business, it is the process to
discover core key indicators for growth [23]; and in text-mining, it is the way to choose key
terms [24].

For data mining and machine learning real-world issues, irrelevant misleading fea-
tures, as well as noise data, occur. Therefore, the process of feature selection has gained high
importance, since pre-processing the data can overcome such problems. To accomplish the
task, two concepts are used: relevancy and redundancy of the feature. We say that a feature
is relevant when it can predict decision feature(s), and that a feature is redundant when
it offers the same value of information regarding any context, meaning that it had a high
correlation. Hence, the successful feature selection process should detect attributes that
have a high correlation with decision feature(s), however uncorrelated with themselves.

In consideration of the literature, it is worth mentioning that a comprehensive study
was performed in [25], where the authors conducted a deep analysis regarding the scala-
bility of existing recent techniques for feature selection. The paper concluded that recent
methods would have scalability difficulties when processing big data. The authors showed
that these difficulties would be in the process of handling large attributes, in both training
time as well as efficiency in choosing relevant features. They recommended redesigning ex-
isting algorithms and their activation in distributed and parallel environments/frameworks.
They stated that to overcome the limitations of recent approaches, a tool that requires no
external/supplementary information is needed, and fortunately, RST can be used [26].

To overcome the weakness of RST in processing big data, several methods have been
developed in the literature. The authors in [27] developed an evolutionary MapReduce
algorithm, and used a parallel genetic algorithm to calculate the minimum rough set reduct.
Within the different contexts in [28], the authors introduced a theoretical framework named
local rough set. Here, a series of attributes reduction and approximation algorithms were
developed with linear time complexity. However, it only fits limited labeled big data. The
authors in [29] worked on developing a distributed definition of RST to treat reductions in
information systems.

The authors of [30] produced a reduced maximal discernability pairs concept, based
on fuzzy RST object pair framework. They developed two separate algorithms related
to the concept. Results after comparison indicated that both algorithms were feasible
and efficient.

As mentioned in [31], the authors based an RST proposed enhancement on two feature
selection algorithms: Quickreduct, and entropy-based reduct, to find the minimal feature
subset, because both algorithms have drawbacks in determining such minimal reduct. The
measured performance using benchmark databases showed that the enhancement had
overcome the drawbacks in terms of running time and minimal attribute calculation.

In [20], to overcome the limitations of the high computations of RST algorithms in
features selection, when used to process large-scale data, the authors proposed a scalable
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rough set theory-based approach for data pre-processing, particularly to select features
using the Spark framework. The experimental results showed that the solution performed
well in feature selection, which made it suitable to be used with big data.

The authors of [21] proposed a novel algorithm for finding optimal reduct using fuzzy
RST. The idea was to consider only the minimal attributes in the discernibility matrix when
performing the calculation of reducts. The experimental comparison proved the efficiency
of the proposed algorithm. In Section 4.4 of this paper, the effectiveness of our proposed
algorithm is proved by comparing its performance with the statistical results mentioned
in [21].

3. Theoretical Background
3.1. Rough Set

Rough set theory (RST) is a mathematical approximation of standard set theory that
allows for decision-making approximations [32,33]. This method can retrieve knowledge
from a problem area in a succinct manner while retaining information contents and decreas-
ing the amount of data involved [34]. The principles of RST to achieve feature selection are
explained below.

Rough set training data is referred to as an information table or an information system.
It is represented as a table, with rows representing instances or objects, and columns
representing features or properties. A tuple can be used to represent the information table
as S = (U, A).

U = {u1, u2, . . . , un} is called the universe set, which is a finite non-empty set of
N objects (or instances), and A is (n + k) attribute set, which is non-empty. The set A
(A = C ∪ D) is split into the following two subsets: conditional attribute set C and decision
attribute D. The subset C = {a1,a2, . . . ,an} has n predictors or conditional attributes, while
the subset D = {d1,d2, . . . ,dk} has k output variables or decision attributes. For every single
feature a ∈ A, there exists a domain which collects possible assigned values denoted by Va.

