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Abstract: This work revisits a class of biomimetically inspired waveforms introduced by R.A. Altes
in the 1970s for use in sonar detection. Similar to the chirps used for echolocation by bats and
dolphins, these waveforms are log-periodic oscillations, windowed by a smooth decaying envelope.
Log-periodicity is associated with the deep symmetry of discrete scale invariance in physical systems.
Furthermore, there is a close connection between such chirping techniques, and other useful applica-
tions such as wavelet decomposition for multi-resolution analysis. Motivated to uncover additional
properties, we propose an alternative, simpler parameterisation of the original Altes waveforms.
From this, it becomes apparent that we have a flexible family of hyperbolic chirps suitable for the
detection of accelerating time-series oscillations. The proposed formalism reveals the original chirps
to be a set of admissible wavelets with desirable properties of regularity, infinite vanishing moments
and time-frequency localisation. As they are self-similar, these “Altes chirplets” allow efficient
implementation of the scale-invariant hyperbolic chirplet transform (HCT), whose basis functions
form hyperbolic curves in the time-frequency plane. Compared with the rectangular time-frequency
tilings of both the conventional wavelet transform and the short-time Fourier transform, the HCT
can better facilitate the detection of chirping signals, which are often the signature of critical failure
in complex systems. A synthetic example is presented to illustrate this useful application of the HCT.

Keywords: wavelet transform; complex systems; discrete scale invariance; chirping; log-periodicity

1. Introduction to Altes Chirps and the Hyperbolic Chirplet Transform

Over the course of the 1970s, Richard A. Altes developed the theory behind a new
family of waveforms with optimal Doppler tolerance for sonar applications. Inspired by
mammalian acoustic echo-location calls such as those of bats and dolphins, their design
evolved to a set of carefully parameterised hyperbolic chirps with useful time-frequency
(TF) localisation properties [1–5]. Some time later, Patrick Flandrin and their colleagues at
the French national center for scientific research (CNRS) exposed the close mathematical
parallels between sonar-based target description using these chirps, and multi-resolution
wavelet analysis [6]. The current work extends these previous, and somewhat neglected
ideas, with three key contributions.

First, with a view to promoting the general flexibility and usefulness of the Altes
chirps, we propose a re-parameterisation which is more intuitive for application purposes:
The waveforms are specified in terms of centre-frequency, bandwidth and chirp-rate. In
addition to familiarity, these parameters have the advantage of simplifying TF localisation
requirements and the study of other signal properties, including symmetries within the
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waveform family. These parameters are more transparent than the original parameter-set
proposed by Altes.

Second, building on [6] which considered admissibility conditions, the Altes wave-
forms are formalised as wavelets with infinite regularity and an infinite number of vanishing
moments. Furthermore, they are self-similar over certain discrete scalings, dilations and
shifts, enabling highly efficient implementation of a wavelet transform. We are led to
coin this the Hyperbolic Chirplet Transform (HCT), whose mother wavelet is an Altes
chirp. A low-complexity, discrete-time HCT is developed which offers arbitrarily close
approximation to the continuous HCT. The result is a powerful and practical extension to
the existing body of wavelet tools for signal analysis.

Our third contribution is the observation that hyperbolic chirps are also Log-Periodic
(LP) in the time-domain. Log-periodicity is associated with the deep symmetry of discrete
scale invariance in physical systems. Such signals abound in nature, often as precursors to
phase transitions in the non-linear dynamics of complex systems [7]. Accordingly, from a
practical perspective, log-periodic oscillations with an acceleration towards criticality can
serve as indicators of an incipient bifurcation. The ability to detect LP-signatures has diverse
applications, such as prediction of critical failures in mechanical systems [8], or detection
of crowding behaviour in price dynamics during financial bubbles and preceding market
crashes [9]. Examples beyond failure diagnostics include animal species identification
via call recordings, commercial & military radar, and there are many more. By making
the bridge between the chirplet approach and the LP property, we extend the toolset
for detecting criticality in complex systems, with the mature body of knowledge from
wavelet theory.

The next section presents a review of background material relevant to the current work,
including a deeper look at the motivations for and examples of transforms for detecting
log-periodicity. A recap of the Altes waveform together with our re-parameterisation is
provided in Section 3. The conditions under which it can be used as a wavelet in a HCT
are presented in Section 4, along with a discussion of its wavelet properties, and how to
perform parameter selection for various design criteria. Section 5 is an empirical look at
the performance of the HCT in detecting LP-oscillations in noise. Derivations of the main
results can be found in the appendices.

2. Related Work and State-of-the-Art

This section exposes in detail the reasons why log-periodicity is a fundamentally
interesting signal characteristic in many different and seemingly unconnected processes, as
well as some of the existing methods which have been proposed for its detection. Section 2.1
starts with the motivation for our work, which is primarily that log-periodic signals can be
an indicator of inherent instability in complex systems. Sections 2.2 and 2.3, respectively,
look at classical approaches to detection of chirping signals, such as the short-time Fourier
transform and Constant-Q transforms. Since these have not specifically been designed
for chirp detection, we look at transforms which have, such as the chirplet transform in
Section 2.4 and the Mellin transform in Section 2.5. While the former are not tuned for
hyperbolic chirping, the latter are. Unfortunately, this approach can be computationally
prohibitive, which brings us to our proposal, the Hyperbolic Chirplet Transform. This is
introduced briefly in Section 2.6, to be examined in detail in the remainder of the work.

2.1. Motivation: Log Periodicity & Discrete Scale Invariance

There are many compelling reasons to seek out log-periodic oscillations in noisy time-
series, given their relative abundance in nature and in engineering systems [7]. To the
best of our knowledge, LP-constructs first appeared in the 1960s for modelling shocks to
layered systems [10] and the discrete hierarchy of vortices in hydrodynamic turbulence [11].
Soon after, log-periodicity was recognised in the self-similarity of propagating waves [12].
Around the same time, the renormalisation group theory of critical phenomena introduced
solutions for the statistical mechanics of critical phase with complex critical exponents,
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characterised by log-periodicity [13–15]. Phase transitions occurring on hierarchical lat-
tices have been shown to exhibit discrete scale invariance, with its signature of complex
exponents and LP-oscillation [16–18].

A central result is that LP-signatures indicate that a system and/or its underlying
physical mechanisms have a hierarchy of characteristic scales corresponding to discrete
scale invariance. This provides important insights into the underlying physics, which may
allow us to make forecasts of rupture such as earthquakes [19,20], mechanical failure [21]
or the bursting of bubbles in financial markets [9,22,23]. In fact, any system with built
in geometrical hierarchy will lead to log-periodicity, such as wave propagation in fractal
systems [24], Ising and Potts models on hierarchical structures [25,26] and sandpile models
on discrete fractal lattices [27].

More recently it has been found that chirped fibre Bragg gratings can provide useful
temperature sensing for medical applications when the chirping is hyperbolic [28]. It has
also been shown that Altes original application of hyperbolic chirping for target local-
isation remains a bountiful research area, as recently seen in [29], which demonstrates
that forwards-backwards chirping exploiting bidirectional log-periodicity improves target
velocity estimation. The approach is also practical—it has been shown experimentally that
even a very low-complexity 1-bit implementation of hyperbolic chirping can provide good
localisation results [30]. Given our growing understanding of the ubiquity of LP-signatures
in complex systems, it is useful to equip ourselves with reliable tools for their extraction
and diagnosis.

