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Abstract: Mobile Computing (MC) is a relatively new concept in the world of distributed computing
that is rapidly gaining traction. Due to the dynamic nature of mobility and the limited bandwidth
available on wireless networks, this new computing environment for mobile devices presents sig-
nificant challenges in terms of fault-tolerant system development. As a consequence, traditional
fault-tolerance techniques are inherently inapplicable to these systems. External circumstances often
expose mobile systems to failures in communication or data storage. In this article, a quantum
game theory-based recovery model is proposed in the case of a mobile host’s failure. Several of the
state-of-the-art recovery protocols are selected and analyzed in order to identify the most important
variables influencing the recovery mechanism, such as the number of processes, the time needed to
send messages, and the number of messages logged-in time. Quantum game theory is then adapted
to select the optimal recovery method for the given environment variables using the proposed utility
matrix of three players. Game theory is the study of mathematical models of situations in which
intelligent rational decision-makers face conflicting interests (alternative recovery procedures). The
purpose of this study is to present an adaptive algorithm based on quantum game theory for selecting
the most efficient context-aware computing recovery procedure. The transition from a classical to a
quantum domain is accomplished in the proposed model by treating strategies as a Hilbert space
rather than a discrete set and then allowing for the existence of linear superpositions between classical
strategies; this naturally increases the number of possible strategic choices available to each player
from a numerable to a continuous set. Numerical data are provided to demonstrate feasibility.

Keywords: mobile computing; quantum game theory; decision making; mobile database recovery

1. Introduction

The mobile database system (MDS) is a client/server database management system
provided via the internet that allows for the mobility of the whole processing environment.
While the database itself may be static and spread across many sites, data processing nodes
such as laptops, PDAs, and cell phones may be mobile and access required data from
any place and at any time. A mobile host (MH) operating a client-server application may
rapidly fail due to limited network resources. Client-server application failure recovery
needs significant attention due to the scope of its usage. When applied to the mobile
computing environment, traditional recovery methods such as checkpointing, logging, and
rollback recovery suffer from many limitations [1–5].

Using checkpoint and message logging techniques, the mobile application may roll
back to the last reliably stored state and resume execution with recovery assurances. Exist-
ing approaches operate under the assumption that MH disk storage is insecure and store
checkpoint and log data at base stations [6–9]. The process for a mobile checkpoint may be
coordinated or uncoordinated. To maintain a consistent and recoverable global checkpoint,
distributed applications need MHs to coordinate their local checkpoints. Because the
MH can independently checkpoint its local state, uncoordinated protocols are preferred
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for mobile applications [7–9]. Recovery methods that are not coordinated are either non-
logging or logging [4,5]. No-logging MH must generate a new checkpoint whenever the
application’s state changes. The logging method periodically generates checkpoints and
records all write events between them. When an MH attempts to recover from a failure, it
makes use of the checkpoint and any previously stored log data. The survey [1,9] compared
performance with and without logging.

Numerous factors have an effect on recovery [1,3]: (1) the failure of the MH, for
example, due to a bad wireless connection or inadequate battery capacity, is entirely
random. If further failures occur, the transaction must roll back whenever MH recovers
from a failure, increasing the total execution duration of the transaction; (2) Log Size:
data transmission consumes twice the amount of energy required for data receipt. As a
result, only important write events should be recorded to maintain a short log; (3) Memory
Constraints: the base station controller (BSC) may need a significant amount of memory in
order to store the log file for each MH. Calculating the average memory need for logs of
different lengths and recovery techniques is essential; (4) Time required for recovery: the
time required to recover a process after a failure varies according to the recovery method
used and the technology used to capture write events; (5) Cost of log retrieval: the cost of
reclaiming log information after the failure of a transaction is related to the amount of log
dispersion. When a log is dispersed over several places, the costs of retrieval and recovery
increase [10–13].

At present, academics are addressing wireless communication problems using game-
theoretic methods [14,15]. In comparison to more conventional approaches, game theory
offers a number of benefits. Game theory is concerned with a range of problems involving
the strategic interaction of many individuals with conflicting goals in a competition. As a
consequence, game theory is an inherently useful tool for describing the rational behavior
of many players. Second, game theory may be utilized to model agent-agent interactions,
to analyze equilibrium, and to develop distributed algorithms. Additionally, game theory
is capable of analyzing hundreds of potential outcomes prior to determining the best course
of action.

The Nash Equilibrium (NE) is the state of affairs in which no player can unilaterally
enhance their reward, while the Pareto Optimum (PO) is the state of affairs in which no
player can unilaterally increase their reward without impairing the advantage of another
player. Both are optimal for the individual player, but the latter is usually preferable for
the whole team [14,15].Quantum game theory has developed as a paradigm for analyzing
the competitive flow of quantum information in the recent past [16]. The phrase “quantum
game”refers to novel applications of quantum information processing, such as competitive
agent interactions. In contrast to conventional communication, applications may be created
based on the interactions of entangled agents. Competitive von Neumann games, such as
quantum auctions and voting, are enabled by entangled resources. These are in contrast
to cooperative games, which allow agents to interact directly or indirectly via a third
party. Entanglement is a quantum resource that may be utilized to optimize known game-
theoretic equilibrium outcomes [16–19]. Figure 1 depicts the classical and quantum versions
of a four-player game. Although players in the quantum version use an entangled state
as a resource, neither version allows for player communication. The bar graph depicts
the equilibrium payoffs for the minority game, while the quantum case’s payoffs were
determined experimentally using our technology.

