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Abstract: Malaysia is multi-ethnic and diverse country. Heterogeneity, in terms of population
interactions, is ingrained in the foundation of the country. Malaysian policies and social distancing
measures are based on daily infections and R0 (average number of infections per infected person),
estimated from the data. Models of the Malaysian COVID-19 spread are mostly based on the
established SIR compartmental model and its variants. These models usually assume homogeneity
and symmetrical full mixing in the population; thus, they are unable to capture super-spreading
events which naturally occur due to heterogeneity. Moreover, studies have shown that when
heterogeneity is present, R0 may be very different and even possibly misleading. The underlying
spreading network is a crucial element, as it introduces heterogeneity for a more representative
and realistic model of the spread through specific populations. Heterogeneity introduces more
complexities in the modelling due to its asymmetrical nature of infection compared to the relatively
symmetrical SIR compartmental model. This leads to a different way of calculating R0 and defining
super-spreaders. Quantifying a super-spreader individual is related to the idea of importance in a
network. The definition of a super-spreading individual depends on how super-spreading is defined.
Even when the spreading is defined, it may not be clear that a single centrality always correlates
with super-spreading, since centralities are network dependent. We proposed using a measure of
super-spreading directly related to R0 and that will give a measure of ‘spreading’ regardless of the
underlying network. We captured the vulnerability for varying degrees of heterogeneity and initial
conditions by defining a measure to quantify the chances of epidemic spread in the simulations. We
simulated the SIR spread on a real Malaysian network to illustrate the effects of this measure and
heterogeneity on the number of infections. We also simulated super-spreading events (based on our
definition) within the bounds of heterogeneity to demonstrate the effectiveness of the newly defined
measure. We found that heterogeneity serves as a natural curve-flattening mechanism; therefore, the
number of infections and R0 may be lower than expected. This may lead to a false sense of security,
especially since heterogeneity makes the population vulnerable to super-spreading events.

Keywords: COVID-19; network heterogeneity; R0; super-spreaders; SIR on networks; contact net-
works; weighted networks; Malaysia

1. Introduction

COVID-19 shook the world and made us very aware of the number of infections, the
growth of which must be flattened to ensure health services are not overwhelmed. This
curve, representing the number of infections, is commonly modelled by the Susceptible-
Infected-Recovered (SIR) model [1] and its variants. The basic SIR compartmental model as-
sumes that the population is compartmentalized into three compartments, namely the ‘Sus-
ceptible’, the ‘Infected’ and the ‘Recovered’. In its simplest form, the infection between these
compartments will be symmetrical in nature, with a constant infection rate β governing
the ‘Susceptible’ and ‘Infected’ compartments and the constant recovery rate γ gamma
governing the interactions between ‘Infected’ and ‘Recovered’ [2].
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The underlying assumption of a typical SIR compartmental model is that communities
are homogeneous, such that the population is composed of individuals who mix uniformly
and randomly infect each other [1]. A more representative and realistic model of epidemic
spread needs to incorporate heterogeneity, particularly for a multi-ethnic and diverse
country like Malaysia. Heterogeneity in epidemic modelling can be added in many ways [3],
such as varying individual parameters (ethnicity, age, gender, contact rate and compliance
to public health recommendations, as well as disease-dependent individual parameters),
susceptibility to disease, transmission rate, mode of transmission and recovery rate. Efforts
to incorporate heterogeneity through compartmental modelling usually focus on varying
infection rates between compartments [4] and increasing the number of compartments [5].
A natural way to incorporate heterogeneity is by modelling the spread on a network.

A network or a graph can represent a set of individuals (vertices) connected with each
other through relationships or physical contact (edges), visualized in Figure 1. In this article,
we shall use the term graph and network interchangeably. The spread on a compartmental
SIR model may be compared to an epidemic spread on a regular graph or a complete
graph [3,6], which is symmetrical in nature. A network representing human contact is
usually heterogeneous and asymmetrical in nature, since relationships and contact of indi-
viduals vary. This breaking of symmetry makes the calculation of transition probabilities
and effective infection rates more complicated, compared to the compartmental SIR model.
However, modelling the spread on networks enables and, in fact, predicts the existence of
super-spreaders and clusters within the population.

There are methods to define super-spreading events [7] or incorporate information
of super-spreading localities [8], but in this article, we shall focus on defining the super-
spreading individuals (vertices) within a network. Quantifying a super-spreader is directly
tied to the idea of importance and centrality of a vertex. The spreading capacity of a
vertex can be measured by how much of an outbreak it can cause by being infected. This
may be referred to as influence maximization [9]. The spreading capacity can also be
measured by how much deleting a vertex would reduce the expected outbreak size, as
we previously investigated [10], in relation to sentinel surveillance [9] and strategizing
to minimize infections. These capacities may be captured by measures such as degree
and centralities, depending on the structure of the underlying network. Measures such
as vitality [9] and core periphery structure [11] are also related to various centralities. The
authors of [8] defined a super-spreading measure that incorporated R0 into its calculation,
thus defining a centrality weighted by R0 for each locality. Therefore, the definition of
super-spreading individuals (vertices) is highly dependent on how super-spreading is
defined. Even when the spreading is defined, it may not be clear that a single centrality
always correlates with super-spreading [9,10] due to the heterogeneity of the network.
We propose using a measure of super-spreading directly related to R0, a measure well-
established in the epidemic spreading literature. This measure will correlate to ‘spreading’
in the R0 sense, regardless of the underlying network.

