
symmetryS S

Article

The 1+5 Architectural Views Model in Designing Blockchain
and IT System Integration Solutions

Tomasz Górski

����������
�������

Citation: Górski, T. The 1+5

Architectural Views Model in

Designing Blockchain and IT System

Integration Solutions. Symmetry 2021,

13, 2000. https://doi.org/10.3390/

sym13112000

Academic Editor: Chin-Ling Chen

Received: 13 September 2021

Accepted: 20 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Polish Naval Academy of the Heroes of Westerplatte (PNA),
81-127 Gdynia, Poland; t.gorski@amw.gdynia.pl

Abstract: Service fulfillment for clients increasingly involves cooperation between information
technology (IT) systems. Designing such solutions requires an architectural approach that ensures
symmetry between the communicating parties. For the design of such systems, the author introduces
the 1+5 architectural views model. The model contains three new architectural views. For business
process modeling, it ensures the integrated processes view. Integration aspects cover two additional
views: integrated services, and contracts. Moreover, new stereotypes and tagged values have been
added to the unified modeling language (UML). The author has introduced two profiles: UML profile
for integration flows, and UML profile for distributed ledger deployment. Communication between systems
requires flows that arrange mediation mechanisms. The paper describes an integration flow diagram
that extends a UML activity diagram. In the case of blockchain, the author has proposed the smart
contract design pattern. The paper describes three case studies that have employed the model to
design various solutions. The 1+5 model has proven to be well suited for designing both centralized
integration environments with enterprise service bus (ESB) and distributed blockchain solutions with
peer-to-peer (P2P) connections.

Keywords: 1+5 architectural views model; unified modeling language; design pattern; interoperabil-
ity; blockchain

1. Introduction

When designing an IT system, we most often must consider the aspect of information
exchange with other systems. Moreover, the requirements for the system stem from
the business model. Business processes often cross organizational boundaries involving
collaboration between companies.

The idea for the architectural model results from participation of the author in the
project of building the check-in system for the Polish Border Guard. The key issue was
placing the requirements in the right business context. The conducted business analysis
identified key business processes and significant use cases (the number of use cases was
reduced by more than six times). Communication between systems is another important
area. To work properly, the check-in system had to communicate with several other systems,
including the central register of issued and invalidated passport documents and the visa
information system. The last key element is the non-functional requirements imposed on
the implementation of use cases. This applies especially to aspects of performance, but
also to safety, reliability, and usability. For example, when you cross the border of the
European Union, you are obliged to go through passport control. Usually, it lasts only
several dozen seconds. During this time, the check-in system communicates with several
external systems, checking whether there are any contraindications for the entry or exit of
the person to/from the European Union.

With the above in mind, the author has proposed the 1+5 model of architectural views
for designing an IT system that requires cooperation with other systems [1,2]. The model
has six views but three of them are new. It is the integrated processes view that enables the

Symmetry 2021, 13, 2000. https://doi.org/10.3390/sym13112000 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8393-1585
https://doi.org/10.3390/sym13112000
https://doi.org/10.3390/sym13112000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112000
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112000?type=check_update&version=2


Symmetry 2021, 13, 2000 2 of 17

description of business processes that can cross the boundaries of the organization. The
second is the integrated services view that allows you to show communication between
systems and design integration flows. The last one is the contracts view that enables you to
define cooperation rules and non-functional requirements.

The paper is arranged as follows. Section 2 discusses the related work. The third
section describes the 1+5 architectural views model. Section 4 introduces UML profiles
for modeling integration flows and blockchain network deployment. The next section
encompasses a description of the smart contract design pattern. Section 6 shows three case
studies where the 1+5 model has been used. The section also presents the application
of the integration flow diagram to the design of the flow of prescription. The last section
summarizes the article and outlines directions for further work.

2. Related Work

The article concentrates on the architectural description in UML and distributed
systems in terms of blockchain and distributed ledger technologies. Therefore, the search
for articles concentrated on these two topics. The results of the literature review have
been divided into corresponding paragraphs. The first one contains papers that show the
newest applications of UML. It also shows the research results of employing the model-
driven engineering approach. The second one encompasses papers that describe the
latest advances in blockchain technology. Special attention has been paid to the matter of
blockchain solutions for the renewable energy sector.

Professionals usually reach for UML for software architecture modeling. A large
group of practitioners (109) has been surveyed by Ozkaya et al. [3] to discover usage of
UML diagrams and architectural viewpoints. It appears that the most popular are the
information (99%) and the functional (96%) viewpoints. In the survey, they have also
surveyed professionals on the usage of UML diagrams in modeling different aspects of
software architecture. For example, the UML class diagram is commonly used for data
structure modeling (85%), the UML deployment diagram is applied to physical structure
modeling (71%) and functional to physical components mapping (53%). Moreover, the
UML activity diagram is also used for software building and release processes modeling
(20–22%). Table 1 contains the results of UML diagram usage, where the numbers mean
the percentage of professionals who selected the considered diagram to model a chosen
aspect of software architecture.

Table 1. Usage of UML diagrams by professionals.