Motivation and Contribution

In most mobile application recovery methods, environmental factors were not taken
into account as potential influencers on the recovery process. As a result, using recov-
ery methods in the real world is challenging [20]. The goal is to create a strategy that
optimizes achievement by using the most effective recovery techniques available in light
of the present circumstances. We selected quantum game theory over conflict analysis
or interactive decision theory because it enables us to compare the recovery techniques’
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available alternatives. The suggested model makes a significant contribution by enabling
effective MDS recovery treatment by using a new smart strategy centered on players (vari-
ous recovery procedures) inside the quantum game theory paradigm as a decision-maker
for choosing the most efficient recovery process. Because the critical problem is not to
choose one of the well-known recovery techniques, but to choose the strategy that is most
appropriate in light of the changes made by the operating environment, which is often
vague and unpredictable. In this respect, the present study will guarantee that the optimal
approach to recovery through the quantum game theory model is selected based on its
key parameters. This research examines many different types of recovery methods. These
methods show the effect of different factors on the protocol’s complicated efficiency. The
suggested model demonstrates a high degree of adaptability via the use of cutting-edge
recovery methods capable of substantially increasing performance.
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To our knowledge, this is the first time that quantum game theory has been used
to simulate recovery in a mobile database system. This work extends our conference
paper [21] significantly by using quantum game theory rather than classical game theory
to successfully deal with NE in order to increase the payoffs of well-known game-theoretic
equilibrium. Additionally, three recovery algorithms were employed as players in the
quantum game theory, rather than two in our earlier work, to allow a greater number of
algorithms to join the competition, which enhances decision-making effectiveness under
varying environmental circumstances. The transition from two-player to multiplayer
games unquestionably results in more dynamic problem solving, and this mode is the most
accurate representation of reality. Single-game dynamics are generally constrained, and
trajectories may show a variety of limiting characteristics. When additional participants
are involved, both qualitative and statistical dynamics may change. Analytic techniques
are used to assess the suggested model’s performance, and the results are given later in
the article.
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A basic notion in computer science, especially in the theoretical realm, is symmetry.
Symmetry is crucial for algorithm design and analysis. The use of symmetry simplifies and
speeds up probabilistic analysis of stochastic algorithms. With the symmetry idea at its
core, the suggested model effectively deals with random parameter probabilities, as shown
in the development of game theory’s utilization functions.

In addition to this introduction, the following sections are included: Section 2 dis-
cusses current state-of-the-art mobile database recovery strategies, Section 3 introduces the
proposed mobile database recovery model, Section 4 describes the criteria for evaluating
the proposed mobile database recovery based on game theory and presents the results, and
Section 5 concludes and suggests directions for future work.

2. State-of-the-Art

In recent years, mobile application failure recovery has grown in popularity. The
suggested solutions use checkpointing, logging, or a combination of the two, while tak-
ing into account the inherent constraints of the mobile computing environment. Much
research is based on a distributed uncoordinated checkpointing method, in which several
MHs may achieve a globally consistent checkpoint without depending on coordination
messages. Others presented a checkpointing-only method, which offers globally consistent
checkpoints without requiring additional communications but is unique in that it uses time
to synchronize checkpoint creation.

The authors of [22] described a technique for mobile database applications to recover
from checkpointing and logging failures depending on mobility. Current methods use peri-
odic checkpoints that are not dependent on user mobility. This system initiates checkpoints
only after a certain number of mobility handoffs has occurred. The failure, log arrival,
and mobility rates of the mobile host determine the optimum threshold. This enables
modification of the checkpointing rate on a per-user basis. Additionally, depending on the
checkpoint frequency, the last checkpoint may be situated a considerable distance from
the mobile support station (MSS). Additionally, a significant number of logs across several
MSSs may be scattered, resulting in a lengthy recovery time.

The authors of [23] suggested a technique for recovering applications in a mobile com-
puting environment by combining movement-based checkpoints with message recording.
A node’s adaptability is used to decide if a checkpoint should be taken. This method was
developed using a variety of factors, including the number of MH registrations in an area,
the number of regions, and the number of handoffs. This approach is especially beneficial
in large networks with many areas. In contrast, operating in restricted areas may result in
extra expenses.

The authors of [24] developed a rollback recovery method that prioritized separate
checkpoints and message recording. The algorithm is unique in that it manages message
logs and checkpoints through mobile agents. Additionally, if a mobile node travels a great
distance from its most recent checkpoint, the agents are able to move the checkpoint and
message logs stored in distant mobile service stations. Thus, the time needed to retrieve
a mobile node would never exceed a specified threshold. It is feasible to keep just one
checkpoint in permanent storage by recording messages. The main advantage of this study
is the modest size of the message log, which cannot be very large owing to the network’s
low message substitution rate. Additionally, if a process interacts often, it may decrease its
checkpointing interval. Nonetheless, this method occurs in a small number of situations,
resulting in increased network activity during recovery. Specifically, if the length of the
mobility profile exceeds the number of different mobile service stations at any point, the
logs must be consolidated into a single place.