2.2. Chirp Detection Using Adaptive Transforms

Numerous studies have called out the need to use and/or identify these types of
chirping signals, with mixed success in actually doing so. The authors of [31] suggest
that feature extraction from non-trivial signals requires adaptive TF-distributions (TFDs)
tailored to the signal, which they demonstrate for the medical analysis of knee-joint vi-
brations. Their recommendation is that such adaptive-TFDs should have the property
of scale-invariance, but they implement matching pursuit using a Gaussian windowed
Gabor tiling which does not. The work of [32] proposes an adaptive Meyer wavelet as an
improvement on the short-time Fourier transform (STFT) for processing medical signals
containing chirps. Similarly, in [33], the authors suggest that frequency-swept ultrasonic
sonar chirping could be a useful method for non-contact bio-mechanical measurement,
in this case, of the chest movements associated with breathing. However, they choose
to implement a simpler solution using pseudo-random sequences. Classification of blue
whale calls was undertaken in [34] using both a STFT and a wavelet packet transform.
Significant effort was given to optimise window-types and -lengths for feature extraction,
which could potentially have been avoided using a chirp-like TFD. The work of [35] uses
an adaptive STFT to continuously match to fast-varying AM-FM signals. Their example
shows that adaptive STFT significantly outperforms fixed-length STFT for detection of
hyperbolic chirps in a synthetic signal very similar to the one we propose here in Section 5.
A thorough overview of the development of such TF-analysis techniques can be found
in [36,37].

2.3. Constant-Q Transforms

Constant-Q transforms are defined as a bank of bandpass filters which each have
the same ratio of center frequency to bandwidth—a ratio known as the Q-factor [38].
While not directly designed for the detection of time-domain log-periodicity, Constant-Q
transforms are worth considering for their geometrically spaced frequency resolution,
which originally found use in audio applications, because this is how musical octaves are
spaced [39]. In fact, Altes showed (see Appendix A) that audio signals designed to be
Constant-Q under echoing, would have optimal Doppler tolerance which is fundamental
to the design of the Altes chirplet. Others have shown that Constant-Q transforms can
be efficiently implemented, in conjunction with the Fourier transform. For example,
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Ref. [40] introduces the Constant-Q, non-Stationary Gabor Transform (CQ-NSGT) which
is an invertible Constant-Q transform implemented with a Fast Fourier Transform (FFT)
on slices of the signal under analysis. While this transform is demonstrably superior
to a conventional STFT in the analysis of musical tones, it does not have chirping basis
functions, and will therefore be inferior in the detection of chirping to transforms which
are specifically matched to the target signal.

2.4. Chirplet Transforms

The idea of using chirps as wavelets, i.e., chirplets, was first introduced in [41,42],
leading to the Gaussian chirplet and warblet transforms. A hardware implementation for
bat-call detection was provided in [43]. An adaptive version of the Gaussian chirplet was
designed to linearise curves in the TF-plane in [44]. This has been used for detection of bat
echo-location signals and compared with the Gaussian wavelet transform, the STFT and
the Wigner Ville Distribution (WVD) [45], noting that “Hyperbolic chirps probably can better
model signals such as the sound of bat.” .

Wavelet-based LP-detection methods were also compared in [46]. The Cauchy wavelet
performed worst, the Mexican Hat better and the Morlet best. More comprehensive
attempts to capture general non-linear TF modulations using the Polynomial Chirplet
Transform were developed in [47] and applied to bat-sonar detection in [48]. None of these
used a hyperbolic chirp in a wavelet transform for LP-detection. “Hyperbolic wavelets” do
appear elsewhere, e.g., [49,50] but with a different meaning. To avoid confusion, we refer
exclusively to hyperbolic chirplets in the current context.

2.5. Power Law Chirps and the Mellin Transform

The hyperbolic chirp was introduced as a special case of the power law chirp in [51].
Its use for detection of chirping gravitational waves was presented in [52]. It is seen that
while the optimal detection of a linear chirp is via the WVD, for power-law chirps the
optimal detector uses the Bertrand distribution, which can be computationally prohibitive.
As an alternative, the Mellin transform represents a signal as a projection onto a family
of hyperbolic chirps, analogous to the Fourier transform projection on a basis of complex
exponentials. This approach was applied to LP-detection in [53]. It was shown that the
Mellin transform, coupled with a Fourier transform can be used to replace a wavelet
transform, and is suited to problems of scale invariance. This idea was extended in [54]
with the Fourier modified Mellin transform exploiting scale-invariance for improved
waveform detection, including chirps. Similarly, in [55] the Mellin Transform has been
used to provide the LP decomposition of the most general solution of the renormalisation
group equation. The Hyperbolic Chirplet Transform introduced here implements a similar
decomposition, while offering more explicit control over computational complexity for
different applications.

2.6. The Hyperbolic Chirplet Transform

In [56], a strong case, and a powerful methodology, were both presented for tailoring
wavelets to the signals being detected. While the example of LP-detection was examined,
the study did not extend to using a dedicated hyperbolic chirplet for the purpose. In [7],
a direct link was made between the functional form of the Altes wavelet (our Equation (A6))
and the renormalisation group encountered in [55,57]. The solution to the homogeneous
Altes wavelet equation was thus identified as self-similar with discrete scale invariance.
Self similar wavelets were introduced in [58] for fractal modulation. However, these were
neither identified as hyperbolic, nor used for LP-detection. The work of [59] demonstrated
that a filter-bank of frequency-offset hyperbolic chirps could be used for resilient radar
detection of accelerating targets, but did not propose to implement this filter-bank as
a wavelet transform. Generalised target detection was shown in [6] to share important
features with wavelet decomposition. This qualitative work proposed the autocorrelation
function of the Altes chirp as the analysing wavelet but did not demonstrate the utility of
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these results. This latter work [6] is a useful launch-point for the theoretical elements of
the current exposition, in which we choose to implement the wavelet transform using the
Altes chirp as mother wavelet. We call this the Hyperbolic Chirplet Transform (HCT), and
will label our new parameterisation of the Altes waveform as the Altes chirplet.

3. Method for Re-Parameterising the Altes Waveform

This section returns to the original Altes waveform and proposes a useful re-
parameterisation. Section 3.1 together with Appendix A provide a quick recap of its
mathematical origins as a parameterised bandpass chirp. Sections 3.2–3.4 express these
original parameters in terms of the waveform center frequency, bandwidth and chirp-rate,
respectively. This allows re-parameterisation in Section 3.5 of the Altes waveform in terms
of these more familiar signal characteristics, a considerably more accessible and useful
formulation. Section 3.6 provides some examples of these waveforms under different
parameterisations, to demonstrate the flexibility of the new approach.

3.1. Derivation of the Altes Waveform

Altes’ pioneering work on chirps showed that a TF-localised pulse which is periodic
in the logarithm of progressing time has optimal Doppler tolerance [2,3]. Appendix A
revisits their derivation of the chirp U(ω) in the frequency domain as a function of angular
frequency ω

U(ω) = Aων exp

(
−1

2
log2 ω

log k

)
exp

(
j2πc

log ω

log k

)
. (1)

The set of real constants {A, ν, k, c} in Equation (1) is the parameterisation of a family
of waveforms. However, this parameterisation is not straightforward to work with from
a waveform design perspective, which is why in the following, a more familiar set of
parameters is presented. We will find that Equation (1) can be alternatively expressed as

U(ω) = exp
(
−κc log2 ω

ω0

)
exp

(
j2π

log ω

log λ

)
, ∀ ω > 0 (2)

where ω0 is chirp centre-frequency, λ is chirp-rate, and κc is a bandwidth parameter.

3.2. Magnitude-Response and Center Frequency ω0 of the Altes Waveform

Equation (1) represents a bandpass waveform and should therefore be specific to a
center frequency ω0 and a pair of upper and lower cutoff frequencies ω±c , equivalent to
some bandwidth B. Let the log-magnitude response be defined as

M(ω)
∆
= log|U(ω)| (1)

= log A + ν log ω− 1
2

log2 ω

log k
(3)

and, without loss of generality, be specified with a unit passband response (0 dB gain). This
yields a maximum response M(ω0) = 0 at M′(ω0) = 0 from which we obtain

ω0 = kν ⇒ A = k−ν2/2 (4)

as previously noted in [6]. As illustrated in Figure 1a, the magnitude response |U(ω)|
drops away from unity at ω0 to some lower level Kc > 0 at cutoff frequency ωc giving

M(ωc)
(3)(4)
= ν log ωc −

ν

2
log ω0 −

ν

2
log2 ωc

log ω0
(5)

!
= log(Kc) , 0 < Kc < 1. (6)
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Figure 1. Re-parameterised Altes chirplet: (a) Log-magnitude frequency response defined in
Sections 3.2 and 3.3 and (b) Log-magnitude time-domain envelope defined in Section 4.5.