A core notion of rough set theory is indiscernibility relation P, which is a binary
relation defined as follows for every non-empty subset of attributes P ⊂ C:

IND(P) = {(u1,u2) ∈ U × U:∀a ∈ P, a(u1) = a(u2)}. (1)

Here, a(ui) indicates the attribute value for the object i. This shows that if two objects
belong to indiscernibility relation (u1,u2) ∈ IND(P), then, by attributes P, u1 is indistinguish-
able or unidentifiable (indiscernible) from u2. The relation mathematically is symmetric,
reflexive, and transitive. Now let [u]P be the set representing the generated equivalence
classes, where u∈U. This set divides U into distinct classes or blocks labeled as U/P.

Any objects set taken from the universe set X ⊆ U can be approximated by using
equivalence classes produced by P as shown:

P(X) = {u : [u]P ⊆ X} (2)

P(X) = {u : [u]P ∩ X 6= ∅} (3)

P(X) is called P-lower, which contains objects that definitely belong to X, while P(X)
is called P-upper, which contains objects that possibly belongs to X. Both P-lower and
P-upper are called approximations of the set X.

The difference between the two approximations is called the boundary region. It con-
tains a set of objects that can possibly, but not certainly, be classified in a specific way. If this
difference produces an empty set, this would be a precise or exact approximation, and we
would say that X is actually crisp set P(X) = P(X), or else, the set is rough.

Comparing attribute subsets is possible using a concept called dependency. For example,
to measure the dependency of a subset of attributes Q, on a subset of attributes P, the
following formula is used:

γ
P (Q) = |POSp(Q)|/|U|, 0 ≤ γ

P (Q) ≤ 1, | | means cardinality (4)
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POSp(Q) = Ux∈[u]Q P(X) (5)

where POS(Q) denotes Q positive region regarding P, it collects all objects of U which are
distinctively categorized to classes of partition [u]Q using P. The closer γ

P (Q) is to 1, the
more dependent Q is on P. RST proposes two essential ideas for feature selection based on
these fundamentals, which are the Core, and the Reduct.

Rough set theory aims to generate a smaller subset of a given conditional attribute(s)
data set, but the reduced subset should remain consistently related to the conditional
attribute(s) [35,36]. A dataset is considered consistent if the corresponding decision at-
tributes are similar for any objects set with equal feature values. The theory does this by
defining the Reduct and Core notions.

Technically, in any information table, unnecessary attributes can be classified as either
irrelevant or redundant. The goal is to create a heuristic that establishes a metric for
determining feature necessity, but the process is not easy. A rough set that defines the
strong and weak relevance of an attribute in terms of the likelihood of the desired concept
occurrence, provides this attribute. The set that contains relevant attributes which are
classified as strong, will form indispensable features, because their elimination from the
information table is not possible without producing prediction accuracy loss. Hence, the
importance value of every feature can be provided.

Conversely, in some instances, the collection of weak relevant characteristics might
add to prediction accuracy. According to rough set concepts, strong relevant attributes are
translated to Core concept, while the reduct concept mixes some weak relevant attributes
with strong ones. For the set C, a subset R is considered as a reduct of C if:

γ
R(D) = γ

C(D), where R ⊆ C (6)

where there exists no R′ ⊂ R, such that γ
R′ (D) = γ

R(D), if this condition is satisfied, the
reduct is called the minimal reduct, where the features selected are the minimum that
preserve the same value of dependency degree as the whole original feature set. However,
we should remember that the definition allows the theory to generate a set of possible
reuducts, REDF

C(D), and any of them are allowed to be used.
The intersection of all generated reducts will form the core attribute set:

COREC(D) = ∩ REDF
C(D) (7)

Core features is the most essential subset, where any feature cannot be deleted without
producing a collapse in the structure of the equivalence class, and according to rough set
concepts, features of the core subset are indispensable.

The discernibility matrix notion M(A) is worth mentioning. For the information table
S = (U, A), a discernibility matrix M(A) is a symmetric matrix with (n × n) dimension, and
its elements cij can be defined by:

cij = {a ∈ A : a(xi) 6= a(xj)} f or i.j = 1, . . . , n (8)

This means that each cij contains attributes for which xi and xj are different. If this
matrix is adapted with any decision table, the definition will be:

cij =

{
{a ∈ A : a(xi) 6= a(xj)} i f d(xi) 6= d(xj)

∅ otherwise
(9)

The matrix in this case is called (decision-relative) discernibility matrix, and in RST
this matrix is unique.