The authors in [25] prepared a proposal for a contemporary checkpointing method that
is suitable for mobile computing systems. This method is characterized by its dependability
and efficiency in terms of time-space overhead associated with checkpointing and normal
application execution. The work presented in [26] suggested a log management and low-
latency no-blocking checkpointing system that utilizes a mobile-agent-based architecture
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to reduce recovery time. By decreasing the amount of messages sent, this protocol reduced
recovery time. On the contrary, particularly when many agents are needed, it may result in
an increase in complexity, which may absorb some of the extra execution costs.

The authors of [27] developed a log management strategy for mobile computing
systems that substantially lowers the total cost of failure recovery when compared to
existing lazy and pessimistic approaches. Additionally, their approach enables recovery
from a base station different than the one where it failed, lowering handoff costs, log
replication costs, and the time required to recover from failure. The main benefit of their
log management method is its ease of implementation, whereas the primary drawback
is likely the recovery time if the home agent is situated a great distance from the mobile
unit [28,29]. The authors of [30] described a recovery technique that is database and mobile
device synchronization-dependent. As a consequence, the replication process guarantees
that all organizations have consistent data. One drawback of this method is that, although
it utilizes hash functions, it does not guarantee data integrity during transmission to the
server, since both ends store the hash values in a database table.

The Need to Extend the Related Work

According to the review, the following are the current areas of research: (1) The
majority of recovery studies employed a variety of techniques, including log manage-
ment, checkpointing, movement-based checkpointing, and an agent-based logging scheme;
(2) Because these techniques are so dissimilar, one cannot be used in place of another;
this means that each algorithm has a distinct parameter set and different assumptions;
(3) Despite the fact that some plans tried to merge several methods into a single contribu-
tion (hybrid method), they were damaged by the difficulties of selecting the optimal fusion
from this pool of options. As a consequence, recovery costs may be high and the recovery
mechanism may be excessively complicated; (4) The majority of schemes did not include
environmental variables as influencing elements in the recovery process; and (5) As the
demand for network applications grows, researchers are continuously developing new
ways to solve the issue of high mobility or network connection loss owing to a variety of
new or changing conditions. Thus, more fault-tolerant methods are needed to guarantee
the continued functioning of mobile devices. As a consequence of the above, the use of
recovery algorithms is constrained in a realistic manner. It is essential to design a plan that
maximizes success via the selection of the most suitable recovery methods for the present
situation. We selected quantum game theory over conflict analysis or interactive decision
theory, as it enables us to compare the recovery possibilities available.

3. Quantum Game-Based Recovery Model
3.1. Mobile System Architecture

In a typical MDS design, a small database fragment is created from the main database
on the MH. This design is meant to handle the accessibility limitations alleviated by MHs
and mobile satellite services (MSS). If the MH is present in the cell serviced by the MSS, it
may interact directly with another MH in the vicinity. The MH may freely move between
cells, which each include a base station (BS) and a large number of MHs. Additionally, the
BSs configured the stations to act as a wireless gateway, allowing them to communicate
with the MHs and send data via the wireless network. Wireless communication is possible
between the MHs and the BS, but not directly with the database server [11,31]. Figure 2
depicts the mobile system’s architecture.

3.2. Recovery Modeling Using Quantum Game

The suggested method differs from prior MDS recovery attempts in that it takes
into account a variety of important variables in the mobile environment during hand-
offs or service failures, which change depending on the situation, while conventional
recovery algorithms are predicated on specific assumptions about the environment and
operate accordingly.
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The primary reasons for extending our prior work’s two-player game to three players
in this article are as follows: (1) reliance on a limited number of algorithms lowers the
possibility of making good decisions, since it is possible for one of the algorithms to perma-
nently dominate decision-making; (2) Allowing a greater number of algorithms to join the
competition increases the efficacy of decision-making under a variety of environmental
circumstances; (3) With a rise in the number of players, different degrees of complexity and
mathematical calculations were used to address the recovery issue, resulting in enhanced
capabilities for the proposed task; and (4) Several algorithms performed poorly in the
present study, despite their success in earlier work. Thus, when the performance of certain
algorithms deteriorated, they were eliminated from the competition; nevertheless, the
entrance of others with superior results resulted in a substantial increase in performance,
which is the purpose of presenting this study. The suggested model’s architecture is shown
in Figure 3. The following table (Table 1) summarizes the game assumptions utilized in the
recovery modeling process.

Table 1. Game Assumptions.