UML Diagram Software Architecture Aspect of Modeling

class data structure (85%),
functional structure (71%)

deployment physical structure (71%),
functional to physical components mapping (53%)

activity flow of data (65%),
software delivery (20–22%)

sequence data lifecycle models (47%)

component software module composition (47%),
system configuration (21%)

package software module structure (47%)

Additionally, the uses of UML are still the focus of research. For example,
Chavez et al. [4] strive to ensure coherence amid a class in the UML model and its im-
plementation in Java. Software models that are expressed in UML may need to employ
precise semantics. To achieve that, professionals can use object constraint language (OCL).
As far as OCL is concerned, Clarisó et al. [5] show a method that may boost the usability of



Symmetry 2021, 13, 2000 3 of 17

the UML class diagram. Moreover, Lu et al. [6] present the use of OCL for guaranteeing the
quality of cancer data in medical registries. New research shows more and more uses of
UML combined with MDE. Assunção et al. [7] have used UML class diagrams to generate
product line architecture variants. Arora et al. [8] have obtained test scenarios from a
UML activity diagram by analyzing alternative flows of events with the application of
a bio-inspired algorithm. Test cases are the subject of research by Yousaf et al. [9]. They
have chosen interaction flow modeling language models of the user interface as a starting
point. The bottom-up approach is shown by Arcaini et al. [10]. They merge test cases for
subsystems to achieve ones for the whole system.

Blockchain is one of the most disruptive technologies. Papers by Monrat et al. [11], and
Al-Jaroodi et al. [12] examine the benefits and difficulties of employing blockchain in various
business uses. In my opinion, blockchain has tremendous potential in the energy segment.
Smart microgrids demand technologies that facilitate prosumers on the electricity exchange.
Wang et al. [13] designed a model and blockchain framework on hyperledger fabric that
allows point-to-point trading in crowdsourced energy systems. Jamil et al. [14] go on even fur-
ther. They introduced a predictive energy exchange framework with a day-ahead controlling
feature, whereas Lu et al. [15] concentrated on improving the system’s availability while intro-
ducing a renewable energy selling method. Górski et al. [16] introduce the idea of an electricity
consumption and supply management (ECSM) system. It is a renewable energy platform
that has been developed with the use of the R3 Corda framework [17]. Saxena et al. [18]
developed a private blockchain-based residential energy trading system. The system allows
homeowners to select bidding strategies. It also reduces the peak demand for the energy
of the community as a whole. They have used the hyperledger fabric framework [19]. Fur-
thermore, Cioara et al. [20] proposed the construction of virtual power plants by applying a
permissionless blockchain. Their model captures the prosumer constraints such as energy
production and usage. The development of renewable energy sources grids may lead to their
decentralized management with the active role of prosumers.

Researchers and practitioners use various blockchain frameworks. Chowdhury et al. [21]
have published an analysis that assesses the suitability of both permissioned and permission-
less blockchain frameworks. Moreover, one of the main elements in blockchain technology is
a consensus algorithm. Especially in public ones, the proof-of-work consensus mechanism is
the most proliferated. In such a network, reaching the consensus requires an intensive mining
process [22]. Nguyen et al. [23] conduct performance analysis of the proof-of-stake consensus
mechanisms. They encompass a broad range of mechanisms from basic to highly complicated.

Current research results on blockchain focus mainly on smart contracts. Distributed ap-
plications consist of smart contracts with imposed verification rules. In addition, blockchain
nodes constitute the deployment environment. A properly configured deployment envi-
ronment hosts distributed applications. Ozkaya et al. [3] found that the functional and
information views are the most popular views in software architecture modeling. In the
author’s opinion, a complete architectural view model is needed. The professionals select
and employ the views required for the design of a particular solution. As far as blockchain
is concerned, the paper concentrates more on the deployment view (UML profile for DLT
deployment). However, it also includes at least limited support for the design of smart
contracts in the form of the pattern in the contracts view. As far as the integration of IT
systems is concerned, the paper puts more emphasis on the integrated services view (UML
profile for integration flows).

3. The 1+5 Model of Architectural Views

Software teams use architecture descriptions to improve communication and coopera-
tion among stakeholders, enabling them to work in a comprehended and coherent manner.
The ISO/IEC/IEEE 42010:2011 standard introduces terms defining software engineering
architecture description [24]. Architecture description is a work product used to express an
architecture. Architecture encompasses key ideas or characteristics of a system included in
its parts, relationships, and principles of its design and development. Finally, the architec-



Symmetry 2021, 13, 2000 4 of 17

ture view shows the architecture of a system from a specific perspective. An architecture
description comprises architecture views and models. Kruchten [25] presents the software
architecture model 4+1 that encompasses various architectural views: scenarios, logical,
development, process, and physical. The name use cases is used interchangeably with the name
scenarios. There are other models of architectural views [26], e.g., SEI, Siemens, RM-ODP.
There is definitely a lack of such description well suited to cooperating information tech-
nology systems and especially blockchain solutions. The 1+5 architectural views model
has been proposed to design software systems that realize common business processes and
must exchange information [1] (Figure 1).

Figure 1. The graphical abstract of the 1+5 architectural views model.