3.2. R Language

R is a computer language that is designed for data visualization and data analysis
based on concepts approximation, and is used in data mining, statistics, machine learning,
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and bioinformatics [37,38]. R was created by Robert Gentleman and Ross Ihaka at the
University of Auckland [39] in 1997. Currently, R has more than 5000 packages exist-
ing in Comprehensive R Archive Network (CRAN) and the Bioconductor project repos-
itories at http://cran.r-project.org/ and at http://www.bioconductor.org/ (accessed on
21 February 2021) [40].

The RoughSets package in R implements the theory of rough set (RST) and fuzzy rough
set (FRST) to model and analyze data. The package contains both fundamental concepts
(indiscernibility relation, lower/upper approximation, etc.) and the implementation of such
concepts in many procedures (discretization, instance selection, feature selection, nearest
neighbor-based classifiers, and rule reductions). These details explain the advantages of
using the R language RoughSets package over other available rough set tools such as Rough
Set Data Explorer (ROSE), Rough Set Exploration System (RSES) and its enhancement
(ROSETTA), Waikato Environment for Knowledge Analysis (WEKA), or Rough Set Based
Intelligent Data Analysis System (RIDAS) [41], because RoughSets enables researchers
to examine both the theoretical concept and its implementation for academic targets and
further research, while other tools facilitate researchers to apply the concepts of the rough
set without concentrating on learning basic theoretical knowledge [40].

Following this review of RST and R language, we will discuss three concepts: Fuzzy
RST, uncertainty in RST, and Sensitivity Analysis (SA). This will help readers understand
why we are using RST rather than Fuzzy SRT in the current paper, how to overcome
uncertainty in RST using the R language, and to open the door towards a new research
concept, SA, and how it could enhance our work.

Fuzzy RST is the generalization of RST, where Dubois and Prade added the concept of
membership degree in fuzzy sets, to RST. The main advantage of this mix is to deal with
datasets that have real-valued attributes without the need to perform extra treatment for
the data such as discretization. The uncertainty concept is accepted now [42]. In addition,
since our dataset had no real-valued attributes, RST algorithms of RoughSets package in
R language were used in this research.

RST is a technique for dealing with uncertainty issues. An essential question of the
theory is how to assess the uncertainty of knowledge. However, existing uncertainty met-
rics may not correctly capture the degree of uncertainty. This is because existing accuracy
models only focus on specific aspects linked to the target set, ignoring its significant effect
on the model. It is also because no one provides a precise definition of the uncertainty
of knowledge in the approximation space. As a result, evaluating the accuracy and logic
of a knowledge uncertainty measure is challenging [43]. Luckily, RoughSets package
in R language has a variety of methods to calculate uncertainty, and these methods are
implemented under BC.LU.approximation.FRST. Furthermore, another facility is provided,
named “custom”, where end-users can generate their own approximations by coding
functions to calculate lower and upper approximations. Hence, we can use many scholars’
suggested formulas on how to measure uncertainty in information such as those men-
tioned in [43–45] by implementing their outcome equations under the “custom” facility in
RoughSets package in R language.

Sensitivity Analysis (SA), which is a relatively new research area, is the study of how
a system’s outputs are related to, and are impacted by, its inputs [46]. SA has the benefit of
being an essential component of mathematical modeling [47], but what makes SA valuable
to this research is its ability to perform dimensionality reduction, decision support, and
data worth assessing. Dimensionality reduction is used to discover uninfluential variables
in the system which can be redundant, hence those variables can be adjusted or removed
in later investigations [48]. Conversely, decision support is used to assess the sensitivity
of the expected result to various decision alternatives, assumptions, restrictions, and/or
uncertainties. What-if scenarios are used to study the effect of a change in input(s) on a
decision output. Finally, data worth assessing is used to identify processes, factors, and
scales that dominantly influence a system, and for which new data gathering decreases
targeted uncertainty the most [49].