By defining the positive constant

κc
∆
= − log Kc

log2 ωc
ω0

> 0 (7)

we can easily re-parameterise the Altes constants ν and k as

ν = 2κc log ω0 and k = exp
(

1
2κc

)
(8)

respectively. Substituting Equations (8) and (4) in Equation (3) gives the much simplified
magnitude response centred around ωo

M(ω) = −κc log2 ω

ω0
. (9)

3.3. Cutoff Frequency ωc and Bandwidth B of the Altes Waveform

The definition of κc allows us to write

ω±c
(7)
= ω0 exp

(
±

√
− log Kc

κc

)
rad/s. (10)

We can specify upper and lower cutoff frequencies by, respectively, choosing ω±c
greater or less than center frequency ω0. However, we recommend to speak only of the

cutoff frequency ωc
∆
= ω+

c > ω0, defined as the upper one. This exerts control over decay
of U(ω) at higher frequencies, and hence waveform smoothness (Section 4.2). There is less
need to worry about the lower cutoff because of the infinite vanishing moments of U(ω) at
ω = 0 causing rapid decay at low frequencies (Section 4.3). We obtain

B ∆
= ω+

c −ω−c
(10)
= ω0

(
ωc

ω0
− ω0

ωc

)
rad/s (11)

as the waveform bandwidth, with the lower cutoff frequency given by ω−c = ω2
0/ωc.

For the presented formulation to be useful in practice, a value must be placed on
Kc = |U(ωc)| used in Equation (6). For the twin objectives of wavelet frequency localisation
and avoidance of discrete-time aliasing elaborated in Section 4.8, it makes sense to place
tight restrictions on Kc. We use a level corresponding to −40 dB throughout, which of
course can be varied depending on application requirements. This level implies

20 log10|U(ωc)| = −40 dB ⇒ Kc = 10−
40
20 = 0.01. (12)
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3.4. Chirp Rate λ of the Altes Waveform

The Altes waveform can be found in the time-domain by inverse Fourier transform
u(t) = F−1{U(ω)}. This is shown in [60] to have phase response φ(t) ∝ log t which is a
logarithmic function of time, i.e., a log-periodic chirp. Instantaneous frequency is

ωI(t)
∆
=

dφ(t)
dt

∝
1
t

(13)

which describes a hyperbola in the time-frequency plane. Noting also that the instanta-
neous period TI(t) = 2π/ωI(t) ∝ t is linear in time, chirping signals such as u(t) are
interchangeably referred to as having linear period modulation (LPM), hyperbolic fre-
quency modulation (HFM) or logarithmic phase modulation [61]. They are also called
log-periodic, which is preferred in the financial and physics literature [62].

As seen in Appendix A, the phase and magnitude response behaviours of the original
Altes’ waveform in Equation (1) are governed by single parameter k. In order to decouple
them, and allow for simpler chirplet design, we introduce chirp rate λ > 0 by

log λ
∆
=

log k
c

. (14)

3.5. Our Re-Parameterisation of the Altes Waveform

The proposed re-parameterisation now emerges from Equations (1), (4), (6) and (14) as

U(ω) = exp

(
log Kc

log2 ω
ω0

log2 ωc
ω0

)
exp

(
j2π

log ω

log λ

)
, ∀ ω > 0 (15)

or more concisely as in Equation (2). In contrast to the original Fourier domain specification
of U(ω) [3], we propose to zero the non-positive frequencies and define

U(ω)
∆
= 0, ∀ ω ≤ 0. (16)

The waveform U(ω) remains continuous at ω = 0 since

lim
ω→0+

U(ω) = lim
ω→0−

U(ω) = U(0) = 0. (17)

While Altes preferred to impose Hermitian symmetry on U(ω) to ensure a real time-
domain wavelet u(t), preservation of the analytic form in Equations (15) and (16) retains
useful phase and envelope properties. Our approach allows useful definitions for instanta-
neous amplitude and frequency when analysing arbitrary complex signals [51].

For a target threshold Kc, below which the frequency response is negligible, the Altes
chirplet can now be parameterised from Equation (15) by the triplet {ω0, ωc, λ}, i.e., center
frequency, cutoff frequency and chirp-rate. This re-parameterisation exposes λ as the
scaling ratio of a discrete scale invariance symmetry, i.e., the ratio of the local periods of
successive oscillations in the chirp. As the chirp rate parameter λ → 1 in Equation (15),
the oscillations become faster and faster until a singularity occurs at λ = 1. To avoid it, we
must consider 0 < λ < 1 or λ > 1. In fact, it is easy to show that we need only consider
the parameter range λ ∈ (0, 1) and that the results for λ ∈ (1, ∞) are identical, and found
by reciprocation of λ. To see this, note that replacing λ by 1

λ simply changes the sign of
the complex exponential in Equation (15), equivalent to frequency-domain conjugation.
This in turn represents time reversal and conjugation of the chirplet in the time-domain.
Making λ-dependence explicit by subscript we obtain

u 1
λ
(t) = u∗λ(−t). (18)
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An example of this effect is demonstrated below by comparing Figure 4 with Figure 5.
We benefit from this insight in Section 4.9 when choosing practical bounds for the chirp
rate parameter λ.

3.6. Selected Parameterisations of the Altes Waveform for Illustrative Purposes

The goal of this section is to show how the center frequency, bandwidth and chirp-
rate of the Altes waveform can be easily tuned under our new re-parameterisation. Four
examples are presented. The first is an original parameterisation from Altes. The second
is a tuning of the bandwidth and centre-frequency. The third is a tuning of the cutoff
frequency. The fourth and final example illustrates the effect of an inverted chirp rate. In
each case, we show the analytic time-domain waveform u(t) as well as magnitude and
phase responses of U(ω) from Equation (2).

Figure 2 recreates the original Altes waveform [3] with {ν, k, c} = {−0.55, 1.8,−0.35}.
A primary difference is that our version of the chirp is complex, and both the imaginary
component and complex envelope can be observed in addition to the real waveform. There
is no frequency normalisation, and it is not obvious how the chosen parameters relate to the
observed chirp. According to our new parameterisation, we can evaluate from Equation (4)
that this bandpass waveform has center frequency ω0 = 0.733 rad/s, as well as providing
from Equations (14), (10) and (11), the previously unavailable chirp rate λ = 0.187, cutoff
frequency ωc = 7.41 rad/s, and bandwidth B = 7.34 rad/s, assuming a −40 dB cutoff,
limit, i.e., Kc = 10−2.

Figure 2. Waveform identical to that of the original Altes paper [3] using their parameter set
{ν, k, c} = {−0.55, 1.8,−0.35}. (a) Time domain chirp (b) Frequency domain magnitude response
and (c) Frequency domain phase response. See our first example in Section 3.6 for details.

In the second example, we choose to show how the new parameterisation of Equation (15)
allows practical specification of centre-frequency, bandwidth (via Equation (11)) and chirp
rate, in this case {ω0, B, λ} = {π

6 , π
5 , 3

4}. In Figure 3, it can be seen that the −40 dB
bandwidth B is 0.2π as specified. When implementing in discrete time, it is useful to work
in units of normalised frequency, such that sampling frequency ωs = 2π corresponds to
a unit sampling interval. This convention is adopted in the remainder, which fixes the
Nyquist rate at ωNyq = π for the coming discussion on discrete-time implementation.

Our third example illustrates the tuning of waveform cutoff frequency using parame-
ters {ω0, ωc, λ} = { π

10 , 9π
10 , 3

4}. In Figure 4, it can be seen that the −40 dB cutoff is tightly
tuned to ωc =

9π
10 as specified. This tight control of magnitude response decay at high fre-
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quencies can be used to influence aliasing in a discrete time implementation. Furthermore,
the wider bandwidth in this example opens a greater range of frequencies over which to
chirp, as compared with Figure 3.