Within the integrated processes view we can model business processes. Secondly, we can
identify the required software systems support. Furthermore, we can look at the required
collaboration among those software systems. Generally, we have human and automated
tasks within a business process. The latter ones become services. They automate the
execution of a business process. We can model processes in a UML activity diagram or
business process model and notation business process diagram. In the use cases view we
can describe the functions of the software system. The functionality scope is depicted in
the UML use case diagram. A new stereotype �IntegratedSystem� has been proposed to
represent an external system. The stereotype can be applied to an actor. Within the logical
view we can design realizations of the identified use cases. Usually, we use three UML
diagrams: class, sequence, and communication. The UML class diagram can be also used to
show the structure of business entities used in business processes. The contracts view shows
agreements inflicted on collaborating parties. The view uses stereotypes from service-
oriented architecture modeling language (SoaML) to denote providers and consumers of
services. The �provider� stereotype marks a component that realizes the service. The
�consumer� stereotype marks a component that uses the service. We can use the UML
component diagram to show contracts. Moreover, a contract can be used to specify non-
functional requirements. The integrated services view shows the interaction between service
providers and consumers. We can use a UML component diagram. A new stereotype
�ESB� has been introduced to clearly identify a central point of communication, the
enterprise service bus. Using a service usually involves integration flow. The flow consists
of mediation mechanisms. The set of mediation mechanisms has been put in the UML
profile for integration flows. Moreover, the integration flow diagram has been proposed to
model an integration flow. The flow is invoked and executed by the enterprise service bus.
The physical runtime installation for the software system can be shown in the deployment
view. The installation consists of the hardware and the execution environment required
to execute the developed software system. We can use the UML deployment diagram.
The view also depicts the placement of software components onto physical nodes. The
applicability of the 1+5 model for IT systems integration was presented by the author at
the EUROCAST 2019 conference [27].



Symmetry 2021, 13, 2000 5 of 17

4. UML Profiles

UML offers the following extensibility mechanisms: constraints, stereotypes and
tagged values [28]. Constraints define rules for protecting the integrity of an element in the
model. Stereotypes are new types of modeling elements that extend the semantics of the
UML metamodel existing elements. The specification treats the tagged value as a property
that is a name-value pair. The tagged value can be an attribute of a model element. Profiles
group extension mechanisms.

Stereotypes and tagged values have been applied for defining profiles with the re-
quired semantic UML enrichment for facilitating the modeling of selected aspects of
integration platform. The first UML profile groups stereotypes for mediation mechanisms
of integration flows usually used by enterprise service buses. The profile can be used in
the integrated services view of the 1+5 model. The second UML profile groups stereotypes
that represent blockchain nodes. Furthermore, each node may be described by deployment
parameters. They are modeled as tagged values. In turn, this profile can be applied in the
deployment view of the 1+5 model.

4.1. UML Profile for Integration Flows

Software systems may use different data formats, operate at various communication
protocols, and store data using incompatible structures. Integration flows ensure all
needed transformations to send the message from one system to another. Integration flows
involve using mediation mechanisms. The UML profile for integration flows profile contains
stereotypes that represent enterprise integration patterns. Stereotypes in the profile enable
the modeling of mediation flows. Each stereotype represents a mediation mechanism. All
stereotypes refer to messages. They allow modeling of the following aspects of messages:
transformation, systems, routing, and endpoints. The profile encompasses 40 mediation
mechanisms from enterprise integration patterns. A few of them have been shown here:

• Aggregator—combines the results of related messages so that they could be processed
as a whole;

• DynamicRouter—messages are sent only to those customers who meet certain condi-
tions;

• MessageFilter—message filtering to prevent these unwanted;
• Resequencer—laying related messages in order;
• Splitter—divides a complex message into several smaller messages which are then

separated.

Each stereotype in the profile has its own icon (Figure 2).

Figure 2. Selected mediation mechanisms.



Symmetry 2021, 13, 2000 6 of 17

The profile has been designed using the IBM Rational Software Architect. The pro-
file file EIP.epx can be used to model integration flows and is stored under Git version
control, [29]. A broader description of the profile can be found in the paper [30].

4.2. UML Profile for DLT Deployment

The profile for modeling the deployment of a blockchain network is of a completely
different nature and is at a much more detailed level of accuracy. In the case of the
deployment view, we operate with a specific deployment environment. To talk about the
further possibility of automating the deployment of solutions, we must be able to define in
the model their individual, specific parameters. That is why the profile is so close to the
physical files.

The profile concentrates on the platform-specific model (PSM) to express the precise
deployment configuration of the R3 Corda framework. The profile has been configured in
such an elastic way that it encompasses Corda’s versions from 4.3 to 4.6. Stereotypes have
been applied for nodes, services, and communication protocols. The network map node
hosts the network map service. Notary’s node responsibility is signing transactions. Oracle
node provides facts from the outside world that are needed to commit transactions. The
DLT node can transact with other nodes. The Corda node is an abstract one. That abstract
node is needed to hold properties that are shared among all nodes. Nodes in the Corda
network communicate using protocols through transactions. Nodes host and run services.
The permissioning service provides TLS certificates. The network map service enforces
rules allowing nodes admission to the network. The notary service signs transactions
providing proper timing. Two additional stereotypes have been added for communication
protocols: HTTPS, and AMPQ/TLS. Table 2 summarizes stereotypes in the profile for
nodes, services, and protocols.

Table 2. Stereotypes for nodes and services.