http://cran.r-project.org/
http://www.bioconductor.org/
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According to several current criteria, SA was recently considered a prerequisite for
effective modeling practice [50]. SA aims to take advantage of the factor sparsity principle.
This principle states that, often only a small group of elements in a system have a substantial
influence on given system output. Fortunately, R language has a package, named Sensitivity,
which contains a collection of functions for global sensitivity analysis, factor screening, and
robustness analysis [51]. This package can help enhance the work in this paper in terms
of the new research field SA, taking advantage of uncertainty quantifications and real life
decision-making support of SA, whether the systems have continuous or discrete variables.

4. Research Methodology

In this section, we will present our proposed iterated rough set based algorithm,
which we name IRS. IRS is proposed to be scalable for big data pre-processing for feature
selection. The algorithm generates a minimal security log from any given big data set. The
proposed steps are employed to accelerate the run time. Then, as a result of generating a
minimal log, a minimal decision rules database is generated; this decision set maintains
the data consistency embedded in the original dataset. In this section, we will also clarify
our IRS algorithm as an efficient solution able to perform big data feature selection with
less execution time. It will be compared with an existing novel algorithm using three
benchmark datasets to prove its effectiveness. However, we will first explain the motivation
for proposing IRS by discussing the computational complexity of the traditional rough set
theory when working with high dimensional datasets.

4.1. Problem Statement and Motivation

Performing feature selection when using RST will force the theory to compute each
possible attributes combination. The number of attribute subsets that maybe created using

m attributes from a set of N attributes is (
N
m

) = N!
m!(N−m)! [52]. Hence, the number of

generated feature subsets as a total, is ∑N
i=1 (

N
i

) = 2N − 1. For instance, if N = 30, there

will be around one billion possible combinations. This prevents the use of RST with high
dimensional datasets. Moreover, hardware limitations exist, and in particular, memory
capacity will not be able to store and calculate a huge number of entities. The RAM will
need to allocate the entire dataset, its computations, and results. For big data this can exceed
the physical memory. Our proposed algorithm was motivated by all of these reasons.

4.2. Datasets

In our research, we used four datasets, three of which were benchmark datasets taken
from UCI [44]. The purpose was to examine the proposed algorithm’s effectiveness. This
will be discussed in more detail in Section 4.4. The fourth dataset was used to execute the
proposed algorithm on real-life huge datasets.

Our real-life huge datasets were collected from a government enterprise that uses IBM
security Qradar. Qradar is a Security Information and Event Management (SIEM) solution
that collects and analyzes log data from security systems [53]. Three datasets were taken
from Qradar, each containing 63,000 objects (Instances) with 10 attributes of unprocessed
security events. This enterprise considers the cloud technology in its structure and virtual
machine concepts for more than 40 servers that have both Microsoft and Linux operating
systems. Part of the servers provide about 100 online services for citizens.

Table 1 shows the general structure of each SIEM dataset. Every dataset has 10 attributes,
A = {Event Name, Log Source, Event Count, Low-Level Category, Source IP, Source Port,
Destination IP, Destination Port, User Name, Magnitude}. The first 9 attributes are the
condition attributes (C), while the last one, Magnitude, is the decision attribute {D}. Magni-
tude indicates the importance of the offense, and has an integer value ranging from one
to eight, being from least severe to most severe. Hence, each dataset forms a decision
table, T = (U, A ∪ D). The data populated in table T contain no real-valued attributes,
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meaning that concepts of RST can be applied directly, without the need to perform extra
pre-processing steps such as discretization [54].

Table 1. Decision table.