Game Parameter

Number of Players Three Players
Game Type Non Cooperative (No interaction between players)
Game Form Strategic form
Evolutionary Game Theory No
Strategy type Pure not Mixed
Payoff Functions TIME, Memory, Recovery Done Probability
The Winning Algorithm The highest NE(Quantum Nash) in the reward matrix

Cooperative game theory (CGT) and non-cooperative game theory (NCGT) are two
subfields of game theory. CGT elucidates how agents compete and cooperate to generate
and capture value in unstructured interactions. NCGT simulates agents’ activities, max-
imizing their usefulness based on a comprehensive description of each agent’s motions
and information. Cooperative games are ones in which players are convinced to follow
a certain strategy via player dialogue and agreement. A strategy is a detailed plan of
action that a player will follow in response to a variety of situations that may occur over
the course of the game. On the other hand, non-cooperative games are ones in which
participants select their own strategy of profit maximization. The main distinguishing
feature is the absence of external authority to establish norms guaranteeing cooperative
behavior. Without external authority (such as contract law), participants are unable to form
coalitions and must compete alone [14,15].
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Non-cooperative games are often studied by trying to predict players’ tactics and
payoffs, as well as by finding Nash equilibria. Each player in NE is assumed to be aware
of the other players’ equilibrium tactics, and no one benefits from merely changing their
strategy. If each player has chosen a strategy–a collection of actions based on previous game
events—and no person can increase their expected payoff by changing their strategy while
the other players retain theirs, then the current set of strategy choices characterizes NE.

The suggested game is modeled by static games with complete information, in which
players simultaneously choose strategies and get rewards depending on the combination
of actions taken. These types of games may be formalized using a normal-form repre-
sentation [14]. This is a simple decision issue in which both players choose their actions
concurrently (static game) and are rewarded for their mutual choices. Additionally, each
player is fully aware of the values associated with his adversary’s reward functions (com-
plete information). The interrelationships of game theory are shown in Figure 4; for more
information, see [14,15].
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3.2.1. Recovery Algorithms and Its Parameters

To demonstrate the technical importance of the system recovery model in the MDS,
we evaluated the most widely used MD recovery algorithms in order to decide which
methods should be explored further. We classified the recoverable algorithms in this situ-
ation according to their operation or features. As stated in [9–13], various groups differ
in their approach to recovery. For our proposal, we selected three recovery protocols: log
monitoring (as player 1) [27], mobile agent (as player 2) [24], and a hybrid method that
combined movement-based check-pointing and message recording as a (as player 3) [22].
Because the real problem is not whether to adopt one of the well-known recovery tech-
niques, but rather which strategy is most appropriate in light of the changes imposed by
the operational environment, which is often unclear and changing. In this regard, the
current research will ensure that the optimal recovery method is selected via the use of
game theory and its essential variables.
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To compete against other players, each player must create a set of strategies. To
develop these methods, feature analysis and extraction are used for each chosen recovery
procedure in order to determine the treatment’s most strongest characteristics. Thus, in
game theory, each selected protocol is defined by a player, and the way each protocol’s
variable is utilized determines the player’s strategies. For instance, the first protocol
(player 1) considered a variety of factors, including the log arrival rate, the handoff rate,
the average log size, and the mobility rate. To summarize, the first player method involves
retrieving the log file that was stored in the BS before to the failure, moving it to a new
location linked to another BS, and updating the MH. The second protocol (player 2) makes
extensive use of variables, including the number of processes in the checkpoint, a handoff
threshold, and the length of the log. The second approach reduced recovery time by using
a framework based on mobile agents. Here is a collection of processes in a list format. The
home agent’s list is included in the MH. The mobile agent traveled beside the MH and
relayed information. The third process takes into account a variety of factors, including
the total number of registrations in the area, the total number of regions, and the overall
number of hand-offs. The work environment is split into several zones, and the checkpoint
is only used once when MH enters and exits the region. For further information on how
these protocols work, see [13–27].

It should be emphasized that any number of strategies for each player (protocol) may
be produced by conducting any number of trials with various parameter values, although
this increases the model’s complexity. As a result, we believe it is important to choose
several methods that reflect varying degrees of performance that may be depended upon
in decision-making. To create the parameters for the necessary recovery algorithms using
game theory as a decision-making method, we first apply the chosen protocols to the
chosen key variables on which each protocol is reliant. Each algorithm is used for real
database transactions in order to assess each player’s strategy. A package is assessed that
has an objective function for the total cost of recovery, which is computed differently for
each method. In game theory, we build the payoff matrix for each protocol output value
based on the previous stages. These outcomes are referred to as the utility or reward of
each player. These payoffs or benefits are used to evaluate a player’s level of satisfaction in
a conflicting scenario.

In general, game theory may be summarized as follows: (1) a set of players (the
negotiation algorithms chosen); (2) a pool of strategies for each player (the strategies take
into account the assumed values of significant coefficients in each protocol, as well as
possible environmental changes); and (3) the benefits or payoffs (utility) to any player
for any possible list of the players’ chosen strategies. It should be noted here that any
number of strategies can be generated for each player (protocol) by running any number
of experiments using different parameter values, but this of course increases the model’s
complexity. Therefore, we consider it best to choose a number of strategies to express
different degrees of performance levels that can be relied upon in decision-making. In the
suggested game-based recovery model, the assumption is that each player utilizes pure
strategy and not a mixed one, as each strategy handles specific protocol parameters, and
these parameters differ from one protocol to another. There are no general parameters used
for all protocols. For pure strategies, it is far easier to obtain multiple solutions (of course if
they exist) for the NE, and then select the best fitting one.