R0 (R-naught) is the average number of infections per infected person. When R0
is greater than one, infections can spread in a totally susceptible population [12]. For a
successful eradication of the virus, it is vital that R0 is forced to go below one, so that the
virus eventually dies out. Therefore, the value of R0 serves to quantify the ‘spreading’
potential of the virus. R0 is used by governing bodies to plan for future preventive actions.
The Malaysian government in particular even had a special press conference to explain
R0 and how it will affect future Malaysian policies in light of COVID-19. In the basic SIR
model, R0 can be calculated by taking the ratio of infection rate per recovery rate, such
that R0 = β

γ [6,13]. However, the asymmetrical and heterogeneous structure of a network
means that calculating R0 will not be as straightforward [12,13].
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Figure 1. A network of 148 individuals as vertices linked by edges of potential infections. Colors represent different
ethnicities of these individuals. In (a), homogeneity is assumed. All individuals are connected and can randomly infect
anyone. In (b), an individual can only infect their friends as stated in a questionnaire [14]. In (c), an individual can only
infect their friends in [14], but the chances of infecting is higher for a close friend. A close friend is indicated by a thick edge.

We simulated the SIR-like spread on the network using a Markov Chain Monte Carlo
process, repeated for 1000 iterations. Thus, we defined a novel measure of spreading, αS, by
taking the ratio of iterations, where R0 grows larger than 1 over all iterations. αS represents
the fraction of the simulation in which the epidemics spread. The larger this value is, the
higher the chances of epidemic spread. We demonstrate that this value is sensitive to
network heterogeneity as well as heterogeneity of effective infection rates.

Therefore, the outline of this article is as follows. In Section 2, we discuss epidemic
modelling and illustrate the Malaysian COVID-19 situation. We estimated the daily infec-
tion and recovery rate from recent data, including data from various clusters of infections.
In Section 3, we describe how Malaysian heterogeneity can be captured through networks,
and we outline an algorithm to simulate SIR-like spread on networks in Section 4. We
modelled the spread of COVID-19 on a real Malaysian network of university students with
varying levels of heterogeneity. The effect of heterogeneity was quantified using three main
measures: (1) the fraction of infected individuals in the population, (2) R0 (average number
of infections per infected person) and (3) the chances of epidemic spread, αS (fraction of
cases where R0 grows larger than 1). Furthermore, in Section 5, we simulate the dynamics
of super-spreading events within this heterogeneous network and, consequently, highlight
the differences in the outcome. To conclude we will discuss the implications of our findings
for the literature of the quantification of super-spreading in general and, specifically, to the
modelling of the Malaysian epidemic spread.

2. The Spread of COVID-19

To understand COVID-19, many different models have been proposed for popula-
tions in distinct countries [15–18]. The Global Epidemic and Mobility Model (GLEAM), a
meta-population-based, spatial epidemic model, has utilized transport networks to project
the impact of travel limitations on the national and international spread of the epidemic.
GLEAM [16] highlighted that the travel quarantine of Wuhan delayed spread at the inter-
national scale, where case imports were reduced by nearly 80% until mid-February. The
estimation of contact networks in the population is the underlying pillar of GLEAM [2].

Such computationally intensive data-driven simulations require inputs of heterogene-
ity relating to the contact of the underlying population through households, workplaces
and schools, as well as transportation between these places, to construct estimations of
contact networks. Modelling at an individual level implies trying to estimate the inter-
action of every single individual in the population. These models have been known to
give more precise epidemic predictions for not just the United Kingdom, United States and
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European Countries [15,16], but also for our neighboring countries, like Singapore [17] and
Thailand [19].

Its small size and dominance of public transport has led to Singapore being more
successful in incorporating data into its modelling [17,20]. At the very least, Malaysia
has data of the population, collected through census and surveys at the Department of
Statistics Malaysia (DOSM), as well as contact tracing data at the Malaysian Ministry of
Health (MOH) [21]. To our knowledge, modelling that integrates both these datasets does
not yet exist for Malaysia. Privacy concerns aside, we believe that integration of these
datasets will be highly beneficial for the modelling of COVID-19 in Malaysia, especially
due to the heterogeneous nature of the population.

DOSM [22] estimates that the 32.7 million population of Malaysia consists of
29.7 million citizens and 3 million non-citizens. The configuration by gender is almost equal
between males and females. Partitioning by ethnicity, the Malays and Bumiputeras are
the majority, with 69.3%, followed by Chinese (22.8%), Indian (6.9%) and others with 1%.
The structure of Malaysian citizens by age is largely dominated by the working population
aged 15 to 64 (69.7%), with 0–14 years (23.5%) and 7% of populations aged 65 and older.
These statistics indicate that Malaysia is a country ripe with its own unique heterogeneities.

2.1. The Spread of COVID-19 in Malaysia

COVID-19 was first recorded in China back in November 2019. It was declared
a pandemic by the World Health Organization (WHO) in 2020. In Malaysia, the first
case was recorded on the 25 January 2020 by three Chinese nationals who previously
had close contact with an infected person in Singapore [5]. The significant impact of a
Tabligh gathering in Sri Petaling on 27 February to 1 March 2020 was widely viewed as
a main factor influencing the issuance of the Movement Control Order (MCO) by the
Malaysian government.

The number of confirmed positive cases in Malaysia continues to increase, and it
reached its peak in April 2020. When the number of active cases showed a declining
trend, the lockdown restrictions were relaxed over the next several months to Conditional
Movement Control Order (CMCO) and Recovery Movement Control Order (RMCO).
However, since mid-September 2020, several waves of the virus have been hitting Malaysia,
leading to multiple versions of lockdown. Currently, the whole country is back to the MCO
restrictions, save for certain relaxation on economy activities.

The Malaysian Ministry of Health (MOH) is the main source of formal information
related to the COVID-19 spread, via briefings by the Director General (DG) of Health and
via the MOH website [21]. These daily statistics include the number of confirmed positive
cases, number of active cases, number of recovered cases, number of deaths, number of
cases in Intensive Care Unit (ICU) and number of intubated cases. These statistics are
produced not only for Malaysia as whole, but also for localities, such as districts and states.

On 18 October 2020, there was a special press conference by the DG to explain R0 and
how it would be crucial for determining the future MCOs. The MOH COVID-19 portal [21]
explains that R0 is the average number of infections by one infected person and is thus
indicative of the current spreading rate. The portal also provides daily R0 estimates for
the whole country and various states. These values are then used by the government to
determine and plan for future preventive actions. In this way, the number of infections and
R0 directly affects Malaysian policies and restrictions.