Event Name Log Source Event
Count

Low Level
Category Source IP Source

Port Destination IP Destination
Port

User
Name Magnitude

Tear down UDP
connection ASA @ 172.17.0.1 1 Fire wall

Session Closed 8.8.8.8 53 172.18.12.10 53,657 N/A 7

Deny protocol src R 1 Fire wall Deny 172.20.12.142 56,511 172.217.23.174 443 N/A 8
Deny protocol src ASA @ 172.17.0.1 1 Fire wall Deny 172.20.18.54 52,976 213.139.38.18 80 N/A 8
Deny protocol src ASA @ 172.17.0.1 1 Fire wall Deny 172.20.15.71 53,722 52.114.75.79 443 N/A 8
Deny protocol src ASA @ 172.17.0.1 1 Fire wall Deny 192.168.180.131 55,091 40.90.22.184 443 N/A 8

Built TCP connection ASA @ 172.17.0.1 1 Fire wall Deny 172.18.12.19 59,201 163.172.21.225 443 N/A 8

4.3. Building a Minimal Log Size (Reduct)

Considering [21,30], both papers discussed the concept of using maximal or minimal
pairs in discernibility matrix to overcome the complexity of feature selection. We will use
this concept in our methodology inside iterations calculation for the same reason. Later,
the results of [21] will be used to prove the efficiency of our algorithm.

To compute any minimal subset, two mathematical foundations are needed: discerni-
bility matrix, and reduct. These two concepts were previously explained in Section 3.1,
while Equations (6) and (8) summarize the concepts. It was noted in Section 4.1 that this
process is computationally expensive. The proposed IRS algorithm aims to overcome
this limitation and reduce the execution time of minimal log generation by redesigning
the calculations using two concepts: iteration calculations and minimal elements in the
discernibility matrix calculations.

The iteration step divides the big dataset into N subsets and calculates the iterated
minimal reduct for each, where finally the intersection of all previously calculated iterated
minimal reducts will generate the core minimal feature subset. The second step focuses on
reducing the calculation complexity in each iteration by passing only the minimal element
in a discernibility matrix to reduce calculations. Working in such design will contribute to
solving the problem in the following way:

• Splitting the dataset into N subsets and performing the proposed algorithm on each
subset will overcome hardware limitations, since fewer entries means less memory
space to upload the data, perform computations, and store the results. Keeping the
whole high dimensional dataset in memory and performing all the previous steps, is
mostly impossible;

• Reducing the number of calculations, since passing only the minimal elements in the
discernability matrix to reducts calculation will not cause the computation of each

possible attribute combination, and hence the equation ∑N
i=1 (

N
i

) = 2N − 1 is no

longer valid. This will certainly reduce the execution time. The proposed code is given
in Algorithm 1:

Table 2 shows the output after performing the algorithm using our datasets. The three
datasets are labelled as S1, S2, and S3, respectively. It was found that the server cannot run
the whole data set with 6300 objects and 10 attributes at once, so each dataset was split
into three parts and processed on three iterations (M = 3, N = 3). The table also shows the
calculated degree of dependency for each iterated reduct, being how much the generated
iterated reduct (attributes set) depends on the decision attribute(s), with a maximum value
of 1. The methodology was performed under hardware specifications of Intel(R) Xeon(R)
Gold 6148 CPU @2.40 GHz 2.39 GHz, RAM 48.3 GB.
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Algorithm 1: IRS Algorithm

Input: T = (U,A∪D): information table, N: number of iterations,
M: number of datasets
Output: Core–Reduct,
1: For each dataset M do
2: For each iteration N do
3: Calculate INDN(D)
4: Compute DISC.MatrixN(T)
5: Do while (DISC.MatrixN(T) 6= Ø) and i ≤ j
(RST discernibility matrix is symetric)
6: Si0,j0 = Sort (xi,xj) ∈ DISC.MatrixN(T)
according to number of conditional attributes A
7: End while
8: Compute ReductN(Si0,j0)
(calculating reducts for minimal condition atrridutes)
9: ReductN = ReductN ∩ ReductN(Si0,j0)
10: End For N
11: Core–Reduct = Core–Reduct ∩ ReductN
minimal optimal reduct
12: End For M

Table 2. Minimal reduct output for N = 3, M = 3.