3.2.2. Build Knowledge Base

The suggested recovery model is predicated on the establishment of a knowledge
base after the pre-implementation of each chosen recovery procedure in various simulated
settings. The implementation knowledge base is created just once, and it is used to choose
the optimal protocol based on the reward matrix and dominant equilibrium method. The
decision is done here on the basis of the integration of three utility functions that serve as
performance and evaluation benchmarks for the candidate protocols.
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3.2.3. Build Payoff Matrix

In the proposed model’s game, see Table 2, a finite collection of players N = 3 was
used. Three players are allocated P1, P2, and P3 in the three-player game. P1 selects pure
strategies from S1, P2 selects pure strategies from S2, and P3 selects pure strategies from S3.
If P1 chooses the pure strategy i, P2 chooses j, and P3 chooses k, then the reward to P1 is
aijk, P2 chooses bijk, and P3 chooses cijk. Define the S1 × S2 × S3 payoff “cubes” A, B, and
C as [32,33]:

A =
[

aijk

]
∈ RS1×S2×S3,B =

[
bijk

]
∈ RS1×S2×S3, C =

[
cijk

]
∈ RS1×S2×S3 (1)

We create a matrix for each of player 3’s actions (strategies); accordingly, player 1
selects a row, player 2 selects a column, and player 3 selects a table. Table 3 illustrates the
bi-matrix for a three-player game with its payoff. As a result, each third player strategy
k is represented separately in a matrix together with its associated reward in terms of
player 1 and player 2’s strategies. Here, a111 represents the payoff value for player 1’s
plan or strategy given the return function u1(s1, t1, c1) if (s1, t1, c1) is selected, b111 denotes
the payoff value for player 2’s strategy provided the reward function u2(s1, t1, c1) if
(s1, t1, c1) is chosen, and c111 denotes the payoff value for player 3’s strategy with payoff
function u3(s1, t1, c1). The proposed recovery model’s game is a non-cooperative game
in which all participants choose their own tactics in order to maximize their profit [15,
32,33]. These kinds of games are amenable to formalization via the use of normal-form
representations [34]. In a normal-form game, player i’s strategy S′′i strictly trumps player
i’s strategy S′i if and only if:

Ui
(
S′′i , S−i

)
≥ Ui

(
S′i , S−i

)
(2)

for every list of S−i of the other players that represents all players’ strategies except player i.

Table 2. The symbols used for description game theory model.

Symbol Meaning

G Quantum game model
N Number of players
i Game player
S Player’s strategy
U Payoff function or utility
Bi Best response for a player i

Table 3. The bi-matrix for three players’ game.

Player
Player 3 Hybrid Method (Strategy k)

Player 2 Mobile Agent Method

Player 1
Log Management Method

Strategy t1 t2 . . . . th

s1 (a111, b111, c11k) (a121, b121, c12k) . . . . (a1h1, b1h1, c1hk)
s2 (a211, b211, c21k) (a221, b221, c22k) . . . . (a2h1, b2h1, c2hk)

. . . . . . . . . . . . . . . .
sm (am11, bm11, cm1k) (am21, bm21, cm2k) . . . . (amh1, bmh1, cmhk)

Calculating the payoff in a game is complicated since it is dependent on the actions of
other players. As a result, the strategy chosen by one player has an effect on the gain value
of the other player. Three utility functions are included in this proposal as performance
and assessment benchmarks for the candidate protocols. The functions are as follows: the
amount of time consumed by the protocol during operation (TIMEi) for each strategy, the
amount of memory consumed during operation (MEMOi) for each strategy, and the rate



Symmetry 2021, 13, 1984 11 of 19

expressing the percentage of recovery work completed (“recovery completion”) for each
strategy (DONE_PROBi). The point of this step is to determine the reward that the player
will gain if its strategy wins according to the mobile environmental conditions. Since all
players are assumed to be rational, they make their preferred decisions that maximize their
rewards (payoff). Consequently, one player’s strategy dominants another player’s strategy
if it always provides a greater payoff to that player regardless of the strategy played by the
opposing player. Therefore, it is very important to determine the method of calculating the
return for each player’s strategy. Therefore, the aim of these functions is to evaluate every
strategy by calculating an index (score) that represents its performance. Every function
contains degrees to distinguish the better performance of each strategy with high degrees
against the lower performance of all the utility functions.