A final example is chosen to show the effect of reciprocation of chirp rate parameter
λ. From Equation (2), it is clear that 0 < λ < 1 results in negative phase response, while
λ > 1 yields positive phase response. We showed in Section 3.5 that replacing λ by 1

λ
amounts to conjugation and time reversal of the Altes chirp. The effect is clear to see
in Figure 5, in which the Altes waveform is parameterised identically to the previous
example, with the exception of the chirp rate, which is inverted: {ω0, ωc, λ} = { π

10 , 9π
10 , 4

3}.
The effects of chirp-rate on wavelet delay-spread will be examined further in Section 4.6 on
time-frequency localisation.

Figure 3. Re-parameterised Altes waveform with {ω0, B, λ} = {π
6 , π

5 , 3
4}. (a) Time domain chirp

(b) Frequency domain magnitude response and (c) Frequency domain phase response. See the second
example in Section 3.6 for details.

Figure 4. Re-parameterised Altes waveform with {ω0, ωc, λ} = { π
10 , 9π

10 , 3
4}. (a) Time domain chirp

(b) Frequency domain magnitude response and (c) Frequency domain phase response. See the third
example in Section 3.6 for details.
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Figure 5. Re-parameterised Altes waveform with {ω0, ωc, λ} = { π
10 , 9π

10 , 4
3}. (a) Time domain chirp

(b) Frequency domain magnitude response and (c) Frequency domain phase response. See the fourth
example in Section 3.6 for details.

4. Method for Selecting the Parameters of the Altes Chirplet

Up to this point, we have arrived at the description of a family of waveforms re-
parameterised in Equation (2) from Altes’ original frequency-domain representation. In
Section 4.1, it is shown that we are actually dealing with a family of wavelets in the formal
(admissible) sense. We extend our understanding of these chirping wavelets, or chirplets,
by showing that they also have additional desirable properties such as infinite regularity
(Section 4.2) and an infinite number of vanishing moments (Section 4.3). Furthermore, and
quite remarkably, Section 4.4 shows that the self-similar structure of the Altes wavelet can
be exploited for efficient implementation within a continuous wavelet transform. which we
label the Hyperbolic Chirplet Transform (HCT). Sections 4.5–4.11 deal with design criteria,
and the selection of Altes wavelet parameters {ω0, ωc, λ} for different applications and
implementations of the HCT.

4.1. Admissibility

The continuous wavelet transform (CWT) of a real or complex, square integrable
signal s(t) at position b and scale a is

Cψ(a, b) =
∫
R

s(t)
1√
a

ψ∗
(

t− b
a

)
dt, a ∈ R\{0}, b ∈ R (19)

where ψ(t) is said to be an admissible wavelet if it satisfies the fairly loose conditions
that it is square integrable and sufficiently band-limited [63,64]. For real wavelets, it is
sufficient for admissibility to define the CWT for only positive scalings a ∈ R+. However,
in Equation (16) we design the Altes wavelet to be a complex analytic waveform. In this
case, to ensure an injective transform in Equation (19), we should allow also for negative
scalings a ∈ R\{0}, following the ideas in [63]. When ψ(t) is an admissible wavelet,
Calderón’s reproducing identity tells us that, in this case, the original signal s(t) can be
recovered exactly from its wavelet coefficients Cψ(a, b) by the inverse transform

s(t) =
1
CΨ

∫
R

∫
R\{0}

Cψ(a, b)
1√
a

ψ

(
t− b

a

)
da db, (20)
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where CΨ is the admissibility constant. The formal admissibility conditions on ψ(t) are

Eψ
∆
=
∫
R
|ψ(t)|2 dt < ∞ and CΨ

∆
=
∫
R

|Ψ(ω)|2

|ω| dω < ∞ (21)

corresponding to square-integrability and transform invertibility, respectively. Eψ is the
wavelet energy and we have used the Fourier transform F{ψ(t)} = Ψ(ω).

Equation (19) represents correlation of s(t) with scaled and shifted versions of the
wavelet

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
. (22)

The factor 1√
a ensures that ‖ψa,b(t)‖ is independent of {a, b}, and often the mother

wavelet ψ(t) is normalised so that

Eψ = ‖ψ(t)‖2 = ‖ψa,b(t)‖2 = 1. (23)

The admissibility conditions tell us that ψ(t) is a finite energy pulse with a frequency
response that decays at high frequencies, and which must have no DC component. In
simpler words, it is a frequency localised bandpass waveform.

Proposition 1. The Altes waveform u(t) = F−1{U(ω)} is an admissible wavelet.

A proof is given in Appendix B.1, allowing us to correctly characterise the Altes
waveform as a wavelet. Furthermore, since it is a log-periodic chirp, we can refer to it as
the Altes chirplet, and its application within a CWT as the Hyperbolic Chirplet Transform,
consistent with prior taxonomy. Wavelets that only have the property of admissibility
are known as crude wavelets [65], because admissibility is a weak condition and does not
always result in usefulness for real applications. This leads us to examine other wavelet
properties which can enhance their applicability.

4.2. Regularity

Regularity describes the smoothness of a wavelet ψ(t) in the time-domain. The order
of regularity corresponds to the number of times ψ(t) is continuously differentiable. We
say that ψ(t) is bounded and has uniform Lipschitz regularity of order α > 0 over R if its
frequency weighted magnitude response is Lebesgue integrable according to∫

R
|Ψ(ω)|(1 + |ω|α)dω < ∞. (24)

This captures the fact that smoothness in time is directly related to the rate of decay at
high frequencies. Intuitively, signals with higher frequency content vary more rapidly, and
are therefore less regular.

Proposition 2. The Altes chirplet u(t) has infinite regularity.

A proof is given in Appendix B.2. Wavelets are often used for compression applica-
tions, in which signals are represented by a truncated set of CWT coefficients. Regular
wavelets have the advantage that the undesirable artefacts arising from truncation (e.g.,
audio distortion) are less noticeable when compared to those produced using less smooth
wavelets, even if the compression error magnitude is similar. Infinitely regular wavelets
are thus suitable for use in information-coding. The Altes chirplet joins an august family
including the Morlet, Mexican Hat, Meyer, Gauss and Shannon wavelets, all infinitely-
continuously differentiable in time.



Symmetry 2021, 13, 1922 12 of 26

4.3. Vanishing Moments

If wavelet ψ(t) has M vanishing moments, then it is orthogonal to all polynomials of
order M− 1. A richer set of signals can be represented with a sparser set of coefficients
when the mother wavelet of the analysing CWT has higher number of vanishing moments.
This the highest integer M such that in the frequency-domain

dmΨ(ω)

dωm

∣∣∣∣
ω=0

= 0 ∀ m ∈ {0, 1, 2, . . . , M}. (25)

This makes it clear that vanishing moments flatten the wavelet response Ψ(ω) around
the zero frequency. However, steeper response decay at low frequencies narrows the
wavelet bandwidth from below, and there must be a corresponding time dilation. Thus,
a higher number of vanishing moments comes at the cost of increasing support in the
time-domain, i.e., longer wavelets. This will be addressed in Section 4.5.

Proposition 3. The Altes chirplet has an infinite number of vanishing moments.

A proof is provided in Appendix B.3.

4.4. Scale Invariance

When the Altes Chirplet is used as the mother wavelet in the CWT, we call this
the Hyperbolic Chirplet Transform (HCT). The self-similarity of the Altes Chirplet, as it
emerges from the homogeneity of Equation (A6), leads to the extraordinary property of
transform scale invariance, i.e., the HCT can, in theory, be computed trivially at any scale,
from knowledge of one scale only. In practise, finite precision and sampling effects limit
the extent to which this can be exploited in real systems.

Proposition 4. The HCT is scale invariant.