Training Data Set Minimal Attribute Degree of Dependency 1

First Training Set S1 (∩ three iterations) ReductN = 1
A1 = {Event Name, Source IP, Source Port,

Destination IP, Magnitude } |A1| = 5 1

Second Training Set S2 (∩ three iterations) ReductN = 2
A2 = { Event Name, Source IP,

Destination IP, Magnitude }|A2| = 4 0.9992941

Third Training Set S3 (∩ three iterations) ReductN = 3
A3 = {Event Name, Source IP, Source Port,

Destination IP, Magnitude } |A3| = 5 1

Core-Reduct (A1∩ A2∩ A3) A2 = { Event Name, Source IP,
Destination IP, Magnitude }|A2| = 4 0.9992941

1: a decision attribute, d, totally depends on a set of attributes A, written as A⇒ d if all attribute values from d are distinctly identified by
attribute values from A.

The intersection of the three iterations of the first data set S1 produced a minimal
iterated reduct of 5 attributes |ReductN = 1| = 5, while the original set S1 had 10 attributes.
In this reduct, the degree of the dependency = 1, which means the decision attribute
{Magnitude} was completely identified by the values of the 5 attributes of the reduct set
A1. This reduct omitted 50% of the attributes of the original set and retained information
content 100%. For the second iteration S2, the reduct was even better, producing 4 attributes,
|ReductN = 2| = 4, with a dependency degree of 0.9992941, while the last iteration for S3
had the same output as S1.

Following step 11 in the algorithm, Core-Reduct was generated by taking the inter-
section of all previous iterations’ outputs. This means that Core-Reduct = {Event Name,
Source IP, Destination IP, Magnitude} was the minimal reduct for all datasets S1, S2, and S3.
It had 4 attributes, rather than the 10 attributes of the original sets. Despite this reduct, the
information content of the original datasets was retained with 99.9% accuracy.

This proves that the proposed solution was able to create a minimal reduct for the
security log, this optimal reduct used only 40% of the attributes of the original dataset
(4 instead of 10), and still offered the same information covered by the original dataset
with 99.9% accuracy degree. The next section will use this minimal dataset to create
a minimal decision rules database. The effectiveness of step 8, which passes only the
minimal elements of discernibility matrix for reduct calculations inside each iteration, will
be proved in Section 4.4, by comparing our algorithm with a similar approach using the
same benchmark datasets in terms of runtime.

4.4. Generating Minimal Decision Rules

It is significant to understand that the derivation of rule structure, using learning
procedures from training cases, is being employed in rule-based expert systems. Fortu-
nately, these rules are more accurate than information included in the original input data
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set, because new examples that do not match examples taken from the original data, are
being properly classified by such rules [34].

The RoughSets package in the R language has different algorithms to extract knowl-
edge hidden in any given data set in the form of an IF . . . THEN structure. This paper uses
the CN2Rules algorithm, which is designed to work even with the existence of imperfect
data. The CN2Rules algorithm was deployed on each of the reduct sets A1, A2, and
A3, produced in the previous section. The algorithm (Algorithm 2) below generates the
decision rules in the form of an IF . . . THEN structure, with each set divided into a training
set with 60%, and a test set with 40%, as shown in step 3, because this will be used later in
steps 5 and 6 to validate the accuracy of the prediction using the 40% test part.

Algorithm 2: Rule Generation Algorithm

Input: ReductN (T): minimal reduct information table, M: number of datasets
Output: Set-RuleMin
1: For each dataset M do
2: read.table(ReductN (T))
3: Splitting ReductN (T)
training set 60% and a test set 40%.
4: RI.LEM2Rules.RST() function
Create rules depending on training set of ReductN (T)
5: predict() function
Testing the quality of prediction depending on the test set of ReductN (T)
6: mean() function.
Checking the accuracy of predictions
7: End For M

Table 3 shows the total number of rules generated for each dataset before minimizing
(S1, S2, S3), and after minimizing (A1, A2, A3). It also calculates the prediction accuracy of
each minimal iterated reduct set (A1, A2, A3).

Table 3. Decision rules induction.

Training Data Set Number of Decision
Rules before Reduct

Number of
Deccision Rules

after Reduct
Prediction Accuracy

First Training Set S1 = 905 A1 = 596 0.9552733
Second Training Set S2 = 878 A2 = 509 0.9535073
Third Training Set S3 = 813 A3 = 481 0.9741291

Examining the first row in the table and comparing the number of rules generated
from the first original dataset S1 and its minimal reduct A1, the number of rules decreased
to about 66% with a prediction accuracy of around 96%. A similar result occurred for
datasets S1 and S2.