After analyzing and executing the protocols, it was determined that each algorithm
operates within a time range of 0 to 5 s, implying that the value of the return function from
the time measurement would be distributed as follows:

i f



C1,i ∈ ]0.1, 0] ui = 6
C1,i ∈ ]0.5, 0.1] ui = 4
C1,i ∈ ]0.9, 0.5] ui = 2
C1,i ∈ ]1, 0.9] ui = 0
C1,i ∈ ]2, 1] ui = −2
C1,i ∈ ]5, 2] ui = −4

, (3)

where C1,i = TIMEi is the time required to execute a strategy. C2,i = MEMOi, in the same
context, is the amount of memory used by each protocol for a given strategy. The memory
used during execution is expected to be between 0 and 4000 KB; therefore, the payoff values
for the memory consumed by any strategy will be as follows:

i f



C2,i ∈ ]500, 0] ui = 6
C2,i ∈ ]1000, 500] ui = 4

C2,i ∈ ]1500, 1000] ui = 2
C2,i ∈ ]2000, 1500] ui = 0
C2,i ∈ ]2500, 2000] ui = −2
C2,i ∈ ]4000, 2500] ui = −4

, (4)

Finally, when calculating the completion level of the recovery process,
C3,i = DONE_PROBi, where DONE_PROBi is utilized to determine if recovery occurred
in accordance with the handoff rates threshold. As a result, the value of the possible return
measure for this work ranges from 0% to 100% and is distributed as follows:

i f


C3,i ∈ ]20%, 0] ui = 1

C3,i ∈ ]40%, 20%] ui = 2
C3,i ∈ ]60%, 40%] ui = 3
C3,i ∈ ]80%, 60%] ui = 4
C3,i ∈ ]100%, 80%] ui = 5

(5)

3.2.4. Quantum Nash Equilibrium for Selection

Thus, the player’s overall gain in this game is equal to the sum of the reward values
associated with the variables (C1,i, C2,i, C3,i). The ultimate solution may be obtained in one
of two ways: (1) by achieving a single and exclusive dominant equilibrium method in the
game, or (2) by using NE [15]. The strategies produced via the first method, dubbed iterated
elimination of strictly dominated strategies, reflect the optimal actions that each player
might rationally take, and therefore comprise the game’s (rational) solution. Regrettably,
this alluring approach yields no prediction at all for some kinds of situations in which
no strategy survives the elimination phase. In this situation, it is unclear which course of
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action would be deemed reasonable and best. This is a unique game in which there are no
absolutely dominant strategies.

NE is a game theory concept that determines the optimal result in a non-cooperative
game in which each player has little incentive to change his or her initial strategy. Under
the NE, a player wins nothing by departing from their initial strategy, guaranteeing that
the strategies of the other players stay constant as well. A game may include several NE
states or none at all [35]. Unfortunately, the majority of games lack dominating strategies.
Thus, if there are many solutions (more than one NE) to a given issue, the alternative
is to find another handling mechanism. To address this issue, all values in the payoff
matrix are subject to an addition or subtraction mechanism based on one of the critical
factors, such as execution time, so that more points may be awarded to the quickest
element and vice versa (normalization and reduction phase). Finally, the updated payoff
matrix is utilized to identify a more optimal solution (Pure Nash) that matches the various
environmental factors.

Since all players are assumed to be rational, they make their preferred decisions which
maximize their rewards. Consequently, one strategy for a player is dominant over another
strategy for another player if it always provides a greater payoff to that player regardless of
the strategy played by the opposing player. Therefore, it is very important to determine the
method of calculating the return for each strategy for each player. A particular algorithm is
selected when its strategy achieves the highest NE in the reward matrix.

In contrast to the classical situation, where the theory is incapable of making any
unique prediction, the application of quantum formalism will show a new property: the
emergence in entangled strategies of a NE reflecting the unique solution to the game. In the
quantum version of this three-player game, players execute their strategies by applying the
identity operators they possess with probability p, q, and r to the starting quantum state,
respectively. The three players apply the inversion operator σ with probability (1-p), (1-q),
and (1-r). If ρin in is the density matrix corresponding to the initial quantum state, then the
final state after players have implemented their strategies is [17,18].

ρ f in = ∑
U=I,σ

P(HA)P(HB)P(HC)HA ⊗ HB ⊗ HC ρin H†
A ⊗ H†

B ⊗ H†
C (6)

where either I or σ may be used as the unitary and Hermitian operator H. P(HA), P(HB),
and P(HC) are the probability that players A, B, and C, respectively, will apply the operator
H to the initial state. ρin is a convex combination of all quantum processes. Assume the
arbitrator creates the following pure initial quantum state with three qubits (two strategies
for each player for simplicity):

|ψin〉 = ∑
i,j,k=1,2

Cijk|ijk〉

∑
i,j,k=1,2

∣∣∣Cijk

∣∣∣ijk∣∣∣2 = 1
(7)

where the quantum state’s eight basis vectors are |ijk〉 for i, j, and k equal to one and two.
The starting state may be thought of as a global state (in a (2 ⊗ 2 ⊗ 2)-dimensional Hilbert
space) of three quantum two-state systems or ‘qubits’. The unitary operators I and σ are
used by the player with conventional probability ρin included into its strategic.