Appendix B.4 provides a proof, with the implication that the HCT can be implemented
as an extremely efficient transform as a result of the self-similarity of the Altes chirplet. In
theory the Hyperbolic Chirplet Transform Cu(a, b) can be computed once at scale a, and
the coefficients Cu(ma, b) can be found at all other wavelet scales ma via Equation (A29).
In practice, the HCT is implemented digitally, with the waveform being discretised in
both time and amplitude. As such a full, infinite-support, infinite-scale, multi-resolution
analysis will not be achievable, but will depend on the specific implementation.

4.5. The Delay Spread of the Altes Chirplet

Altes chirplets were shown in Section 4.3 to have an infinite number of vanishing
moments. This requires infinite time-domain support, suggesting very long wavelets. We
can ask, how does Altes chirplet delay-spread τ depend on the parameterisation {ω0, ωc, λ}
of Equation (15), and how does it trade off against chirplet bandwidth B? Indeed, what
are useful values of, or limits on these parameters for signal processing applications? To
answer this, we start by defining the delay-spread in a manner similar to how bandwidth
is specified in the frequency-domain in Section 3.2. Time localisation implies that the
time-domain envelope |u(t)| rises gradually from zero to some peak at t = τ0 where the
waveform energy is concentrated, before falling away again to zero, as conceptualised in
Figure 1b, and exemplified in Figures 2–5. We define delay-spread empirically as the time
τ between the earliest appearance of significant energy at t = τ−c , and the later time t = τ+

c
after which the energy appears to have vanished: τ = τ+

c − τ−c . For this to be precisely
specified, some threshold amplitude is needed, which defines the presence or absence of
wave energy at cutoff points τ±c . We use the same −40 dB level of Equation (12) used in
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defining the waveform bandwidth in Section 3.2. Normalising to the peak magnitude of
the time-domain waveform, we define this amplitude threshold as

|u(τ±c )|
|u(τ0)|

!
= Kc = 0.01. (26)

While this is not the most conventional definition of delay spread, it provides consis-
tency with Equation (12) for time-frequency localisation analysis, and is certainly valid.

4.6. Choosing Altes Parameters for Efficient Time-Frequency Localisation

As there is no trivial time-domain representation of the Altes chirplet, this part of the
study is numerical. We are going to do an empirical sweep over the parameters {ω0, ωc, λ}
to observe their influence on delay spread τ and bandwidth B. In Section 3.4, it was seen
that investigation of λ ∈ (0, 1) is sufficient. All derived results then also apply for 1/λ,
i.e., λ ∈ (1, ∞). Furthermore, as outlined in Section 3.6, we consider unit sampling and
need only consider ω0 ∈ (0, π) and ωc ∈ (ω0, π]. The results of a dense parameter sweep
within these domains are presented in Figure 6, showing the measured delay spread and
bandwidth for each grid point, i.e., each dot represents one instance of the Altes chirplet
u(t) at a given value of the parameter set {ω0, ωc, λ} in Equation (15). It can be immediately
seen that there is an efficient frontier shown by the thick line to the lower left, along which
there is an optimal trade-off between time-localisation and frequency-localisation. Altes
chirplets away from this Frontier are inefficient, as they could be tuned to have smaller
bandwidth without increasing the delay-spread and vice versa.

Examining the Altes parameters along this curve, we find in all cases that λ < 1/2,
a loose parameter bound for efficiency. This is because the chirplet in Equation (15) is
ill-behaved near λ = 1 and is certainly not efficiently localised there. The effects of this
ill-behaviour begin to disappear for λ < 1/2. At the upper left of the frontier, ω0 > π/2
and B < π/4, and the waveform becomes narrow-band. Chirping seems impossible, and
we appear to be dealing with a conventional wavelet, rather than a chirplet.

Moving down the curve to the right, it is found that the cutoff frequency quickly
converges to the Nyquist rate, ωc → π, while the center frequency slides down to ωo →
π/2, as the Altes chirplet becomes less frequency localised. Finally, the efficient frontier
flattens out at B = 3π/4. This is the point of minimum delay spread, which occurs for
chirplets with {ω0, ωc} = {π/2, π}, consistent with Equation (11). Table 1 summarises the
efficient parameterisations discussed in this section.

Table 1. Parameterisations of the Altes Chirplet for efficient time-frequency localisation. The parame-
ter bounds are explained in detail Section 4.6.

Localisation ω0 ωc or B λ

Efficient frequency localisation ω0 > π
2 ωc < π λ < 1

2

(minimal chirping) (B < π
4 ) (⇔ λ > 2)

Efficient time-freq. localisation ω0 > π
2 ωc = π λ < 1

2

(the frontier) (π
4 < B < 3π

4 ) (⇔ λ > 2)

Efficient time localisation ω0 = π
2 ωc = π λ < 1

2

(min. delay-spread) (B = 3π
4 ) (⇔ λ > 2)
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Figure 6. Visualisation of the measured bandwidth and delay spread of the Altes chirplet when
sweeping over its parameter space {ω0, ωc λ}. See Section 4.6 for details.

4.7. The Surprising Desirability of Inefficiently Localised Chirplets

At this point, we could call it a day, having identified parameterisations of the Altes
Chirplet for efficient TF-localisation. However, it appears that nature values chirping
flexibility above localisation-efficiency when it comes to ubiquitous log-periodicities. For
example, the parameterisation in Figure 2, while found to be a good model for bat chirps,
is not sufficiently TF-localised to lie on the efficient frontier of Figure 6.

More generally, we have found it desirable (a) to select chirps away from the fre-
quency localised regime, such that there is a sufficient range of frequencies over which
to sweep; and similarly, (b) that the chirplet must be long enough lived in time to afford
numerous oscillations of the log periodicity. Excessive time localisation impedes desirable
chirping. Experience and research have taught us that the chirp waveforms encountered
in practice, such as those used by animals for echolocation, as well as those encountered
in the signatures of discrete-scale invariance such as fracture dynamics, exhibit inefficient
time-frequency localisation. In simpler words, we seek chirplets with relatively wide
bandwidths and long delay spreads, whose parameterisations are selected away from
the efficient frontier of Figure 6. Supporting this idea, it has recently been shown that
wide-band hyperbolic chirping significantly improves Doppler tolerance over narrowband
chirping [66]. In fact, this work shows that even a linear chirp is seen to perform better
than a hyperbolic narrowband chirp. The next sections examine how we might select
parameters for such inefficiently TF-localised Altes chirplets.

4.8. Choosing Center- and Cutoff-Frequency of Inefficiently Localised Altes Chirplets

In Section 4.6, it was found that fixing cutoff frequency ωc = π is required for efficient
localisation. Now that inefficiently localised chirps are also in consideration, there remains
a good reason to keep ωc = π. In order to minimise implementation complexity the chirplet
should be represented by a sampling that is sparse, while ensuring that chirplet dynamics
are fully captured without aliasing. Assuming a unit sampling interval (a sampling
frequency of ωs = 2π), this translates directly to the requirement that the chirplet cutoff
equals the Nyquist sampling rate ωc = ωNyq = π. This, together with Section 4.7 suggests
to choose ω0 < π

4 (i.e., B > 3π
4 ) for frequency delocalisation, i.e., such that wide-band

chirping can occur. This constraint is captured in Table 2.
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Table 2. Parameter Bounds on the Altes Chirplet for Discrete-Time Implementation and use in
the HCT.

Parameter Value(s) Comment

Center Frequency ω0 ω0 < π
4 Wideband chirping

Cutoff Frequency ωc ωc = ωNyq = π Critical-rate unit-sampling

Chirp-Rate λ 1/4 < λ < 3/4 Bounded no. of oscillations

(⇔ 4/3 < λ < 4)

Fourier Transform Size Nfft Use Figure 7 to select Nfft = 1024 works in most cases

Figure 7. Altes chirplet delay spread τ as a function of parameters {ω0, λ}. The cutoff frequency is
fixed at ωc = π. The vertical dashed line shows that a 512-point Fourier Transform is appropriate for
implementing all chirplets with λ < 0.75, ω0 > π

10 . See Section 4.10 for details.