2.2. Modelling the Malaysian COVID-19 Spread

The basic SIR compartmental model is governed by the equations

dS
dt

= −βSI,
dI
dt

= βSI − γR,
dR
dt

= γR, (1)

where β is the infection rate, and γ is the recovery rate [1,2]. This model assumes that the
population is compartmentalized into three compartments, namely the ‘Susceptible’, the
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‘Infected’ and the ‘Recovered’. In (1), S is the number of individuals being in the ‘Susceptible’
state, I is the number of ‘Infected’ individuals and R is the number of individuals in the
‘Recovered’ state. The underlying assumption is that communities are homogeneous, such
that the population is comprised of individuals who mix uniformly and randomly infect
each other [15]. This assumption is generally true for any SIR-type compartmental model,
including the SEIR (the model used by the Malaysian MOH [21]).

Heterogeneities in the population and the interactions between individuals profoundly
affect the dynamics of infections. One way to quantify the dynamics of an epidemic spread
is using R0. R0 can be defined as the average number of secondary cases caused by an
infectious individual in a completely susceptible population [13]. We use R0 here to avoid
confusion with the ‘Recovered’ compartment. We acknowledge that R0 is usually also
labelled R0, R-Naught (MOH website [21]) or R in the literature. There are many ways
to estimate the R0 of a model [23,24]. In a typical SIR model, R0 can be calculated from
R0 = β

γ [6,13] using β and γ are from Equation (1). This relationship is usually utilized
to model the SIR of modelling of the Malaysian spread [10,18].

When R0 is greater than one, infections can spread in a totally susceptible popula-
tion [13]. For a successful eradication of the virus, it is vital that R0 is forced to go below one,
so that the virus dies out and cannot re-invade if immunity is maintained [13]. Salim [18]
used the SIR model with different sizes of the S (Susceptible) population to model different
effects of the MCO. The R0 used in their study was the WHO estimate of 1.16. Wong [25]
simulated the Malaysian SIR spread with various values of R0 to depict different strategies
and vaccination program efficiency.

Alsayed [26] used an Artificial Neural Network (ANN) on data from 25 January 2020
to 5 April 2020 to estimate that the Malaysian infection rate is between 0.015 and 0.041.
The estimates of ‘Recovered’ cases in [27] used data from 4 February 2020 to 16 May 2020,
whereas in [28], data from 1 Dec 2020 to 31 January 2021 were utilized, resulting in an
estimation of the transmission rate at 0.11 and the recovery rate at 0.026. Most models of
the Malaysian COVID-19 spread assume homogeneity in modelling; we demonstrate that
this could lead to inaccuracy in estimates of β and γ.

2.3. On the Estimation of Malaysian β and γ

We shall demonstrate, in this paper, the fact that using similar β and γ on the same
population under various heterogeneity conditions will render a different number of infec-
tions and R0. Therefore, we estimated the β and γ from the most recent Malaysian data to
be utilized in all of our simulations. MOH statistics [21] from 26 May to 8 June 2021 pro-
vided these variables: the number of tests, number of positive cases, number of recovered
case and the number of active cases. Then, the daily infection rates and recovery rates were
computed based on these formulas:

Daily infection rate =
Number of positive cases

Number of tests
(2)

Daily recovery rate =
Number of recovered cases

Number of active cases
(3)

Both these values were then averaged over the 14-day period. The summary statistics
for these two parameters are given in Table 1. Referring to Table 1, the infection rates
ranged between 0.5 and 0.1, with a mean of 0.0698. Similar figures were recorded for the
recovery rate, with the mean being slightly higher than the infection rate at 0.0729.

We also took into account statistics reported for 28 ended infection clusters, as reported
on the MOH website [21] on 9 April, 20 April and 21 April 2021. The number of positive
cases and the number of tests conducted for each cluster were reported; hence, we used
the same formula as in (2) to compute the infection rate. Details are given in Table 2. It
should be pointed out that the values in Table 2 are larger than the ones in Table 1, as
data in Table 2 are based on infection clusters, whereas Table 1 is for the whole country.
Some of the clusters were from construction sites with a high effective infection rate due
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to the nature of contact (highlighting that indeed heterogeneity is significant), as high as
almost 40%. Hence, the mean of the infection rates was also relatively high in these clusters.
We observed that the first quartile value was 0.12, which is close to the maximum daily
infection rate, at around 0.08.

Table 1. The summary statistics of daily infection and recovery rates for 14 days (26 May–8 June 2021).

Statistic Infection Rate Recovery Rate

Min 0.0627 0.0592
Maximum 0.0808 0.0896

Mean 0.0698 0.0729
Median 0.0696 0.0709

Standard deviation 0.0051 0.0086
First quartile, Q1 0.0657 0.0661
Third quartile, Q3 0.0728 0.0799

Table 2. The summary statistics of infection rates for 28 ended clusters of infection.

Statistic Infection Rate

Min 0.0600
Maximum 0.3897

Mean 0.2222
Median 0.2259

Standard deviation 0.1079
First quartile, Q1 0.1249
Third quartile, Q3 0.3185

The basic SIR model can be solved mathematically to obtain an exponential rate of
infection and recovery [6,29]. In an exponential distribution, the rate of recovery is inversely
proportional to the average recovery time. Therefore, if we take 0.0728 as our recovery
rate, the average recovery time in the simulations will be 13.5 days. This is consistent with
the information given by the Malaysian DG, Tan Sri Dr. Noor Hisham Abdullah in The
Edge Markets [30], stating that it took a COVID-19 patient around 10 to 14 days to recover.
Thus, one could say that the recovery rate is between 0.0714 and 0.1. This information
is also supported by the daily figures of daily R0 reported by the MOH [21] for different
states, which is based on the moving window of 7 and 14 days. Judging from all of this
information, we proceeded with the analysis by setting the infection and recovery rates to
be β = 0.0698 and γ = 0.0729, respectively.