Name Extended UML Element

�NetworkMapNode� Node

�NotaryNode� Node

�OracleNode� Node

�DLTNode� Node

�CordaNode� Node

�notaryService� Artifact

�networkMapService� Artifact

�oracleService� Artifact

�permissioningService� Artifact

�identityService� Artifact

�supportService� Artifact

�HTTPS� Generic Connection

�AMQP/TLS� Generic Connection

Next, deployment parameters have been identified for each type of node. The range
of configuration parameters has been significantly expanded in the current paper. In the
profile, the tagged value represents the deployment parameter. As a result, the number of
tagged values has doubled. For a node in the Corda network, we can specify values for
107 different deployment configuration parameters. For example, the profile encompasses
the deployment configuration of the enterprise nodes. The tuning section has been also
included in the profile. Up-to-date documentation of the R3 Corda framework in version 4.6



Symmetry 2021, 13, 2000 7 of 17

is accessible at the link [17]. According to UML 2.0 specification, tagged values are attributes
of a stereotype. Therefore, proper tagged values have been attached to stereotypes of nodes.
In particular, the set of tagged values common for all types of nodes has been attached to
the abstract �CordaNode� stereotype.

Table 3 shows a few tagged values for deployment parameters associated with the
�CordaNode� stereotype.

Table 3. Tagged values for the �CordaNode� stereotype.

Name Type Default

myLegalName Text Not defined

cryptoServiceTimeout Integer 10,000

database.initialiseSchema Boolean true

database.initialiseAppSchema Text NONE

detectPublicIp Boolean false

enterpriseConfiguration.mutualExclusion.on Boolean false

enterpriseConfiguration.healthCheck Boolean true

enterpriseConfiguration.externalBridge Boolean false

enterpriseConfiguration.maintenanceMode Text Not defined

p2pAddress Text Not defined

messagingServerAddress Text Not defined

networkServices.doormanURL Text Not defined

networkServices.pnm Text Not defined

flowTimeout.maxRestartCount Integer 6

flowTimeout.timeout Integer 30

flowMonitorPeriodMillis Integer 60

tuning.backchainFetchBatchSize Integer 50

tuning.flowThreadPoolSize Integer 30

tuning.rpcThreadPoolSize Integer 4

rpcSettings.useSsl Boolean false

transactionCacheSizeMegaBytes Integer 8

In the paper, the scope of configuration parameters for the notary node has been also
significantly extended. As a result, the number of tagged values has quadrupled. A total of
27 tagged values have been defined for deployment parameters of the �NotaryNode�
stereotype. It results from considering the deployment parameters of the notary node
operating in the high availability mode.

Table 4 contains a few tagged values for deployment parameters associated with the
�NotaryNode� stereotype.



Symmetry 2021, 13, 2000 8 of 17

Table 4. Tagged values for the �NotaryNode� stereotype.

Name Type Default

notary.serviceLegalName Text Not defined

notary.validating Boolean false

notary.extraConfig.maxInputStates Integer 2000

notary.extraConfig.backOffBaseMs Integer 20

notary.extraConfig.batchSize Integer 32

notary.raft.nodeAddress Text Not defined

notary.raft.clusterAddresses Text Not defined

notary.dftSMaRt.clusterAddresses Text Not defined

notary.bftSMaRt.replicaId Text Not defined

notary.jpa.connectionRetries Integer 2

notary.jpa.backOffIncrement Integer 500

notary.jpa.backOffBase Float 1.5

notary.jpa.maxQueueSize Integer 100,000

All stereotypes for Corda network nodes have a common set of tagged values. Because
they inherit from the �CordaNode� stereotype.

Figure 3 presents an inheritance tree of Corda node stereotypes with tagged values.

Figure 3. The UML profile diagram depicts stereotypes with tagged values.

For the �CordaNode� stereotype the figure shows only selected tagged values,
whereas for the �NotaryNode� one it presents the complete set of them. The UML profile
for distributed ledger deployment contains all 11 stereotypes and 134 tagged values. The
profile has been designed using the visual paradigm tool. The profile is stored under Git
version control [31].

5. Smart Contract Design Pattern

The 1+5 model fits the architecture description of distributed ledger and blockchain
solutions. In distributed ledger solutions, transactions occur between two collaborating



Symmetry 2021, 13, 2000 9 of 17

parties. Both collaborators must follow rules enclosed in a smart contract. To properly
model smart contracts the following UML stereotypes have been identified:

• �Contract�—the agreement inflicted on transactions among blockchain nodes;
• �VerificationRule�—a condition that needs to be met;
• �State�—denotes a fact, which is stored in a blockchain node;
• �Flow�—a course of actions among nodes in reaching a consensus on the transac-

tion.

All of them have been used to propose the smart contract design pattern for the R3
Corda distributed ledger framework. That pattern allows the design of smart contracts
in a flexible manner with the application of a dynamic list with verification rules. The
pattern uses the Contract interface from the Corda framework. By default, the concrete
class implements the interface. The verify() method is declared in the interface. In the
method, the concrete class implements the rules that verify the contract. However, it is
embedded in the body of the method and any change to the rules requires recompilation.
In the proposed approach, we have a list of verification rules in the method. The verify()
method will work correctly regardless of how many and what rules we introduce in the
list of rules. In the case of extending the rules, we add the appropriate class for a new
verification rule.

Figure 4 presents the smart contract design pattern with the complete set of interfaces
and classes. For readability, the figure shows only two concrete verification rules.

Figure 4. The UML class diagram shows the smart contract design pattern.