4.9. Choosing the Chirp-Rate Using Oscillation Count & Discrete Scale Invariance

We can sensibly bound the chirp rate λ by examining the number of oscillations of
the chirplet. Consider the chirplets in Figures 2 and 3. The first example appears to have
about two full oscillations of the waveform, while the second has about six. We can provide
more precision by counting the number of oscillations of the Altes chirplet over a relevant
parameter sweep. Figure 8 shows the measured number of full oscillations of the chirplet
for such a sweep. The constraints on center- and cutoff-frequency {ω0, ωc} are those in
Section 4.8, i.e., {0 < ω0 < π

4 , ωc = π}.
We see that for 0 < λ < 1, a larger λ results in a greater number of oscillations, which

scales approximately as −1/ log(λ). In fact, it can be seen that the number of oscillations
becomes very large for values of chirp-rate close to unity. This is undesirable for two
main reasons. Firstly, the well known wavelets such as Meyer, Shannon, Gauss, Morelet,
Mexican Hat, etc. all have a small number of oscillations within their delay spread. It has
been found that a low number of oscillations, from two or three up to a dozen or so, gives
useful results in applications such as data compression and signal analysis. This is because
different frequencies and scales can be analysed using a small number of oscillations, by
appropriate dilations. This also holds for Altes chirplets.
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Figure 8. The measured number of full time-domain oscillations of the Altes chirplet within the
limits of its delay spread, as a function of its parameters {ω0, ωc, λ}. See Section 4.9 for details.

A more compelling reason stems from the Altes chirplet property of discrete scale
invariance introduced in Section 2.1. Note that discrete scale invariance is different to full
scale invariance of the HCT discussed in Section 4.4. Such self-similar signals are invariant
under a discrete set of dilations. For log-periodic signals, the ratio of intervals between
peaks of the oscillation is constant. This has the advantage that only a few oscillations of
the chirplet are necessary for LP-detection, since further oscillations only detect extensions
of the log-periodicity at higher or lower (discrete) scales. More simply, we do not need a
large number of chirplet oscillations to detect a log-periodicity. A few cycles will do, plus
appropriate dilations and scaling, as in the hyperbolic chirplet transform. The implications
of this become apparent in Figure 8, which suggests that we need a tighter upper bound
than λ < 1. To remain below 20 oscillations of the chirp, we retain the previous parameter
bounds but tighten the upper chirp-rate bound to λ < 0.75.

We also propose a lower bound on λ based on the oscillation count. Log-periodicity
can occur spuriously in noisy data and it is desirable to avoid falsely reporting such events
as significant. A deep study on the statistics of random-walk data (time-integrated noise)
has shown that the most likely number of spurious oscillations which occur is 1.5, and that
2.5 can occur with a likelihood as high as 10% over many realisations [67]. We therefore
suggest that usefully parameterised Altes chirplets will have at least 2 oscillations, implying
a practical lower bound λ > 0.25 from Figure 8. Taking both results of this section together,
we are imposing 1

4 < λ < 3
4 .

4.10. Choosing Fourier Transform Size for Discrete-Time Implementation

When implemented in software or hardware, the HCT must be approximated in
discrete-time with a finite number of samples using appropriate time-frequency sampling.
To generate the time-domain Altes chirplet u(t) via Inverse FFT (IFFT), we should select a
transform size Nfft that is large enough to capture its full delay spread τ. Figure 7 shows
the measured delay-spreads of Altes chirplets parameterised for inefficient localisation as
in Section 4.9. Since the IFFT is implemented cost-effectively when its size is an integer
power of two, the y-axis is labeled dyadically, directly allowing the choice of transform size
for discrete-time implementation as a function of the parameters. For example, selecting
ωc
ω0

= 10 and the chirp rate λ = 3
4 , it can be seen that a 512-point FFT would be needed for

alias-free computation of the Altes time-domain chirplet u(t). Note that increasing ωc/ω0
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is used as a proxy for increasing bandwidth as per Equation (11). At these settings, the
delay spread increases more or less linearly with bandwidth, requiring higher complexity
of implementation.

4.11. Summary of Altes Chirplet Parameter Selection and Implementation of the HCT

This Section has exposed several desirable properties of the Altes Chirplet, and how to
parameterise it for use in a Hyperbolic Chirplet Transform, e.g., for efficient time-frequency
localisation, as summarised in Table 1. However, it has also been noted that localisation-
efficiency should be sacrificed for chirping flexibility, and instead we seek parameters that
allow wide-band chirping for a selection of chirp-rates with minimised sampling rate and
Fourier transform size. A numerical examination of these properties over the parameter
space leads to the conclusions of Table 2 for parameterising the Altes chirplet. The snippet
of MatlabTM in Listing 1 shows that the chirplet can be easily implemented in software,
given the selected parameters.

Listing 1: This MatlabTM function altesChirplet.m generates the Altes Chirplet from its
input parameters as per Equation (2). The chirplet is constructed in both frequency- and
time-domain representations, respectively, (U(ω), u(t)), the latter being computed via the
Nfft-point inverse FFT of the former. Please note that in Matlab the function log computes
the natural logarithm as desired.
function [U, u ] = a l t e s C h i r p l e t (w0, wc , lam , Nff t )
%% A l t e s C h i r p l e t t ime −domain u & f r e q domain U

Kc = 0 . 0 1 ;
Np = ( Nff t /2)+1 ;
wp = l inspace ( 0 , pi ,Np ) ; % p o s i t i v e f r e q u e n c i e s
kc = −log ( Kc ) / ( log (wc/w0) ^ 2 ) ;
Mwp = exp ( − kc * ( log (wp/w0 ) . ^ 2 ) ) ;
Qwp = exp ( 2 * pi * j * log (wp)/ log ( lambda ) ) ;
U = Mwp. *Qwp;
Upad = [0 U( 2 : end ) zeros ( 1 , ( Nff t / 2 ) − 1 ) ] ;
u = i f f t (Upad ) ;

5. Empirical Results and Discussion

This section demonstrates the performance of the HCT in detecting log-periodicities
buried in noise, in comparison to that of more conventional linear transforms. Section 5.1
describes the experimental setup, Section 5.2 examines the results of the log-periodicity
detection and Section 5.3 provides a discussion of these results.

5.1. Experimental Setup

In order to demonstrate the applicability of the Altes wavelet to detection of log-
periodicities via the Hyperbolic Chirplet Transform, we have constructed a synthetic test
signal in which three real-valued hyperbolic chirps are buried in white noise, along with a
sine wave. For purposes of transparency, this toy signal x̃(t) is constructed as

x̃(t) = x(t) + s(t) + n(t) , (27)

where x(t) =
7

10
u1(t)
‖u1(t)‖∞

+
1
2

u2(t)
‖u2(t)‖∞

+
1
2

u3(t)
‖u3(t)‖∞

. (28)

Sinus s(t) = 1
2 sin

(
π
3 t
)

is tonal interference and n(t) is normally distributed Gaussian
white noise added at a level relative to x(t) + s(t) for overall signal to noise ratio (SNR) of
0 dB. This high level of noise is chosen to expose the discriminating power of the various
transforms at low SNR. Using the construct of Equation (22) the three chirps ui(t) are
derived from scalings and shifts of the fundamental Altes chirplet by

u1(t) = u{32, Nfft
2 }(t) , u2(t) = u{24, 3Nfft

8 }(t) , u3(t) = u{16, 9Nfft
16 }(t) (29)
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with Nfft = 210 chosen in the implementation of Listing 1. The resulting noisy signal x̃(t)
is shown in Figure 9a. For illustration, the clean chirp signal x(t) is also shown without
the noise and tonal interference, and the chirp centers of energy (τ0 from Figure 1b) are
marked with dashed verticals. We have chosen to analyse x̃(t) by three methods, a Short
Time Fourier Transform (STFT), a Continuous Wavelet Transform (CWT) using the complex
Morlet wavelet, and the Hyperbolic Chirplet Transform using an Altes chirplet. The
resulting spectrogram/scalograms are shown in Figure 9b–d, respectively, in the form of
log-magnitude contour charts.