3. Heterogeneity and R0

When heterogeneity is taken into account, R0 estimates from modelling will differ
from homogeneous cases [12,13]. The accuracy of R0 prediction is important, since R0
is a utilized evaluation of effectiveness of country-specific public health intervention
strategies [23], including Malaysia. Accurate estimation of R0 is crucial for predicting the
herd immunity threshold needed to stop transmission. Shaw and Kennedy [24] claimed
that there is tremendous uncertainty when attempting to use R0 for public health planning,
since it alone cannot predict future dynamics.

Heterogeneity in epidemic modelling can be added in many ways [3], such as varying
individual parameters (ethnicity, age, gender, contact rate and compliance to public health
recommendations, as well as disease-dependent individual parameters), susceptibility to
disease, transmission rate, mode of transmission and recovery rate. These parameters can
be defined in a compartmental model using various specific rates and compartments [5], but
arguably, the most natural and intuitive way to incorporate heterogeneity is by modelling
the spread on a contact network.
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3.1. Contact Networks

Due to COVID-19, contact tracing is now a household word in Malaysia. When the
contacts of an infected person are traced, one can form a picture visualizing the spread of the
epidemic. This picture illustrating human connections is known as contact networks [11,31].
Contact networks have been used to model previous outbreaks, such as 2019 H1N1 [2] and
the MERS in 2015 [11]. The structure of contact networks can readily explain the existence
of super-spreaders and clusters formation in epidemic spreading [11,31,32], since these
behaviors are common observations in real networks, known in network analysis as hubs
and communities, respectively [6]. GLEAM [16] modelled the COVID-19 spread at an
international scale, by estimating the underlying contact networks.

Using contact networks adds heterogeneity to the modelling not only by exactly
specifying who is in contact with whom, but through networks that can account for age, co-
morbidity, gender, different types and strains of viruses or mutating pathogens that change
infection rates [32]. Various population networks display a large variety of heterogene-
ity [29]. Networks are very useful to quantify the extent to which real populations depart
from the homogeneous-mixing assumption directly affecting the resulting epidemiological
dynamics. Malaysian interaction networks have been modelled in [14,33].

Network heterogeneity is a double-edged sword. On one hand, the communities
formed mean that not everyone has a chance to spread the virus, with everyone thus
delaying the spread and reducing the peak. On the other hand, the structure of the network
also makes it vulnerable to infections of certain strategically positioned individuals, serving
as bridges between communities. If these individuals are infected, the chances of spread
are higher than the rest.

3.2. Malaysian Heterogeneity in University Friendship Networks

Network analysis is a tool based on graph theory. A graph can be written as G = (V, E),
where V is the set of vertices, and E is the set of edges [6]. Graphs are combinatorial objects
used to model relations between elements of a system. The relations considered in our
simulations are symmetrical in nature, since the vertices (contacts) can give each other the
disease. Therefore, the set of edges, E, considered here is undirected, and the graph G is an
undirected graph.

Typically, a graph or network is depicted as a set of dots for the vertices, joined by
lines or curves for the edges, as in Figure 1. In this article, we shall use the term graph
and network interchangeably. We define the set of neighbors of a vertex as the vertices
connected to it via an edge. Figure 1 is a network, with the set of vertices, V, representing
148 individuals with a varying set of edges, E.

In Figure 1a, we use the basic SIR assumption of homogeneity, where all individuals
can be in contact with one another and can randomly infect any of the 148 individuals. The
spread on a basic compartmental SIR model is generally equivalent to an epidemic spread
on network in which the set of edges for each vertex will be all the other vertices [3], i.e., a
complete network [6]. This means that there are 147 edges for each vertex. We shall refer to
simulations done on this type of network as SIR simulations.

One way to quantify social interactions and contact networks is through friendship.
This is especially true in a lecture hall setting, where students tend to be in close proximity
and in contact with their friends. Therefore, we utilize a friendship network collected in
a pre-Covid physical class setting through questionnaires [14,34]. Informed consent was
obtained from all subjects involved in the study. The data sets were anonymized, stored
and analyzed in a secure environment. In this questionnaire, the students identified who
their friends were within the class and ranked their friendship from strongest to weakest.
The maximum number of friends (edges) per student was 10, and the average number of
friends (edges) was 9.

The class was comprised of Malaysian students of various ethnicities (represented
by colours in Figure 1), genders and educational backgrounds. Table 3 summarizes the
composition of the data samples based on the race factor. In Figure 1b, the set of edges, E,
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representing the friendships amongst the 148 students, had 666 edges, and the potential
spreading would be reduced since only friends could be infected. The spread would be
heterogeneous due to the different number of friends of each individual. We shall refer to
simulations done on this type of network as SIRN simulations.

Table 3. The distribution of the 148 students based on race.

Race Frequency Percentage

Malay 99 66.89
Chinese 31 20.95
Indian 13 8.78
Others 5 3.38

Total 148 100

In Figure 1c, the set of edges, E, representing the friendships amongst the 148 students,
was similar to the one in Figure 1b, but now, the edges were weighted. Therefore, the
network in Figure 1c is a weighted network. We obtained the weights on the edges from
the student ranking in the questionnaire [14], and we categorized their friends into two
categories of friends and close friends. The chances of an individual infecting a close friend
would be higher than the chances of infecting a friend, thus adding more heterogeneity
through varying infection rates. We shall refer to simulations done on this type of network
as SIRWN simulations.

In this paper, we explicitly simulated two types of heterogeneity through networks.
The first was heterogeneity in terms of the number of contacts in SIRN; we shall refer to this
as network heterogeneity. The second was heterogeneity in terms of infection rate (more
infectious for close friends) in addition to network heterogeneity in SIRWN. Furthermore,
the edges in Figure 1b,c also reflect the underlying communities in the network and
homophily (tendency for individuals to bond with people who are similar to themselves),
thus illustrating some unique Malaysian heterogeneity.