As a consequence, rather of considering just a discrete and finite set of strategies,
we will now consider their linear superposition by endowing the strategic space with
the formal structure of a Hilbert space. As a result, pure quantum strategies may be
constructed, which are characterized as linear combinations of pure classical strategies
with complex coefficients. This must be interpreted as the probability of using a single
pure classical method. It is worth noting that this interpretation of pure quantum strategies
is identical to the classical concept of a mixed strategy introduced previously, because we
are currently considering a restricted class of games (static games), which lacks typical
quantum interference effects between amplitudes [36,37].
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4. Discussion
4.1. Simulation Setup

The simulation is designed to evaluate the proposed model for MD recovery based
on game theory. In this respect, we implemented the prototype NS2 program using two
software packages: Matlab and NS2. By modeling discrete occurrences, the NS2 simulation
software enables developers to improve their businesses in real time. Additionally, it
supports a variety of protocols such as TCP, routing, and multicast across wired and
wireless networks and runs on a variety of platforms including Linux and Windows [38,39].
As a result, we use this software to implement the stage of collecting data on the work
environment at various levels in order to mimic changes in the work environment. Then,
Matlab software is used to construct a game theory in order to assess various recovery
procedures by inputting the output values from the simulation stage in order to find the
optimal decision. For our solution, we used mobile log files of various sizes that included
the process data that each method would obtain.

The settings for the NS2 simulation are summarized in Table 4. The MAC layer
protocol of IEEE 802.11 for wireless large area networks is utilized here. A movement file
provides the mobile client node’s motions. The mobile client node transmission range
is 250 m. Each cell has one base station. A random waypoint (RWP) model determines
the starting node position and movement. The RWP model is based on random locations,
speeds, and halt durations. The prototype was built in modules and tested on a Dell
Inspiron N5110 laptop from Dell Computer Corporation in Texas. Processor: Intel(R)
Core(TM) i5–2410M, 4.00 GB RAM, Windows 7 64–bit. The proposed model’s efficiency is
assessed using execution time and recovery probability. See [24,27] for more details. The
results are the average of several repeated experiments for different initial location and
movements of the nodes due to the using of RWP model. The most suitable values for
the collection of protocol’s factors (strategies) were picked from the literature, based on
the assessment of selected recovery protocols, to represent the protocol’s performance in a
variety of settings.

4.2. Simulation Results
4.2.1. Experiment One

Aim: The first set of experiments was designed to evaluate the performance of the
suggested recovery model in terms of actual execution time as a function of log file size. In
general, the cost of recovery is very low for any scheme, since the full log information is
stored at the current base station. When the MH travels a great distance from the initial
BS, the difficulty of the recovery method used to locate and transmit the log file rises.
Increasing the file size results in an increase in the transmission cost.

Main Results: A As shown in Table 5, the suggested game theory-based recovery
model delivers a faster execution time while increasing file size in a variety of mobile
settings, depending on the simulation’s changing nature.

Discussion: One reason for these results is that, since the proposed model is based
on a knowledge base that was developed after the pre-implementation of each chosen
recovery protocol in various simulated settings, it chooses the best appropriate recovery
protocol for the present circumstance (variation of log file size). As a result, the proposed
model requires less time to execute for numerous simulation runs.

4.2.2. Experiment Two

Aim: The second set of experiments evaluated the suggested recovery model’s per-
formance as a function of mobility rate in terms of actual execution time. The suggested
recovery model is based on the creation of a knowledge base that is created once and used
to choose the best suitable procedure based on the reward matrix and dominant equilibrium
method. The decision is done here on the basis of the integration of three utility functions
that serve as performance and evaluation benchmarks for the candidate protocols.
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Table 4. Simulation Parameters.

Variable Meaning

Channel type Channel/Wireless Channel
MAC type Mac/802_11

Radio-propagation model Propagation/Two Ray Ground
Network interface type Phy/wireless Phy

Interface queue type queue/drop tail/priqueue
Antenna model Antenna/Omni Antenna
Link layer type LL

Routing protocol Destination-Sequenced Distance Vector (DSDV)
Coordinate of topology 670 m × 670 m

Max packet in ifq 500
Time to stop simulation 250

Table 5. Execution time (Seconds) as a function of log file size.

Algorithm/Log Size 5 KB 30 KB 60 KB 90 KB 120 KB 150 KB

Log Management 1 1.3 1.8 2.5 3.3 3.5
Mobile Agent 1.1 1.5 1.9 2.4 3 3.15

Hybrid Method 1.2 1.6 1.7 2.3 2.8 3
Proposed Model 1 1.4 1.8 2.3 2.7 2.75

Main Results: Figure 5 shows that when mobility rate rises, recovery cost increases. In
addition, the current base station has all the log information, lowering the recovery cost.
The recovery cost is greater when the mobile node is recovered in the same base station.

Discussion: The results in Figure 5 show that despite their success in limited regions,
log management and agent-based methods usually suffer from increased implementation
time in the long term. On the contrary, the hybrid approach may be more successful in a
vast environment than in a small area since it only requires a checkpoint once before MH
moves across regions, thus saving time.
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4.2.3. Experiment Three

Aim: The final set of experiments examined the connection between the likelihood of
recovery and the handoff threshold. There is a favorable correlation between increasing
the handoff rate and the likelihood of completing the recovery process. Handoff involves
moving a MS from one base station to another. Algorithms with set parameters do not work
well in varying system configurations. Handoff algorithms should take into consideration
the communication system’s peculiarities. If the preparation time of rapid handoff is longer
than the WLAN sojourn time linked to mobile node speed, the handoff fails and packets
are lost. If the mobile node speed is too slow, handoffs are initiated too late, reducing
WLAN service duration. The handoff cost comprises the checkpoint status, message log,
and acknowledgement.