A minimal decision rules dataset was successfully created for each original dataset
(S1, S2, S3). Each minimal decision rules dataset (A1, A2, A3) reduced the number of the
rules (by 50% to 65%) with high accuracy prediction (from 95% to 97%). In addition, we
know from the previous section that each minimal iterated set (A1, A2, A3) strongly repre-
sents the knowledge in its original dataset (S1, S2, S3) with a high degree of dependency
(ranging from 1 to 0.99). We conclude that the same knowledge is being presented in the
form of decision rules, with a smaller number of attributes and high accuracy prediction.

4.5. Execution Time Comparison with Existing Methods

The current section evaluates the efficiency of our IRS algorithm. Our technique for
generating a minimal subset will be compared with two other techniques: one using classi-
cal discernibility matrix [55], while the other uses its own proposed novel algorithm, named
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Sample pair selection SPS [21]. The experiments used the same hardware environment
specifications mentioned in [21], being Intet (R) i5 CPU 2.40 GHz M450.

The comparison will measure the runtime needed to calculate the minimal reduct,
using the three algorithms on the same datasets. It is worth noting that the compari-
son uses three benchmark datasets taken from the UCI machine learning repository [56].
Table 4 shows the description of the original dataset. These three datasets were previously
used in [21,55] to compare the effectiveness of the SPS algorithm against the classical
discernibility matrix.

Table 4. Original Datasets description.

Dataset Number of Attributes Number of Instances

Glass 9 100

Wiscon 9 699

Zoo 16 100

We executed our algorithm IRS using the three benchmark datasets and compared the
runtime values with the previous statistical calculations from [21] and [55]. As shown in
Table 5, our algorithm IRS generated the same number of all possible reducts for glass and
Wiscon datasets 2 and 4 respectively. However, in the case of the zoo dataset, our algorithm
created 35 reducts, while both compared algorithms created 33, yet our algorithm had
the best runtime over the other two algorithms, at 0.9967 s. A general comparison of the
runtime of all algorithms shows that our IRS algorithm had the best execution time over
SPS and classical discernibility matrix, for all datasets. This proves that the IRS algorithm,
which uses iteration calculations depending on minimal elements of discernibility matrix,
decreased the complexity of calculations successfully.

Table 5. Computations of execution time in finding minimal reduct.

Data Num. of Attributes of
the Dataset

All Reducts Execution Time in Seconds

IRS SPS and CDM Classical
DiscernibilityMatrix (CDM) SPS IRS

Wiscon 9 4 4 1362.1 24.0956 9.05

Glass 9 2 2 23.3268 0.7931 0.7

Zoo 16 35 35 106.6581 1.2574 0.9967

5. Conclusions and Future Works

Following the proposed procedure, this paper designed a new algorithm named IRS
to create a minimal security log. The approach used RST basic concepts by adopting an
iterated model. Inside each iteration, minimal discernability matrix elements were passed
for reduct calculations. This design helped to overcome hardware limitations and prevent
reduct calculation growing exponentially high, by decreasing the calculation needed to
compute all possible attribute combinations to the minimal elements in a discernibility matrix.

We also computed a minimal decision rule database with a prediction accuracy of
about 96%. This minimal subset used only 40% of the attributes of the original feature set,
with a 99.9% degree of dependency (knowledge consistency).

We compared our methodology with another recent novel algorithm, using the same
three benchmark datasets. Our comparison showed that the proposed methodology
effectively calculated a minimal set without losing performance. The results showed that
our methodology was even better in terms of execution time, which proved that calculation
complexity, as well as search space, were reduced. This makes the proposed model relevant
to huge datasets, and will enhance real-time analyses.
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In the future, we will apply the new concept of Sensitivity Analysis (SA) to this
work, because SA can manage uncertainty in a real-world decision system, especially in
high-dimensional problems. This will surely offer a better solution for work in this field
of research.
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