The pattern has two layers: abstract and actual. In the abstract layer, there is the
abstract class VRContract that declares a dynamic list of verification rules. That layer also
includes the VRule interface that provides the definition for verification rule. The abstract
class uses the definition of that interface. In the actual layer, there are classes that represent
contract and verification rules. The concrete implementation of the runRule() method is
provided by each of verification rule classes. Using the verify() method, the IOUContract
class iterates across the dynamic list of verification rules. The abstract class VRContract
declares attribute rules that stores list of verification rules and implements verify() method.



Symmetry 2021, 13, 2000 10 of 17

The verify() method uses lambda expression to check whether all verification rules are met
(see Figure 5).

Figure 5. The source code of the VRContract abstract class.

The IOUContract class instantiates objects of concrete verification rules classes and
adds them to an immutable list of those verification rules objects stored in the rules attribute.
The source code of a smart contract implementation using smart contract design pattern is
available at the GitHub repository, [32].

6. Case Studies
6.1. e-Prescription

The first case study shows the use of the model to design a prescription circulation.
The initial situation includes separate IT systems of clinics and pharmacies with a paper
circulation of such documents. The aim was to build an integration solution enabling the
electronic circulation of prescriptions and their realizations.

When you visit a doctor usually it ends with a written prescription. To realize the
prescription, you step into a pharmacy. The prescription is realized by a pharmacist in
full. The aim was to ensure the electronic flow of the prescription and the realization.
In that case, the prescription is in electronic form, and it does not require you to carry it
with yourself. You can realize those prescription positions that you want or are available
in the pharmacy. It required designing applications for medical clinics and pharmacies.
Both have been implemented in the IntelliJ IDEA tool using Java Server Faces. The source
code of both applications is accessible on demand at GitHub repositories [33,34]. The e-
Prescription application implements two main uses cases—the write prescription for issuing
the prescription, and the get prescriptions for viewing those issued for the patient. The get
prescriptions use case must also be accessible for the e-Pharmacy. The pharmacist should be
able to locate the prescription for realization.

Figure 6 depicts use cases of the e-Prescription application. Thanks to the use of the
�IntegratedSystem� stereotype, the external system is clearly visible in the diagram. We
can see that the get prescriptions use case can be invoked by the e-Pharmacy.



Symmetry 2021, 13, 2000 11 of 17

Figure 6. Use case diagram for e-Prescription.

The e-Pharmacy application also implements two main uses cases. The realize prescrip-
tion for realizing the prescription and the get prescription’s realization for viewing realized
prescription for the patient. The get prescription’s realization use case must be also accessible
for the e-Prescription. The doctor should be able to view the prescription’s realization.
Figure 7 shows use cases of e-Pharmacy.

Figure 7. Use case diagram for e-Pharmacy.

Both use cases that involve integration between applications of a medical clinic and
pharmacy have been exposed as services onto ESB. Figure 8 presents providers and con-
sumers of services into the UML component diagram. The service exposed from a compo-
nent is represented as a realized interface. Services needed by a component are depicted as
a required interface. The e-Prescription application provides the Prescription service. The
e-Pharmacy provides the PrescriptionRealization service. The component with the �ESB�
stereotype manages communication between those two applications.

Figure 8. The UML component diagram with service providers and consumers.



Symmetry 2021, 13, 2000 12 of 17

Each application has a different data format for a prescription and its realization. To
read a prescription in the e-Pharmacy application, it should be transformed to the right
format. Likewise, reading a prescription’s realization in the e-Prescription also requires
transformation to the applicable format. Therefore, service execution onto ESB invokes
specific integration flow.

Figure 9 depicts the integration flow diagram for sending prescriptions to the e-Pharmacy.
In the diagram, we can see mediation mechanisms (UML profile for integration flows) ar-
ranged in a flow.

Figure 9. The integration flow diagram for sending prescriptions to the e-Pharmacy.

The 1+5 model has shown to be helpful in the architectural description of that inte-
gration solution [35]. The solution ensures the electronic circulation of prescriptions and
their realizations.

6.2. Communication between ARMA and AFQI

The second case study shows the use of the model to design one-way communication
between the Agency for Restructuring and Modernization of Agriculture (ARMA) and
the Agricultural and Food Quality Inspection (AFQI). The initial situation encompasses
the separate IT systems of ARMA and AFQI. The aim was to build an integration solution
that would enable the transfer of a large set of multiple documents while ensuring an
appropriate level of performance.

The academic project was devoted to checking the possibility of building an electronic
collaboration platform between ARMA and AFQI. In Poland, competency for supervising
the quality of food products is trusted to ARMA. Certification bodies are responsible for
issuing and revoking certificates for organic farming. A certification body sends the list of
organic producers both to ARMA and AFQI.

Figure 10 shows the flow of information among the Polish authorities participating in
the process of supervising the quality of agricultural and food commodities.



Symmetry 2021, 13, 2000 13 of 17

Figure 10. The authorities in the process of supervising the quality of agri-food products in Poland.

The ARMA supervises the whole process and checks the lists from certification bodies.
In the event of non-compliance, ARMA punishes the certification body. This is done
indirectly by AFQI. ARMA sends to AFQI a call to punish the certification body. The
problem lays in the size of such a request. One call to punish may encompass 700 MB of
data. Originally, the request data were burned to a DVD and sent by post. As a result, it
usually took 2–3 business days for the request to reach AFQI. Therefore, the integration
solution with ESB has been proposed to facilitate communication between those two
authorities. In that case, the 1+5 model has been applied to design a single use case to send
a request to punish a certification body.

Figure 11 shows the UML case diagram for the solution.