Main Results: Figure 6 plots the completion of the recovery process against increases
in the hand-off threshold rate. The recovery likelihood is significantly reduced when using
the log management technique, but the hand-off threshold rate is raised. Alternatively,
some techniques decreased gradually when the threshold value was increased.

Discussion: The results demonstrated that the log technique is applicable only in small
work settings. Whereas the hybrid approach and the agent-based method both performed
well for areas with multiple regions or regions located farther from the site of retrieval. As
anticipated, the suggested model has a higher recovery probability in the long term when
compared to the other methods in the various simulated settings.
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4.2.4. Experiment Four

Aim: The next set of experiments was conducted to measure the efficiency of the
proposed model compared to traditional recovery methods concerning the degree of
complexity of the chosen strategies. In this case, the degree of complexity of the strategies
was divided into three levels: low, medium, and high. The difficulty here is measured
through utility functions. In the case of the log file size parameter, the range of size changes
from small to medium to large is a measure of the complexity of the strategy. The same
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is the case for the other parameters such as handoff rate and mobility rate. Herein, the
evaluation is based on the total payoff value that is calculated as the sum of the three utility
functions’ outputs.

Main Results: The results in Figure 7 confirm the superiority of the suggested model.
As previously stated, since the proposed model is based on a knowledge base that was
created after the pre-implementation of each chosen recovery protocol in various simulated
environments, it automatically picks the most appropriate recovery procedure for the
present situation.

Discussion: As expected, the log management algorithm is preferred in the small
area. However, this decision turns out to be unfavorable with a large log size, especially in
distant regions, because the cost of transfer the log file becomes high, and thus the cost of
recovery becomes more problematic. On the other hand, the hybrid method gave a good
payoff compared to other algorithms whenever there was a multiplicity in the regions
because it had taken the recovery point once. The same is true for agent-based recovery, as
it is easy to find the recovery location by tracing the MH ids.
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4.2.5. Experiment Five

Aim: A comparative analysis has been done with an optimization model dealing
with the recovery of HLR mobility databases presented in [40]. In this work, analytical
performance results evaluation for the location updating scheme have been done for the
mobility database failure recovery under some assumptions. The lost incoming calls cost
is calculated versus the system probability distribution for the recovery time. Therefore,
in our proposal, a simulation for a traffic analysis with random log file sizes is done into
failure recovery time to calculate the lost packet rates.

Main Results: The results in Figure 8 show a significant decrease in the average lost
packets in the proposed model compared to the comparative protocol under different
failure recovery time.

Discussion: That is because the proposed model switched between a pool of recov-
ery algorithms that may suitable for any environment rather than using a fixed recovery
method that may not be suitable, which leads to the retrieval system not constantly updat-
ing its database in a proper time. Thus, it reduces the packet loss rate.
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4.2.6. Experiment Six

Aim: The last set of experiments was implemented to compare the suggested recovery
model (the extended version with three players) with our previous version (modelling by
two players). The precision (accuracy) rate has been used for assessment according to the
recovery probabilities for multi degrees of handoff threshold values that are considered as
a very influential factor to complete the retrieval process.

Main Results: As expected, Form Figure 9, utilizing three players for game modelling,
increases the precision rate by an average of 5% compared with two players for a game.

Discussion: This improvement comes from increasing competition through utilizing
more than two recovery algorithms that gave the opportunity to select the best protocol
from a pool of algorithms according to the current MDS environmental conditions. There-
fore, some protocols used in our previous work [21] will be retreated in this work due to
the entry of other protocols in the competition.
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5. Conclusions and Future Work

The purpose of this paper was to propose a new game theory model for determining
the optimal recovery strategy in MSD. The novel method was compared against three of
the most commonly used MDS recovery procedures in a competitive environment. Game
theory is founded on the idea that each algorithm chooses the most appropriate strategy
in terms of message delivery time and message count in order to determine the right
recovery solution based on environmental factors. A key step of a quantum game-theoretic
research is identifying which strategy to a recovery process is the superior solution to the
strategies chosen by others. The proposed recovery model is based on the development of
a knowledge base that is used to choose the best appropriate method based on the reward
matrix and dominant equilibrium technique. The experimental findings demonstrate the
superiority of the suggested recovery paradigm. In the future, it may be essential to include
more recovery procedures to optimize the suggested model’s performance. Additionally,
a hybrid method based on game theory and the recently developed paradigm of cloud
algorithms was utilized to improve the outcome. Furthermore, this enhanced the game
model to allow interactions between players and utilized mixed strategies. Prior to that,
some investigations should be made into the probability distribution of the behavior of the
competing players (dealing with uncertainty). The application of the proposed model in the
case of large systems and the discussion of its complexity will be also done in future work.
Finally, the concept of mind-light-matter unity AI/QI in quantum-inspired computing can
be utilized to enhance the suggested model.
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