4. SIR-like Simulations with Random Seed

There are various approaches to model the epidemic spread on networks [1,2,6],
including agent-based approaches [15,16]. In this paper, we took a simple approach of
simulating SIR-like behavior in the population using a modified algorithm from the one
outlined in [10]. This simulation approach utilizes Monte Carlo simulations and is generally
less computationally demanding compared to directly simulating differential equations
in (1). As defined in [35] and [36], a Monte Carlo simulation is a set of iterative procedures
with the inclusion of randomness to obtain numerical results.

The SIR process is probabilistic; thus several iterations are required to get a repre-
sentative outcome, as the location of the initial infected vertex (seed) in the network will
impact the speed at which the epidemics spreads through the system. Thus, the SIR, SIRN
and SIRWN simulations were each simulated for 1000 iterations, and for each iteration, a
random initial seed was chosen. To display a representative outcome of the 1000 iterations,
the median value at each time step was plotted to portray the dynamics of infections
and R0.

All simulations in this paper were simulated with the population size N = 148,
infection rate β = 0.0698, recovery rate γ = 0.0729 and time steps (days) up to a
maximum of 100 days. The spread in the population is unimpeded and dies out due to
infection and recovery rates. One hundred days was chosen as the maximum, since more
than 80% of our simulations had a fully recovered population by day 100. We assumed that
the spread was fully contained in an isolated ‘bubbled’ setting, with no external influences
or interactions. In a network setting, transmission can only occur between vertices that are
connected to each other through an edge; we refer to such vertices as neighbors.
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4.1. SIR, SIRN and SIRWN Simulations

The basic SIR model assumes homogeneity and full mixing, i.e., all individuals interact
with all other individuals and with the same probability at all times. Thus, for the SIR
simulations on the network in Figure 1a, set E contained an edge between all pair of
vertices. Since we defined the neighbors of a vertex as all the other vertices connected
to it through an edge, the neighbors of each vertex were the rest of the population in the
SIR simulations.

Starting with one ‘Infected’ vertex chosen at random as the seed, the main mechanism
of the SIR simulations is summarized in these steps:

1. ‘Infected’ vertices are set to recover exponentially at rate γ. ‘Recovered’ vertices are
not infectious and can no longer be infected;

2. ‘Infected’ vertices may infect all ‘Susceptible’ neighbors at an exponential rate β at
each time step, until they recover;

3. Newly ‘Infected’ neighbors join the other ‘Infected’ vertices, and repeat 1 and 2 until
there are no more neighbors to infect.

Thus, at each time step, every vertex is in one of the S, I or R compartments. To
implement step 2, we used a Metropolis Hastings Algorithm to sample from the exponential
distribution with rate β. Details pertaining this algorithm can be found in [37].

For the SIRN simulations on the network in Figure 1b, the simulations steps were
exactly the same as the SIR simulations, except that the set of edges E now contained
friendship as declared in the questionnaire [14]. Therefore, the neighbors of each vertex
were their proclaimed friends, and all friends could be equally infected with rate β.

For the SIRWN simulations, the set of edges E was similar to that in the SIRN sim-
ulations. However, not all neighbors were equal. A total of 63.8% of the SIRWN edges
were close friends, and the rest were friends. The effective infection rate was varied, being
higher for a close friend than a friend. Thus, the probability to infect close friends was
made to be higher through alterations of the Metropolis Hastings Algorithm, so that the
steps became:

1. ‘Infected’ vertices are set to recover exponentially at rate γ. ‘Recovered’ vertices are
not infectious and can no longer be infected;

2. ‘Infected’ vertices may infect all ‘Susceptible’ neighbors at each time step until they
recover. However, there are two types of neighbors, close friends and friends. Close
friends are infected at an exponential rate slightly higher than β, while friends are
infected at an exponential rate slightly lower than β;

3. Newly ‘Infected’ neighbors join the other ‘Infected’ vertices, and repeats 1 and 2 until
there are no more neighbors to infect.

To implement step 2, we used a novel Metropolis Hastings Algorithm designed to
simulate epidemic spread on weighted networks, resulting in higher infection rates for
weightier (thicker) edges.

4.2. Infections and R0

Three main measures that we intend to highlight from the simulations are related to
the infection, R0 and chances of spreading:

I(t) =
Number of ′Infected′ at time t

N
= fraction of ′Infected′ in the population (4)

R0(t) = Number of total infections in the population by time t
N−Number of ′Susceptible′ at time t

= average number of infections by one ′Infected′ by time t
(5)

αS =
Number of iterations where R0(t)≥1 for any t in simulation type S

Total number of iterations for simulation type S

= fraction of the simulation in which the virus spreads
(6)
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Important thresholds to be observed are maximum I(t) and R0(t), the time when
I(t) = 0 and R0(t) = 0, as well as the time after max R0(t) when R0(t) < 1. Figure 2
visualizes Equations (4)–(6) for the 1000 iterations of the SIR simulations on the network
in Figure 1a. The blue line is the median value calculated at every time step, and we
took this median to be representative of the overall evolution of the simulation. However,
there were ‘good cases’ in the simulations, in which R0(t ) < 1 for every t ], such that
the infection does not spread, and the population is not completely infected, as visualized
by the flattened grey curves in Figure 2. The value αSIR = 0.955, displayed in Figure 2a,
indicates that 955 out 1000 iterations of SIR spread, but there were 45 simulations that were
‘good cases’, in which the population was not completely infected. This value captures
the chances of spreading for each simulation type, and for SIR simulations, the chance of
spreading is 95.5%.