Figure 9. Spectrogram/scalogram detection of log-periodicity in a noisy signal: (a) The noisy signal,
(b) Detection by Short-term Fourier Transform (STFT Spectrogram), (c) Detection by Complex Morelet
Wavelet Transform (CWT Scalogram) and (d) Detection by Hyperbolic Chirplet Transform (HCT
Scalogram). See Sections 5.1 and 5.2 for details.

5.2. Experimental Results

Figure 9b shows the short-time Fourier transform (STFT) spectrogram of the test
signal using a 128-point Fourier Transform and Hamming window. The STFT picks out
the sinusoid, which has been injected at ω = π

3 . This is not detected by the wavelet
or chirplet transforms, highlighting the imperative to pick a suitable transform for the
problem at hand. Assuming we are only interested in detecting log-periodicities, it is clear
that the STFT is relatively poor, as is to be expected from its constant time-resolution at
all frequencies. We have implemented a Hamming windowed overlap-add STFT using
a 128-point FFT. Note that Overlap-add reduces STFT discontinuities and is available in
Matlab as spectrogram.m.

Figure 9c shows some improvement in detecting the LP-chirps, when using a CWT
with complex Morlet wavelet. Section 2.4 noted that Morlet wavelets have been reported to
exhibit superior performance over other wavelets for chirp detection [46], which is why we
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have chosen a Morlet here as the mother wavelet for the CWT. For fairness of comparison
with the (complex) Altes chirplet, we use the complex Morlet, which marginally improves
localisation in the scalogram. Furthermore, since the complex Morlet has much narrower
time-support than the Altes chirplet at unit scale, we use a higher set of scales in the CWT
than the HCT, such that the time resolution of their scalograms are comparable. It is found
that we need to choose a set of scales approximately 10× those of the HCT, as can be seen
from the y-axes of Figure 9c,d. The CWT scalogram seems to suggest, correctly in fact,
that there are three bursts of signal activity over the interval. However, while the result
is partially clear around the timing and scaling of signal activity, the localisation of the
three LP-chirps is quite poor, and it would be a considerable stretch to conclude that this
represents a set of log-periodicities.

Figure 9d shows the Hyperbolic Chirplet Transform scalogram of the test signal using
an Altes chirplet. There is a significant increase in sharpness identifying the timing and
scaling of bursty signals buried in the noise.

5.3. Discussion of Results

Of interest in Figure 9d are the three ridges showing that the HCT has captured the
benefits of linearising chirps in the time-scale plane, as postulated in [44,45]. That is, the
formation of linear ridges in the HCT scalogram confirms the presence of log-periodicity.
Furthermore, the HCT has correctly isolated the time-centring of the chirps despite high
levels of superimposed noise and tonal-interference.

In parameterising the Altes chirplet in this example, we have kept within the bounds
of Table 2, selecting {ω0, ωc, λ} = {π

5 , π, 1
2}. Focussing on the last parameter, the chirp

rate λ, we note that, in fact, many systems exhibiting discrete scale invariance have a
preferred scaling ratio λ = 2 (⇔ λ = 1

2 ). For example, in [7], it was observed that the
mean field value of λ = 2 is obtained by taking an Ising or Potts model on a hierarchical
lattice in the limit of an infinite number of neighbors. Furthermore, we have seen that
chirplet parameter λ = 1

2 lies directly within the limits of applicability we found for the
HCT 1

4 < λ < 3
4 . We surmise that λ = 1

2 ⇔ λ = 2 is a natural choice for the chirp-rate. We
find that, when making this selection for our mother wavelet, the HCT will nevertheless
succeed in detecting chirps generated with different values of λ. This is because λ is a
scale ratio for the distance between successive peaks in a log-periodic waveform, while a
is the scale ratio within the HCT that serves as a dilation factor, stretching the analysing
waveform to find log-periodicities at other chirp rates. This is all to say that fixing λ = 1

2 in
the HCT is not seen to limit its use for more general LP-detection.

It is clear from the results of Section 5.2 that the HCT introduced in this paper is a
powerful tool for detecting log-periodic signals in noisy measurements. Additionally, it is
worth re-emphasising that the underlying properties of the Altes wavelet, together with the
parameter tunings introduced here, allow an efficient implementation of the HCT. Building
on the mature body of knowledge in wavelet signal processing, we see that the HCT is not
just powerful, but also practical.

6. Summary and Conclusions

This article has extended the excellent sonar waveform designs of R.A. Altes from
the 1970s, making their work on chirping pulses both more accessible, and more widely
applicable in the context of wavelet transform analysis. This is motivated by the fact that
many signals in nature and in engineering systems display hyperbolic chirping, having log-
periodicity, which can be a strong indicator of hierarchical structures and failure dynamics
in complex systems. Our approach extends beyond previous attempts at detecting log-
periodicity, by introducing the Altes chirp as the mother wavelet in a continuous wavelet
transform. We call this new approach the Hyperbolic Chirplet Transform (HCT).

In contrast to previous proposals for log-periodicity detection using Fourier analysis,
wavelet transforms, chirplet & warblet transforms, Constant-Q transforms and the Mellin
transform, our approach specifically matches the transform detector to the hyperbolic



Symmetry 2021, 13, 1922 20 of 26

chirps being sought, with an implementation framework which offers tight control over
computational complexity.

In order to facilitate this analysis, and as a primary novelty of this work, we propose
a re-parameterisation of the original waveform, allowing straightforward specification
of a family of chirps in terms of bandwidth, center frequency, and chirp-rate. Our new
formulation also simplifies the proof that these chirps constitute a set of admissible wavelets,
with the attractive properties of having infinite regularity (i.e., smoothness) and infinite
vanishing moments. Furthermore, these chirplets are self-similar at discrete scalings, a
remarkable property which delivers scale-invariance when implemented in the hyperbolic
chirplet transform.

We have shown in this paper how to choose the parameters of the Altes chirplet for
implementation in the HCT. In fact, we propose two choice frameworks for the parameter
set, depending on the application at hand. In the first case, we show how to select pa-
rameters for optimally efficient time-frequency localisation, which can be useful for signal
compression. On the other hand, efficiency can come at the expense of performance in
other use cases, giving us reason to seek inefficiently TF-localised chirplets with different
properties. We show how to tune the pulse-design settings in these cases also. We put all
of this into practice with a synthetic example to illustrate that the HCT facilitates detection
of log-periodicity in a noisy signal by linearising its scalogram signature. This feat is
not achievable with alternative time-frequency techniques such as the short time Fourier
transform or the continuous wavelet transform.

To conclude, it is seen that there is promise in the use of the Altes chirplet and the
HCT for improving our ability to detect log-periodic signatures in noisy signals. These
theoretical underpinnings for LP-detection can form the basis for applied research in
multidisciplinary settings, particularly where there is an imperative to diagnose criticality,
and forecast rupture/failure in complex systems. Looking forward, our research is taking
us down this more applied route than the theoretical framework of the current study, and
there are certainly many real-world applications where the value of the methodology can
be quantified more precisely.
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Appendix A. Derivation of the Original Altes Waveform

Consider waveform U(ω), which produces a set of echoes when reflected from a
target in a sonar detection setting. Depending on the wavelength, its angle of incidence,
the velocity and reflectivity of the target and other factors, reflections may be in- or out-of-
phase with the incident waveform. By superposition, an echo is thus hypothesised to be the
weighted sum of time-integrated (when in-phase) or -differentiated (when out-of-phase)
versions of the original signal at different lags.