Figure 11. The Use case diagram with the Send request to penalize.

Specific requirements were imposed on the integration solution, e.g.: automate the
transfer of data, ensure reliable message delivery, process each message once only, and
compliance of XML documents with XSD schema. The message encompassed files in PDF
and JPG formats encoded by the base64 algorithm. Simple object access protocol (SOAP)
message transmission optimization mechanism (MTOM) is used to transfer binary data
using web services. The XML optimized packaging (XOP) mechanism is used to send data
as multipurpose internet mail extension (MIME) attachments of a SOAP message. The
data in a SOAP message is referenced in the <xop: Include> tag. As a result, text data are
separated from binary ones.

Figure 12 shows the UML component diagram with ESB and cooperating systems.



Symmetry 2021, 13, 2000 14 of 17

Figure 12. The UML component diagram with cooperating IT systems.

There were two main tasks: send files electronically, and deliver them in a reasonable
time. The second was crucial because of the large size of documentation. One request to
penalize, available for performance tests, contained 675.71 MB of data. It encompassed
graphical files: photos and sketches of plots. The communication between systems has
been treated as a queuing system. The required length of the queue and number of
serving processes have been determined by applying Little’s law, [36]. At the design
level, the RabbitMQ message broker has been applied as a queue and Mule ESB as a
service node. Additionally, to effectively deal with a short-term heavy load, the decoupled
invocation pattern has been also incorporated [37]. Furthermore, each of 169 files from the
documentation set has been transferred as a single message. As a result, ARMA can send
to AFQI a request to penalize within 2 min.

A broader description of the integration with the performance analysis of the solution
can be found in the paper [38].

6.3. ECSM

The third case study shows the use of the model to design a renewable energy man-
agement solution. The essence is to record the use of energy in the prosumer node and the
energy produced by the node but used in other network nodes. Blockchain technology has
been used in this solution, in particular the R3 Corda environment.

The ECSM system allows for continuous monitoring and recording of information
about energy generated and used by prosumers. The system is blockchain-based and, using
smart contracts, in each node stores information about inbound and outbound energy. The
solution concentrates on the deployment view. In designing the UML deployment model of the
ECSM system the UML profile for distributed ledger deployment has been applied, [16]. Nodes
have been labeled with proper stereotypes. For example, nodes that represent prosumers
with renewable sources of energy have been labeled with the �DLTNode� stereotype.
Thanks to that, all tagged values associated with the stereotype have been available for
configuration in the UML deployment model. The UML deployment model has been divided
into deployment environments, e.g., dev for development, test for testing, and prod for
production. The UML package groups nodes and represents the deployment environment.
We can use separate UML deployment diagrams to depict deployment environments. The
UML deployment model for ECSM that uses stereotypes and tagged values from the UML
profile for distributed ledger deployment is available at the GitHub repository, [39].

Figure 13 depicts the UML deployment diagram for a part of the ECSM.



Symmetry 2021, 13, 2000 15 of 17

Figure 13. The UML deployment diagram for part of the ECSM system.

The logical view presents design of functions elicited in the use cases view. The UML
class diagram presents classes and interfaces needed for the design of a smart contract (see
Figure 14). Elements from the Corda environment have a gray background, and classes
and interfaces that should be implemented are presented in white.

Figure 14. The UML class diagram for the smart contract design.

The source code of the application with the smart contract implementation is available
at the GitHub repository, [32].



Symmetry 2021, 13, 2000 16 of 17

7. Conclusions

The paper describes the 1+5 model dedicated to the design of cooperating IT systems
in the context of the realization of common business processes. The application of the
model required the creation of additional semantic structures of the UML language. The
article describes two UML profiles: UML profile for integration flows, and UML profile for
distributed ledger deployment. The integration flow diagram, a specialized version of the UML
activity diagram, has also been proposed. The paper contains examples of using the model
to design the integration of IT systems in service architecture and the blockchain-based
renewable energy management system. The model has been verified in both approaches:
centralized architecture with a central element that is ESB and distributed blockchain
technology architecture with peer-to-peer connections.

The UML profile for distributed ledger deployment has been proposed for R3 Corda
distributed ledger up to version 4.6. The profile is at the platform-specific model (PSM)
level. The deployment level is strongly associated with the specific blockchain platform.
As further work, the author sees the need to propose profiles at the PSM level for other
blockchain platforms, e.g.: private Hyperledger Fabric, and public Ethereum. It is also
planned to generalize common features and define the profile for blockchain at the platform-
independent model level. That may be the right step in the direction of the portability
of smart contract applications between blockchain platforms. The work has stirred in
the direction of the continuous delivery approach for generating complete deployment
packages for blockchain nodes with up-to-date smart contract applications. It means using
Git repositories for source-code storage and the Jenkins server for task automation. It is
also planned to use the Kubernetes platform for automating the deployment of blockchain
distributed applications in containers. Finally, within the contracts view, it is taken into
account to propose mechanisms for modeling the security of blockchain applications. At
the opposite level of abstraction are the following views: integrated processes, use cases, and
logical. It is planned to provide the complete 1+5 model for distributed applications and
the solution for their continuous deployment.