Figure 2. Outcome of 1000 SIR simulations. The medians of the 1000 simulations are highlighted in blue. (a) I(t) as
defined in (4); (b) R0(t) as defined in (5). An interesting threshold to be observed is the median peak at time 8, such that
I(8) = 0.8986, and at time 6, such that R0(6) = 2.7241. Median I(t) and R0(t) went to 0 at time 81 and 82, respectively.
The first time after the peak when R0(t) < 1 was at time 9 when the epidemic started to die out. Therefore, generally, for
the SIR simulations, after 9 days, the infection starts to die out.

Figure 2a is a plot of I(t), the dreaded infection curve that everyone wants to flatten;
therefore, important values from the median curve are the maximum at day 8 of 0.8986 and
the fact that it went to zero on day 81. This implies that on day 8, 89.86% of the population
was infected, and the population was completely cured by day 81. Figure 2b is a plot
of R0(t), a number that in real life would have to be estimated from data or perceived
infection rates. Because we had complete control of the spread, we were able to actually
calculate R0 of the simulations, and from the median curve, the maximum of 2.7241 was at
day 6 and it went to zero on day 82. This implies that at its peak, one individual infected
almost three others, on average. By day 9, R0 went to below 1, thus indicating the start
towards population recovery. Note, also, that for some simulations, R0 went up to more
than 5 in Figure 2b, indicating that for some simulations, an ‘Infected’ may be infecting
five others on average.

4.3. SIR, SIRN and SIRWN: Infections and R0

Similarly, we sought to highlight the measures in (4)–(6) for the SIRN and SIRWN.
In Figure 3, we plotted the median I(t) and R0(t) of 1000 simulations for each type.
Note that the blue curve in Figure 2 is now the black curve in Figure 3, and the measures
highlighted in Figure 2 are now in columns headed by the black SIR heading in Figure 3.
SIR, SIRN and SIRWN are in order of increasing heterogeneity. From Figure 3, we can
say that heterogeneity serves as a natural curve-flattening mechanism. This is in line
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with the observations of various other researchers that highlighted that R0 is reduced
in heterogeneous population [24]. In fact, Ke et al. [23] suggest that the herd immunity
threshold may also be lower. Diversity could indeed be a strength. However, this relatively
late increase in infections may create a false sense of security in heterogeneous societies.
Even though the chances of spreading are lower, as indicated by αS, the spread is still at
least 90% of the simulations. More dangerously, this may lead to inaccurate estimates of
infection and recovery rates.

Figure 3. Median I(t) and R0(t) of 1000 SIR, SIRN and SIRWN simulations colored black, red and green, respectively.
(a) Median I(t), as defined in (4); (b) Median R0(t), as defined in (5). Peak I(t) and R0(t) were generally decreasing and
delayed in order of increasing heterogeneity in SIR, SIRN and SIRWN. Chances of spreading, given by αS, also decrease
with increased heterogeneity.

Recall that I(t) and R0(t) for all simulations are given by the same infection rate β and
recovery rate γ. Therefore, in Figure 3, we demonstrated that different I(t) and R0(t) values
will be obtained by different kinds of homogeneity assumptions in the modelling, with
similar rates of infection and recovery. This also implies that given an observed infection
and R0 from data, the underlying infection rate β may be higher and/or the underlying
recovery rate γ may be lower than the ones implied by a homogenous model. We strongly
recommend estimation of infection and recovery rate to be performed on fully contract-
traced clusters of infections, with complete information of the underlying contact networks,
so that some form of heterogeneity can be taken into account. Inaccurate estimation of
infection and recovery rates may be detrimental to future planning of health policies.

5. SIR-like Simulations with Fixed Seed

The next question we addressed was who are the super-spreader individuals in
the network? In a homogenous population, everyone is equally connected to everyone,
and this question has no answer, but in a heterogeneous population, there are a few
possibilities. Using the heterogeneous structure of a network, it is possible to quantify
structural differences between vertices. One way to quantify the importance of a vertex
is using the concept of centrality which originates from the discipline of social network
analysis [38]. Centrality gives vertices a rank.

Consequently, the next natural question would be does the ranking indicate the
importance of the vertex, such that when it is infected, it will spread the virus faster than
the rest? We have tried to address a related question in a previous study [10], where we
demonstrated that by monitoring individuals with the highest Betweenness Centrality
in the network and quarantining them as soon as they get infected, infections can be
significantly reduced. This monitoring significantly flattened the infection curve when
compared to random monitoring and monitoring based on a few other prominent network
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measures. Therefore, in this paper, we utilized Betweenness Centrality to simulate super
spreading dynamics.

5.1. Betweenness Centrality

A path is defined as a sequence of vertices, such that every consecutive pair of vertices
in the sequence is connected by an edge. The distance dij between two vertices, i, j ∈ V,
is the number of edges along the shortest path. Every pair of vertices directly connected
by an edge is at a distance of 1. The Betweenness Centrality (BC) of vertex i ∈ V can be
defined [6,38] as

xi = ∑
s 6=i,s∈V

∑
t 6=i, t∈V

nst(i)
Nst

(7)

where nst(i) is the number of shortest paths from vertex s to vertex t that passes through
vertex i. Nst is the total number of shortest paths from s to t. The more “in-between”
other vertices a vertex is, the more central it is. High BC vertices act as connectors between
different clusters formed in the network.

The highest ranked BC vertex in our network is colored red in Figure 4, and the lowest
ranked is colored yellow. The red vertex represents the ‘connector’ individuals that are
friends with many different communities in the network. On the other hand, the yellow
vertex is only friends with one other individual in the network. Therefore, if an infection
starts from the yellow vertex, whether the virus spreads or not, depends on this one edge.
In order to rank by BC, we first calculated the BC of each vertices using (7) then ranked
them from largest to smallest. The vertex with the highest BC was clear, but there were
eight vertices with xi = 0. In this case, we chose the yellow vertex from amongst the
eight vertices, since it also has the lowest number of edges connected to it. Note that the
red vertex does not have the greatest number of edges connected to it, despite having the
highest BC.