The goal is to design this transmit signal U(ω) such that it can be reliably recovered
from these n different echo components Vn(ω) under constraints on receiver complexity.
Since time-integrated and -differentiated versions of U(ω) are given in the frequency-
domain by (jω)nU(ω), n ∈ Z, detection can be achieved using a bank of filters V∗n (ω),
each matched to one of these energy normalised echo components, written as
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Vn(ω) =
(jω)nU(ω)

1
2π

∫ ∞
−∞|(jω)nU(ω)|2

. (A1)

Altes’ insight was that the complexity of the required filter bank could be constrained
if these filters have a constant time-bandwidth product for all values of n, i.e., Constant-
Q (Section 2.3). This is because the component V∗n (ω) is repeatedly differentiated as
n increases, which, from Equation (A1) and the Cauchy-Schwarz inequality, results in
bandwidth expansion. If this is compensated by a corresponding compression of the time-
domain impulse response, then the required matched-filter complexity remains uniform
in n. This is true for a bank of Constant-Q filters. Consider matched filters V∗n (ω) which
satisfy a scaling constraint defined by k > 1:

V∗n (ω) ∝ V∗n−1

(ω

k

)
. (A2)

Undesirably, this k introduced by Altes tunes both the bandwidth and chirp-rate of the
final waveform, one of the reasons for re-parameterisation.

If V∗n (ω) has root mean square delay-spread τn and bandwidth is Bn, then Equation (A2)
gives Bn = kBn−1 and its inverse Fourier transform gives τn = τn−1/k. Therefore,

τnBn = τn−1Bn−1 = τmBm ∀ m, n ∈ Z. (A3)

This is a sufficient constant-Q condition on V∗n (ω) to equalise the time-bandwidth
products for all n, as well as the ratios of centre-frequency to bandwidth. From Equation (A2)

V∗n (ω) ∝ V∗0
( ω

kn

)
(A4)

⇒ ωnU(ω)
(A1)
∝ U

( ω

kn

)
(A5)

⇒ ωnU(ω) = C(n)U
( ω

kn

)
, (A6)

where C(n) is a proportionality constant dependent on n but independent of ω. From
relatively simple arguments, we obtain Equation (A6), an explicitly solvable homogeneous
functional in U(ω). By analytic continuation to real values of n, and taking the derivative
with respect to n of Equation (A6) at n = 0, and also noting that C(0) = 1, we obtain

d U(ω)

U(ω)
=

C′(0)− log ω

ω log k
dω , ω 6= 0. (A7)

Integration and some simplification leads to the original Altes pulse U(ω) in Equa-
tion (1), designed specifically to have echo components that are easily detectable. This
U(ω) can be verified to satisfy Equation (A6) by choosing

C(n) = knν+ n2
2 exp (−j2πnc). (A8)

For a more thorough understanding of these concepts, it is worth revisiting the original
derivation by Altes [3].

Appendix B. Derivation of the Properties of the Altes Chirplet

Appendix B.1. Proof of Admissibility as a Wavelet

Proof of Proposition 1 in Section 3. A log-normal random variable X with log(X) ∼
N (µ, σ2) has, by definition, probability density function and expected value given by
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pX(x) =
1

xσ
√

2π
exp

(
− (log x− µ)2

2σ2

)
, x > 0 (A9)

E[X]
∆
=

∫ ∞

−∞
xpX(x)dx = exp

(
µ +

σ2

2

)
. (A10)

The equality (A10) translates to

1
σ
√

2π

∫ ∞

0
exp

(
− (log x− µ)2

2σ2

)
dx = exp

(
µ +

σ2

2

)
. (A11)

Replacement x → ω, µ→ log ω0 and σ2 → 1
4κc

gives√
2κc

π

∫ ∞

0
e−2κc log2 ω

ω0 dω = elog ω0+
1

8κc (A12)

and so from Equation (2)

1
2π

∫ ∞

−∞
|U(ω)|2 dω =

ω0√
8πκc

exp
(

1
8κc

)
(A13)

From Parseval’s Theorem∫ ∞

−∞
|u(t)|2 dt =

1
2π

∫ ∞

−∞
|U(ω)|2 dω

(A13)
< ∞ (A14)

proving square integrability by Equation (21). By substituting x ← log ω
ω0

in Equation (21)
we obtain

CU
(2)(16)
=

∫ ∞

0
exp2

(
−κc log2 ω

ω0

)
dω

ω
(A15)

=
∫ ∞

−∞
exp

(
−2κcx2

)
dx =

√
π

2κc
< ∞ (A16)

proving invertability and, therefore, admissibility by Equation (21). As an aside,
Equations (A13) and (A14) can be used for normalisation in Equation (23).

Appendix B.2. Proof of Infinite Regularity

Proof of Proposition 2 in Section 3. Using U(ω) from Equation (2), we define

I0
(24)
=

∫ ∞

0
exp

(
−κc log2 ω

ω0

)
dω +

∫ ∞

0
ωα exp

(
−κc log2 ω

ω0

)
dω

∆
= I1 + I2. (A17)

Replacing x ← log ω
ω0

gives

I2 = ωα+1
0

∫ ∞

−∞
exp

(
−
(

κcx2 − (1 + α)x
))

dx (A18)

= ωα+1
0

√
π

κc
exp

(
(1 + α)2

4κc

)
(A19)

The limit α→ 0 gives I1 allowing us to compute the definite integral

I0 = ω0

√
π

κc
e

1
4κc

[
1 + ωα

0 e
α2+2α

4κc

]
< ∞ (A20)

for all finite α > 0, proving infinite regularity by Equation (24).
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Appendix B.3. Proof of Infinite Vanishing Moments

Proof of Proposition 3 in Section 3. Since U(ω) = 0, ω ≤ 0 it suffices by Equation (25) to
show that

lim
ω→0+

dnU(ω)

dωn = 0 , ∀ n ∈ Z+. (A21)

It is obvious that the exponential form of the Altes wavelet U(ω) from Equation (2)
renders it infinitely continuously differentiable over the positive frequencies ω > 0. While
computing these derivatives is cumbersome, by rewriting

U(ω) = exp(Q(ω)) , ω > 0 (A22)

it can be readily found from chain and product rules that they take the form

dnU(ω)

dωn = U(ω)
n

∑
p=1

p

∑
q=1

apQ
bp
p (ω)aqQ

bq
q (ω) (A23)

where

Qi(ω) =
diQ(ω)

dωi
(2)(A22)

=
ci,0 log ω + ci,1 + jci,2

ωi . (A24)

There are a finite number of terms in the double summation of Equation (A23). This
number is independent of ω, as are the integer constants ai, bi and the real constants ci,k.
These coefficients must be found by computation, but we do not need them to observe that,
as ω shrinks to zero in Equation (A23), the magnitude of U(ω) shrinks far more quickly
than the products of Qbi

i (ω) explode. The former has order of growth exp(− log2 ω)
which dominates the latter, whose order of growth is only (log ω)/ωn at the origin. This
dominance holds true for any n ∈ Z+.

Appendix B.4. Proof of Scale Invariance

Proof of Proposition 4 in Section 3. The continuous wavelet transform of Equation (19)
can be written in the frequency-domain, via the Plancharel theorem, as

Cψ(a, b) =
√

a
2π

∫
R

S(ω)Ψ∗(aω)ejωbdω. (A25)

Taking n = 1 in Equations (A6) and (A8) and using Equation (14) gives

ωU(ω) = kν+ 1
2 exp

(
−j2π

log k
log λ

)
U
(ω

k

)
. (A26)

For k→ 1
a in Equation (A26) with U(ω)→ Ψ(ω) in Equation (A25) and U(ω) given

by (2), we obtain

Cu(a, b) =
g(a)
2π

∫
R

S(ω)ωU∗(ω)ejωbdω (A27)

with

g(a) ∆
= a1+2κc log ω0 exp

(
j2π

log a
log λ

)
(A28)

i.e., independent of ω. We have used Equation (8) to replace ν in line with the new
parameterisation. From the above, it can readily be shown that for any real multiplier
m > 0, we get

Cu(ma, b)
(A27)(A28)

= g(m)Cu(a, b) (A29)
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with g(m) independent of a and b, proving scale invariance. Please note that at unit scale,
a = 1 and g(1) = 1. In this case Equation (A27) has the time-domain equivalent

Cu(1, b)
(19)(22)
= s(t) ? u(t− b), (A30)

where ? is cross-correlation. In words, we find the HCT coefficients at unit scale by measur-
ing the correlation of signal s(t) with the delayed Altes chirplet, and use Equation (A29) to
find the coefficients at other scales.
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