Funding: The research has been conducted within the architectural views model of cooperating IT systems
project financed by the statutory resources of the Department of Computer Science, PNA.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Górski, T. Architectural view model for an integration platform. J. Theor. Appl. Comput. Sci. 2012, 10, 25–34.
2. Górski, T. Integration Platforms. Selected Issues; Wydawnictwo Naukowe PWN (State Scientific Publishing House): Warsaw, Poland,

2012; ISBN 978-83-01-17071-4. (In Polish)
3. Ozkaya, M.; Erata, F. A survey on the practical use of UML for different software architecture viewpoints. Inf. Softw. Technol.

2020, 121, 106275. [CrossRef]
4. Chavez, H.M.; Shen, W.; France, R.B.; Mechling, B.A.; Li, G. An Approach to Checking Consistency between UML Class Model

and Its Java Implementation. IEEE Trans. Softw. Eng. 2016, 42, 322–344. [CrossRef]
5. Clarisó, R.; González, C.A.; Cabot, J. Smart Bound Selection for the Verification of UML/OCL Class Diagrams. IEEE Trans. Softw.

Eng. 2019, 45, 412–426. [CrossRef]
6. Lu, H.; Wang, S.; Yue, T.; Ali, S.; Nygård, J.F. Automated Refactoring of OCL Constraints with Search. IEEE Trans. Softw. Eng.

2019, 45, 148–170. [CrossRef]
7. Assunção, W.K.G.; Vergilio, S.R.; Lopez-Herrejon, R.E. Automatic extraction of product line architecture and feature models from

UML class diagram variants. Inf. Softw. Technol. 2020, 117, 106198. [CrossRef]
8. Arora, V.; Singh, M.; Bhatia, R. Orientation-based Ant colony algorithm for synthesizing the test scenarios in UML activity

diagram. Inf. Softw. Technol. 2020, 123, 106292. [CrossRef]
9. Yousaf, N.; Azam, F.; Butt, W.H.; Anwar, M.W.; Rashid, M. Automated Model-Based Test Case Generation for Web User Interfaces

(WUI) From Interaction Flow Modeling Language (IFML) Models. IEEE Access 2019, 7, 67331–67354. [CrossRef]

http://doi.org/10.1016/j.infsof.2020.106275
http://dx.doi.org/10.1109/TSE.2015.2488645
http://dx.doi.org/10.1109/TSE.2017.2777830
http://dx.doi.org/10.1109/TSE.2017.2774829
http://dx.doi.org/10.1016/j.infsof.2019.106198
http://dx.doi.org/10.1016/j.infsof.2020.106292
http://dx.doi.org/10.1109/ACCESS.2019.2917674


Symmetry 2021, 13, 2000 17 of 17

10. Arcaini, P.; Gargantini, A.; Riccobene, E. Decomposition-Based Approach for Model-Based Test Generation. IEEE Trans. Softw.
Eng. 2019, 45, 507–520. [CrossRef]

11. Monrat, A.A.; Schelén, O.; Andersson, K. A Survey of Blockchain From the Perspectives of Applications, Challenges, and
Opportunities. IEEE Access 2019, 7, 117134–117151. [CrossRef]

12. Al-Jaroodi, J.; Mohamed, N. Blockchain in Industries: A Survey. IEEE Access 2019, 7, 36500–36515. [CrossRef]
13. Wang, S.; Taha, A.F.; Wang, J.; Kvaternik, K.; Hahn, A. Energy Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-

Enabled Smart Grids. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1612–1623. [CrossRef]
14. Jamil, F.; Iqbal, N.; Imran; Ahmad, S.; Kim, D. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine

Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9, 39193–39217. [CrossRef]
15. Lu, X.; Guan, Z.; Zhou, X.; Du, X.; Wu, L.; Guizani, M. A Secure and Efficient Renewable Energy Trading Scheme Based

on Blockchain in Smart Grid. In Proceedings of the IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; pp. 1839–1844. [CrossRef]

16. Górski, T.; Bednarski, J.; Chaczko, Z. Blockchain-based renewable energy exchange management system. In Proceedings of the
26th International Conference on Systems Engineering, ICSEng 2018, Sydney, Australia, 18–20 December 2018; pp. 1–6. [CrossRef]

17. Documentation for Corda Enterprise 4.6 Version. Available online: https://docs.corda.net/docs/corda-enterprise/4.6.html
(accessed on 20 October 2021).

18. Saxena, S.; Farag, H.E.Z.; Brookson, A.; Turesson, H.; Kim, H. A Permissioned Blockchain System to Reduce Peak Demand in
Residential Communities via Energy Trading: A Real-World Case Study. IEEE Access 2021, 9, 5517–5530. [CrossRef]

19. Hyperlegder Fabric. Available online: www.hyperledger.org/use/fabric (accessed on 20 October 2021).
20. Cioara, T.; Antal, M.; Mihailescu, V.T.; Antal, C.D.; Anghel, I.M.; Mitrea, D. Blockchain-Based Decentralized Virtual Power Plants

of Small Prosumers. IEEE Access 2021, 9, 29490–29504. [CrossRef]
21. Chowdhury, M.J.M.; Ferdous, M.S.; Biswas, K.; Chowdhury, N.; Kayes, A.S.M.; Alazab, M.; Watters, P. A Comparative Analysis

of Distributed Ledger Technology Platforms. IEEE Access 2019, 7, 167930–167943. [CrossRef]
22. Gramoli, V. From blockchain consensus back to Byzantine consensus. Future Gener. Comput. Syst. 2020, 107, 760–769. [CrossRef]
23. Nguyen, C.T.; Hoang, D.T.; Nguyen, D.N.; Niyato, D.; Nguyen, H.T.; Dutkiewicz, E. Proof-of-Stake Consensus Mechanisms for