Figure 4. The network underlying SIRN and SIRWN, with vertices of the highest BC in red and the
lowest BC in yellow. This is the exact same network in Figure 1b with different colorings.

5.2. SIRNBCH, SIRNBCL, SIRWNBCH and SIRWNBCL

The idea is that by choosing the vertex of the highest BC as the seed, one can simulate
the worst-case scenario for the virus spread on SIRN- and SIRWN-type simulations, as this
vertex acts as a bridge between communities and, thus, functions as a super-spreader. We
named these super-spreading simulations with a fixed seed of the highest BC as SIRNBCH
and SIRWNBCH, respectively. The algorithm for SIRN and SIRWN was utilized to simulate
SIRNBCH and SIRWNBCH, except that the seed was no longer randomly selected for each
of the 1000 simulations.

The highest BC vertex, colored red in Figure 4, was the fixed seed. Similarly, by
fixing the seed to be the yellow vertex (lowest BC) in Figure 4, we simulated the best-case
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scenario for the spread in SIRN and SIRWN simulations, named SIRNBCL and SIRWNBCL,
respectively. The same steps from the algorithm for SIRN and SIRWN was utilized to
simulate SIRNBCL and SIRWNBCL, except that the seed was fixed to be the yellow vertex.
The results of the simulations are listed in Table 4. For comparison purposes, we also
provided the results of Figure 3 in Table 5.

Table 4. I(t), R0(t) and αS of simulations with fixed seed.

Median SIRNBCH SIRNBCL SIRWNBCH SIRWNBCL

I(t) maximum I(9) = 0.8243 I(1) = 0.0068 I(11) = 0.8311 I(18) = 0.4831
Time: I(t) = 0 t =82 t =29 t =83 t =72
R0(t) maximum R0(5) = 2.1429 R0(1) = 0 R0(7) = 1.8571 R0(9) = 0.9932

Time: R0(t) < 1 after max t =11 t =0 t =13 t =0
Time: R0(t) = 0

after max t =83 t =51 t =84 t =73

αS for 1000 simulations αSIRNBCH = 0.979 αSIRNBCL = 0.528 αSIRWNBCH = 0.959 αSIRWNBCL = 0.615

Table 5. I(t), R0(t) and αS of simulations with random seed plotted in Figure 3.

Median SIR SIRN SIRWN

I(t) maximum I(8) = 0.8986 I(10) = 0.8108 I(11) =0.8041
Time: I(t) = 0 t = 81 t = 81 t =83

R0(t) maximum R0(6) = 2.7241 R0(6) = 1.8636 R0(8) =1.7399
Time: R0(t) < 1 after max t = 9 t = 12 t = 13

Time: R0(t) = 0
after max t = 82 t = 82 t = 84

αS for 1000 simulations αSIR = 0.955 αSIRN = 0.929 αSIRWN = 0.903

From Tables 4 and 5, one can see that αSIRNBCH = 0.979 and αSIRWNBCH = 0.959 were
both larger than αSIR = 0.955, even though the infections and R0 of the SIR simulations
were higher at I(8) =0.8986 and R0(6) = 2.7241. Moreover, the R0 of SIRNBCH reached
its peak at time 5, earlier than the peak of R0 in SIR at time 6. Thus, in SIRNBCH, the
network heterogeneity lead to the increase in the chance of spreading and the hastening of
peak R0. The network heterogeneity here was amplified by the targeting of the red vertex.

As for SIRWNBCH, we observed the conflicting effect of varying the infection rates
on top of amplifying network heterogeneity. The varying infection rates resulted in SIR-
WNBCH having a lower I(t), R0(t) and αS compared to SIRNBCH, but it also led
to SIRWNBCL having a higher I(t), R0(t) and αS compared to SIRNBCL. This can
be explained by the fact that the yellow vertex only had one close friend. In SIRN, the
infection rate is β for any friend, but for SIRWN, the effective infection rate modelled
by the simulation was higher than β for a close friend; therefore, the chances of the
infection spreading from yellow to her/his friend and the rest of population was higher in
SIRWNBCL than in SIRNBCL. Heterogeneity of the infection rate cancelled out the extreme
effects of the amplified network heterogeneity from the chosen fixed seed.

5.3. The Measuring of Super Spreading Events with αS

Recall from Equation (6) that αS is defined as the fraction of the simulations that
spreads when spreading behavior is quantified by R0(t) > 1. This value decreases as
network heterogeneity increases, as observed from the SIR, SIRN and SIRWN comparison
in Figure 3 and Table 5. It also decreases with an increased heterogeneity in infection rate,
as observed from contrasting SIRN and SIRWN, as well as from SIRNBCH vs. SIRWNBCH.
However, when SIRNBCL and SIRWNBCL were contrasted, αS increased due to the focus
on the single edge between yellow and his/her only friend. Therefore, αS is sensitive to
the structure of the network.
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αS is able to capture information not captured by the I(t) and R0(t). Recall that the
population size is N = 148. We highlighted that the number of edges in the underlying
network of SIRN in Figure 1a is actually 10,878 edges, since each vertex has 147 edges,
representing a connection with all other vertices due to the homogeneity assumption.
Conversely, the network underlying SIRN and SIRWN only has 666 vertices representing
friendships. Therefore, the SIR has more than 16 times the edges of SIRN, and thus,
the higher I(t) and R0(t) in Figure 3 is expected; even under these vastly different
connectivity circumstances, we have shown that αS of the SIRN and SIRWN may be larger
than the SIR when a strategically positioned seed is chosen, as demonstrated through
SIRNBCH and SIRWNBCH.

6. Discussion

The measure αS is a relatively simple measure derived from R0 to quantify the chances
of spreading and to be an indicator of potential super-spreading events. We are fully
aware that to obtain knowledge of potential super-spreader individuals using BC requires
full knowledge of the network, which may be difficult to obtain for large populations.
However, the degree (the number of contacts) can be calculated more readily without
even forming the network. Moreover, using contact-tracing data on clusters of infection, it
may be possible to estimate and extrapolate towards forming a more complete network.
Furthermore, in the Malaysian context, R0 estimated from daily data [21] within a certain
confidence range can be analyzed further to incorporate the possibility of these super-
spreading events, in addition to the focus on infections and average R0.

The results from SIRNBCH, SIRNBCL, SIRWNBCH and SIRWNBCL highlight the
competing effect of the network structure and the varying infection rates. In larger net-
works, we hypothesize that the network effect from the structure will be more profound
and possibly trump any kind of barrier provided by heterogeneity of infection rates. We
suspect that this is what happened during the Tabligh gathering, where connections were
amplified. We also noted that αSIRWNBCH = 0.959 is quite close to αSIR = 0.955, indicating
that the chances of spreading in SIRWNBCH is close to that of SIR simulations. This
suggests that results in the SIR simulations may be similar to those with competing effects
of heterogeneity. This will be a subject of future investigations.

The potential underestimation of the infection rates, which is vital for predictions and
epidemic modelling, is more profound for populations with high levels of heterogeneity,
such as Malaysia. The results in Figure 3 highlight that similar infection and recovery
rates give different I(t), R0(t) and αS for varying heterogeneity levels. Depending
on a prediction of a homogenous model incorporating infections and R0 obtained from
data, this may lead one to believe that the infection rate is lower, thus leading to inaction.
Therefore, our future direction for further understanding of Malaysian heterogeneities
through networks will include analyzing the data from clusters of infection and the census
from the Department of Statistics Malaysia [22].

Our network of N = 148 was relatively small. We note that while we expect
our results to be generalizable to larger networks, the drastic effect of the Betweenness
Centrality (BC) targeting could be the effect of the size of the network and its particular
structure. Nevertheless, in addition to being a good tool for highlighting heterogeneity,
it is also a realistic number of individuals to be kept in a working ‘bubble’. Monitoring
connections and contact within this ‘bubble’ is a good strategy to safely reopen [10] certain
parts of the economy. A bubble approach has already been implemented by some industries
and institutions, where teams within departments only attend work on certain prescribed
days or specific hours. We hope to motivate the analysis of information collected from
these approaches using networks.

Especially in the initial stages of the pandemic, contact tracing has played a crucial
role in the Malaysian response. The implementation of thorough questioning and isolating
all possible contact, even before symptoms are manifested, can be effective. WE suspect
that, the contact network obtained from the contact tracing information is the reason why
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the strategy of contact tracing and isolation is highly effective in reducing the number of
cases. Moreover, the natural heterogeneity of Malaysian communities provides a semi-
protection from some infections. Unfortunately, the network effect of super-spreading
events, connecting individuals from diverse communities and localities, is able to break the
natural barrier created by the communities. Social distancing through MCO can be viewed
as an effort to break the chain of infection through the network.

Malaysia has a unique social interaction pattern. Moreover, social interactions do
vary from country to country, as it is largely influenced by the culture and tradition for the
specific country, such as bowing in Japan and kissing on the cheek in Turkey. Therefore,
incorporating the social interactions and heterogeneity when modelling the spread of
COVID-19 is crucial to capturing human-to-human interaction. The construction of data-
driven population-based contact networks will enable the quantification of various traits
in the Malaysian spread of diseases, as well as evaluation of past intervention strategies,
like the MCO, and inform future strategies and their consequences. This knowledge will
empower the authorities to make evidence-based decisions related to disease mitigation
and suppression strategies, as well as vaccinations and surveillance of future threats. This
would all be in an effort to reduce the pressure on the health system capacity and enable a
sustainable approach to the re-opening of the economy in the future.

7. Conclusions

In this paper, we highlighted that quantifying heterogeneity and super-spreaders is
very important to predict a more realistic epidemic spread. Consequently, we defined a
unifying measure of αS that quantifies spreading (thus super-spreading) using the well-
established and widely adopted concept of R0. We simulated the spread of COVID-19
with a varying degree of homogeneity on a real Malaysian contact network. Infection
and recovery rates were estimated from recent data. In the first part, we simulated the
spread of the virus in the event of just one random individual being infected. We simulated
homogenous spreads (SIR), spreads on the network (SIRN) and spreads on the weighted
network (SIRWN). The three basic measures taken into consideration, I(t), R0(t) and αS,
highlighted that heterogeneity serves as a natural curve-flattening mechanism, and thus,
it may lead to an underestimation of infection rate and a false sense of security. For the
second part, we simulated the spread of one strategically chosen individual being infected
to highlight the worst-case scenario and the best-case scenario for SIRN and SIRWN. The
worst-case scenario was simulated by infecting the individual with the highest Betweenness
Centrality (SIRNBCH and SIRWNBCH), and the best-case scenario was simulated by in-
fecting the individual with the lowest Betweenness Centrality (SIRNBCL and SIRWNBCL).
The results in Tables 4 and 5 highlight that for the worst-case scenario simulations, whilst
I(t) and R0(t) were lower than SIR simulations, the chances of spreading, as quantified
by αS, were higher, highlighting that αS is a good measure of a super-spreading event. The
median plot of SIRNBCL was almost completely flat, with αSIRNBCL = 0.528. SIRWNBCH
and SIRWNBCL were both less extreme when compared to SIRNBCH and SIRNBCL due
to an extra element of heterogeneity affecting the infection rates. In a nutshell, generally,
heterogeneity serves as a natural barrier against the spread of the virus, but it also allows
for super spreading to occur when central individuals are infected; thus, policies should
also take into account probabilities of super-spreading events, in addition to observing
the number of infections and R0. We particularly want to motivate this in the Malaysian
context, so that the population data collected through the census and the contact tracing
data collected during COVID-19 will be integrated into a more heterogeneous model. This
model can hopefully serve as a toolkit for public health decision-makers to utilize lessons
from the past, make decisions in the present and plan surveillance, as well as intervention,
for the future.
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