Future Blockchain Networks: Fundamentals, Applications and Opportunities. IEEE Access 2019, 7, 85727–85745. [CrossRef]
24. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000). ISO/IEC/IEEE Systems and Software

Engineering—Architecture Description. 2011; pp. 1–46. Available online: ieeexplore.ieee.org/servlet/opac?punumber=6129465
(accessed on 20 October 2021). [CrossRef]

25. Kruchten, P. Architectural Blueprints—The 4+1 View Model of Software Architecture. IEEE Softw. 1995, 12, 42–50. [CrossRef]
26. Rozanski, N.; Woods, E. Software Systems Architecture. Working with Stakeholders Using Viewpoints and Perspectives, 1st ed.;

Addison-Wesley Professional: Upper Saddle River, NJ, USA, 2008.
27. Górski, T. Verification of Architectural Views Model 1+5 Applicability. In Computer Aided Systems Theory—EUROCAST 2019;

Lecture Notes in Computer Science; Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A., Eds.; Springer: Cham, Switzerland, 2020;
Volume 12013, pp. 499–506. [CrossRef]

28. Pender, T. Customizing UML Using Profiles. In UML Bible; Wiley Publishing, Inc.: Indianapolis, IN, USA, 2003; pp. 687–723.
29. GitHub Repository with the UML Profile for Integration Flows. Available online: github.com/drGorski/UMLProfileForIntegration

Flows/blob/master/EIP.epx (accessed on 20 October 2021).
30. Górski, T. UML profiles for architecture description of an integration platform. Bull. Mil. Univ. Technol. 2013, LXII, 43–56.

Available online: https://www.researchgate.net/publication/246548013_UML_profiles_for_architecture_description_of_an_
integration_platform (accessed on 20 October 2021).

31. GitHub Repository with the UML Profile for Distributed Ledger Deployment. Available online: github.com/drGorski/
UMLProfileForDLT (accessed on 20 October 2021).

32. GitHub Repository with the Smart Contract Design Pattern Implementation. Available online: github.com/drGorski/
renewableEnergyBlockchain (accessed on 20 October 2021).

33. GitHub Repository with the e-Prescription Application. Available online: github.com/drGorski/ePrescription (accessed on 20
October 2021).

34. GitHub Repository with the e-Pharmacy Application. Available online: github.com/drGorski/ePharmacy (accessed on 20
October 2021).

35. Górski, T. Architecture of Integration Platform for Electronic Flow of Prescriptions. Ann. Coll. Econ. Anal. Warsaw Sch. Econ. 2012,
25, 67–83. Available online: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z25_05.pdf (accessed on 20 October 2021). (In Polish)

36. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling;
Wiley-Interscience: New York, NY, USA, 1991; ISBN 0471503361.

37. Rotem-Gal-Oz, A. SOA Patterns; 1st ed.; Manning Publications: Shelter Island, NY, USA, 2012; ISBN 978-1933988269.
38. Górski, T. The use of Enterprise Service Bus to transfer large volumes of data. J. Theor. Appl. Comput. Sci. 2014, 8, 72–81.
39. GitHub Repository with the ECSM Design. Available online: github.com/drGorski/designECSM (accessed on 20 October 2021).

http://dx.doi.org/10.1109/TSE.2017.2781231
http://dx.doi.org/10.1109/ACCESS.2019.2936094
http://dx.doi.org/10.1109/ACCESS.2019.2903554
http://dx.doi.org/10.1109/TSMC.2019.2916565
http://dx.doi.org/10.1109/ACCESS.2021.3060457
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00253
http://dx.doi.org/10.1109/ICSENG.2018.8638165
https://docs.corda.net/docs/corda-enterprise/4.6.html
http://dx.doi.org/10.1109/ACCESS.2020.3047885
www.hyperledger.org/use/fabric
http://dx.doi.org/10.1109/ACCESS.2021.3059106
http://dx.doi.org/10.1109/ACCESS.2019.2953729
http://dx.doi.org/10.1016/j.future.2017.09.023
http://dx.doi.org/10.1109/ACCESS.2019.2925010
ieeexplore.ieee.org/servlet/opac?punumber=6129465
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1007/978-3-030-45093-9_60
github.com/drGorski/UMLProfileForIntegration
Flows/blob/master/EIP.epx
https://www.researchgate.net/publication/246548013_UML_profiles_for_architecture_description_of_an_integration_platform
https://www.researchgate.net/publication/246548013_UML_profiles_for_architecture_description_of_an_integration_platform
github.com/drGorski/UMLProfileForDLT
github.com/drGorski/UMLProfileForDLT
github.com/drGorski/renewableEnergyBlockchain
github.com/drGorski/renewableEnergyBlockchain
github.com/drGorski/ePrescription
github.com/drGorski/ePharmacy
http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z25_05.pdf
github.com/drGorski/designECSM

	Introduction
	Related Work
	The 1+5 Model of Architectural Views
	UML Profiles
	UML Profile for Integration Flows
	UML Profile for DLT Deployment

	Smart Contract Design Pattern
	Case Studies
	e-Prescription
	Communication between ARMA and AFQI
	ECSM

	Conclusions
	References

